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CONVERGENCE RATE OF ONE CLASS OF

DIFFERENTIATING SUMS

M.A. KOMAROV

Abstract. We consider a differentiation formula for functions analytic in the circle |𝑧| < 1:
𝑎𝑧𝑓 ′(𝑧) = 𝑛𝑓(0) −

∑︀𝑛
𝑘=1 𝑓(𝜆𝑘𝑧) + 𝑅𝑛(𝑧). Here 𝑎 ̸= 0 is a real constant, 𝑛 = 1, 2, . . . ,

while complex parameters 𝜆𝑘 = 𝜆𝑛,𝑘(𝑎), 𝑘 = 1, . . . , 𝑛, are defined as the unique solution
of a discrete moment system for Newtonian power sums 𝜆𝑚

1 + · · · + 𝜆𝑚
𝑛 = −𝑚𝑎, 𝑚 =

1, . . . , 𝑛. Under such choice of the parameters, the function 𝑅𝑛(𝑧) = 𝑅𝑛(𝑎, 𝑓 ; 𝑧), which is
the remainder in the formula, is of order 𝑂(𝑧𝑛+1) as 𝑧 → 0. In this work we show that
for each fixed 𝑎 > 0 and each 𝑛 > 3𝛼 (𝛼 := max{𝑎; 1}) the domain of the applicability of
the formula contains the circle |𝑧| < exp(−3

√
𝑣 − 2𝑣), 𝑣 := 𝛼/(𝑛+ 1), the radius of which

tends to one as 𝑛 → ∞. We establish an exponential convergence rate of differentiating
sums to 𝑛𝑓(0) − 𝑎𝑧𝑓 ′(𝑧) in the same circle. This result completes and extends essentially
previous results by V.I. Danchenko (2008) and P.V. Chunaev (2020), which, respectively
for the cases 𝑎 = −1 and −𝑛 6 𝑎 < 0 established the convergence of the differentiating
formula but only in the domains contained in fixed compact subsets of the unit circle. The
proof of the main results of the paper is based essentially on an approach for constructing
a solution for the mentioned moment system; this approach differs essentially from that by
Danchenko and Chunaev.

Keywords: differentiation of analytic functions, differentiating sums, ℎ-sums, convergence
rate.

Mathematics Subject Classification: 30E10, 41A25, 65D25

1. Introduction

Let

ℎ(𝑧) =
∞∑︁

𝑚=0

ℎ𝑚𝑧
𝑚

be a function analytic in the unit disk 𝐷 = {𝑧 : |𝑧| < 1}. V.I. Danchenko [1, Sect. 2.4] proposed
a formula for a numerical differentiation

(𝑧ℎ(𝑧))′ =
𝑛∑︁

𝑘=1

𝜇𝑘ℎ(𝜇𝑘𝑧) + 𝜀𝑛(𝑧), 𝜇𝑘 = 𝜇𝑛,𝑘 (𝑛 = 1, 2, . . . ), (1.1)

where complex numers 𝜇1, . . . , 𝜇𝑛 are uniquely determined by the condition

𝜀𝑛(𝑧) = 𝑂(𝑧𝑛) (𝑧 → 0).

Namely, since

(𝑧ℎ(𝑧))′ −
𝑛∑︁

𝑘=1

𝜇𝑘ℎ(𝜇𝑘𝑧) =
∞∑︁

𝑚=1

(︃
𝑚−

𝑛∑︁
𝑘=1

𝜇𝑚
𝑘

)︃
ℎ𝑚−1𝑧

𝑚−1,

then 𝜇1, . . . , 𝜇𝑛 is a unique solution of system

𝜇𝑚
1 + · · · + 𝜇𝑚

𝑛 = 𝑚, 𝑚 = 1, . . . , 𝑛,
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for Newtonian power sums. One of the ways of solving the system is based on applying Newton
recurrent formulae, see [1] for more details. It is important to note that the quantities 𝜇𝑘 are
independent of the function ℎ. The sums of form

∑︀𝑛
𝑘=1 𝜇𝑘ℎ(𝜇𝑘𝑧) are called ℎ-sums.

Each analytic in 𝐷 function

𝑓(𝑧) =
∞∑︁

𝑚=0

𝑓𝑚𝑧
𝑚

can be represented as 𝑓(𝑧) = 𝑓(0) + 𝑧ℎ(𝑧) with a certain analytic in 𝐷 function ℎ and this is
why formula (1.1) is equivalent to the formula

𝑧𝑓 ′(𝑧) = −𝑛𝑓(0) +
𝑛∑︁

𝑘=1

𝑓(𝜇𝑘𝑧) + 𝜚𝑛(𝑧), 𝜚𝑛(𝑧) = 𝑂(𝑧𝑛+1). (1.2)

Recently P.V. Chunaev considered a generalization of formula (1.2) [2, Sect. 3.3.5]:

𝑧𝑓 ′(𝑧) = −𝑡𝑓(0) +
𝑡

𝑛

𝑛∑︁
𝑘=1

𝑓(�̃�𝑘𝑧) + 𝜚𝑛(𝑧), 𝜚𝑛(𝑧) = 𝑂(𝑧𝑛+1), (1.3)

by introducing an additional real parameter 𝑡 ̸= 0. It is clear that (1.3) coincides with (1.2) for
𝑡 = 𝑛 and that both formulae are exact on polynomials of degree at most 𝑛. The quantities
�̃�𝑘 = �̃�𝑛,𝑘(𝑡) are determined by the system

�̃�𝑚
1 + · · · + �̃�𝑚

𝑛 =
𝑚𝑛

𝑡
, 𝑚 = 1, . . . , 𝑛.

In works [1], [2], the domains of applicability of differentiation formulae (1.2), (1.3) were
established and the errors were estimated. For instance, it was shown in [2] that if

|𝑓𝑚| 6 1, 𝑚 = 0, 1, 2, . . . ,

then for all 𝑡 > 1

|𝜚𝑛(𝑧)| 6
2 𝑛
√
𝑡
⃒⃒
(2𝑛 + 1)𝑧

⃒⃒𝑛+1(︀
𝑛
√
𝑡− (2𝑛 + 1)|𝑧|

)︀2 , |𝑧| <
𝑛
√
𝑡

2𝑛 + 1
.

A simple analysis of the proof shows that
a) this estimate holds true also for 𝑡 6 −1 if we replace 𝑡 by |𝑡| in it,
b) as |𝑡| ≍ 𝑛 we can state more, for instance, as 𝑡 = 𝑛, by Theorem 4(b) in [2] with 𝑟0 = 𝑛,

𝛾 = 𝑎 = 1 we obtain an estimate for error in formula (1.2):

|𝜚𝑛(𝑧)| 6 2𝑛
|3𝑧|𝑛+1

(1 − 3|𝑧|)2
, |𝑧| < 1

3
.

Nevertheless, the domains of applicability of formulae (1.2), (1.3) found in [1], [2] are essen-
tially less than the analyticity domain of the function 𝑓 , which contains the unit circle. In
the present work, for each fixed 𝑡 < 0, we construct a new estimate for the error in formula
(1.3), which can be applied in a circle of form |𝑧| < 𝑟, where 𝑟 = 𝑟(𝑡, 𝑛) → 1 as 𝑛 → ∞. The
way of the proof differs substantially from the approaches in works [1], [2] and it can not be
generalized for the case 𝑡 > 0.
Other effective modifications of the method of differentiating ℎ-sums different from (1.3)

were constructed by the author [3] and by V.I. Danchenko and P.V. Chunaev [4]. In the first
of these works the differentiating differences of ℎ-sums was studied, while in the other the
differentiation was by amplitude-frequency sums

∑︀𝑛
𝑘=1 𝜆𝑘ℎ(𝜇𝑘𝑧). In [5] A.V. Fryantsev applied

the method of ℎ-sums for approximating differential polynomials of certain form generalizing
the differentiation operator (𝑧ℎ(𝑧))′.



CONVERGENCE RATE OF ONE CLASS OF DIFFERENTIATING SUMS 43

2. Results

Letting 𝑎 = −𝑛/𝑡, for 𝑡 < 0 we write formula (1.3) as

𝑎𝑧𝑓 ′(𝑧) = 𝑛𝑓(0) −
𝑛∑︁

𝑘=1

𝑓(𝜆𝑘𝑧) + 𝑅𝑛(𝑧), 𝑎 > 0, 𝜆𝑘 = 𝜆𝑛,𝑘(𝑎), (2.1)

where

𝑅𝑛(𝑧) = 𝑅𝑛(𝑎, 𝑓 ; 𝑧) = 𝑂(𝑧𝑛+1), 𝑧 → 0, 𝜆𝑛,𝑘(𝑎) := �̃�𝑛,𝑘

(︁
−𝑛

𝑎

)︁
.

It is clear that 𝜆1, . . . , 𝜆𝑛 is a unique solution of the system

𝜆𝑚
1 + · · · + 𝜆𝑚

𝑛 = −𝑚𝑎, 𝑚 = 1, . . . , 𝑛, (2.2)

while the error term in formula (2.1) reads as

𝑅𝑛(𝑎, 𝑓 ; 𝑧) =
∞∑︁

𝑚=𝑛+1

(𝑚𝑎 + 𝑆𝑚)𝑓𝑚𝑧
𝑚, 𝑆𝑚 = 𝑆𝑛,𝑚(𝑎) :=

𝑛∑︁
𝑘=1

𝜆𝑚
𝑘 .

Theorem 2.1. Let 𝑎 > 0, 𝑛 > 3𝛼 and 𝑟 = 𝑟𝑛(𝛼), where

𝑟𝑛(𝛼) = exp

(︂
− 3

√
𝛼√

𝑛 + 1
− 𝛼 + 1

𝑛 + 1

)︂
, 𝛼 = max{𝑎; 1}.

Then the solution 𝜆1, . . . , 𝜆𝑛 of system (2.2) obeys the estimate

Λ𝑛(𝑎) := max
16𝑘6𝑛

|𝜆𝑘| < 𝑟−1. (2.3)

Theorem 2.1 will be proved in Section 3. We recall that according [2], the parameters in
formula (1.3) satisfy the estimate

max
16𝑘6𝑛

|�̃�𝑛,𝑘(𝑡)| 6 2𝑛 + 1
𝑛
√︀
|𝑡|

, 𝑡 ̸= 0,

which for 𝑡 := −𝑛/𝑎 yields the following estimate for the quantities Λ𝑛(𝑎):

Λ𝑛(𝑎) 6
2𝑛 + 1

𝑛
√
𝑛

𝑛
√︀
|𝑎|.

We see that for each fixed 𝑎 > 0 estimate (2.3) is sharper in order of 𝑛 since as 𝑛 → ∞, an
asymptotics holds:

𝑟−1 = (𝑟𝑛(𝛼))−1 ∼ 1 +
3
√
𝛼√
𝑛

< 1 +
3
√
𝑎 + 1√
𝑛

.

Let us find the domain of applicability and an estimate for the remainder in formula (2.1).

Theorem 2.2. Let 𝑎 > 0, 𝑛 > 3𝛼 and 𝑟 = 𝑟𝑛(𝛼), where 𝛼 = max{𝑎; 1}. Let |𝑓𝑚| 6 1 for
all 𝑚 > 𝑛 + 1. Then

|𝑅𝑛(𝑎, 𝑓 ; 𝑟𝑧)| 6 (𝑛 + 1)
|𝑧|𝑛+1

1 − |𝑧|
, |𝑧| < 1.

Proof. In view of (2.3) we have |𝑆𝑚| < 𝑛𝑟−𝑚 (𝑚 > 𝑛 + 1) and

|𝑅𝑛(𝑎, 𝑓 ; 𝑟𝑧)| 6
∞∑︁

𝑚=𝑛+1

(︀
𝑚𝛼𝑟𝑚 + 𝑛

)︀
|𝑧|𝑚, 𝑚𝛼 < 𝑒3

√
𝑚𝛼 6 𝑒

3𝑚
√
𝛼√

𝑛+1 < 𝑟−𝑚,

and this completes the proof.



44 M.A. KOMAROV

Remark 2.1. For each 𝑛 > 3, the maximal value of 𝑎, under which the assumptions of
Theorem 2.1 are satisfied is equal to 𝑛/3. According to (2.3), the corresponding value of quantity
Λ𝑛 do not exceed

exp
(︁3

√
3 + 1

3

)︁
+ 𝑜(1) ≈ 7.89, 𝑛 → ∞.

However, it is easy to establish a sharper bound, see Remark 4.1 in Section 4.1:

Λ𝑛(𝑛
3
) < exp

(︁2
√

3 + 1

3

)︁
= 4.42838 . . . (𝑛 > 50). (2.4)

Corollary 2.1. If a function 𝑓 is analytic in 𝐷 and

|𝑓(𝑧)| 6 1, |𝑧| < 1,

then for 𝑟 = (4.4284)−1 = 0.2258 . . . the estimate⃒⃒⃒𝑧𝑓 ′(𝑧)

3
− 𝑓(0)

⃒⃒⃒
6 1, |𝑧| 6 𝑟

holds true.

Proof. Formula (2.1) is exact for polynomials 𝑃 of degree at most 𝑛, in particular, for 𝑎 = 𝑛/3
we have an identity

𝑛
𝑧𝑃 ′(𝑧)

3
≡ 𝑛𝑃 (0) −

𝑛∑︁
𝑘=1

𝑃 (𝜆*
𝑘𝑧), 𝜆*

𝑘 = 𝜆𝑛,𝑘(𝑛
3
).

As 𝑛 > 50 we let 𝑓(𝑧) = 𝑃𝑛(𝑧) + 𝐹𝑛(𝑧), where 𝑃𝑛 is the 𝑛th Maclaurin polynomial of the
function 𝑓 , 𝑃𝑛(0) = 𝑓(0). By the identity and estimate (2.4), in the disk |𝑧| 6 𝑟 we have⃒⃒⃒𝑧𝑃 ′(𝑧)

3
− 𝑓(0)

⃒⃒⃒
=

1

𝑛

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑘=1

𝑃𝑛

(︀
𝜆*
𝑘𝑧
)︀⃒⃒⃒⃒⃒ 6 max

|𝑧|=𝛿
|𝑃𝑛(𝑧)|,

𝛿 := 𝑟 · Λ𝑛(𝑛
3
) < (4.4284)−1 · 4.42839 < 1.

Therefore, ⃒⃒⃒𝑧𝑓 ′(𝑧)

3
− 𝑓(0)

⃒⃒⃒
6 1 + ∆𝑛, |𝑧| 6 𝑟,

where

∆𝑛 := max
|𝑧|=𝛿

|𝐹𝑛(𝑧)| + max
|𝑧|=𝑟

⃒⃒⃒𝑧
3
𝐹 ′
𝑛(𝑧)

⃒⃒⃒
→ 0 as 𝑛 → ∞

due to the boundedness of the function 𝑓 . Since 𝑛 is arbitrary, we arrive at the needed state-
ment. The proof is complete.

The identity in the estimate in Corollary 2.1 is attained at a constant function 𝑓(𝑧) ≡ 1. A
maximal possible value of the radius 𝑟 in this estimate can be obtained from a general theorem
by G.M. Goluzin [6] and it is equal to

𝑟max =
4 −

√
7

3
= 0.4514 . . . .

Indeed, if we denote the coefficients of the function 𝑓 by 𝑓0, 𝑓1, . . . , then

𝑧𝑓 ′(𝑧)

3
− 𝑓(0) =

∞∑︁
𝑚=0

𝛾𝑚𝑓𝑚, 𝛾0 := −1, 𝛾𝑚 :=
𝑚𝑧𝑚

3
(𝑚 > 1).

Thus, inequality ⃒⃒⃒⃒
𝑧𝑓 ′(𝑧)

3
− 𝑓(0)

⃒⃒⃒⃒
6 1, |𝑧| 6 𝑟,
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is equivalent to ⃒⃒⃒⃒ ∞∑︁
𝑚=0

𝛾𝑚𝑓𝑚

⃒⃒⃒⃒
6 |𝛾0| = 1, 𝛾𝑚 =

𝑚𝑧𝑚

3
, |𝑧| = 𝑟. (2.5)

But according to Theorem 1 and formula (18) in [6], inequality (2.5) holds for all functions in
the class mentioned in Corollary 2.1 if and only if⃒⃒⃒⃒ ∞∑︁

𝑚=0

𝛾𝑚𝜁
𝑚

⃒⃒⃒⃒
>

⃒⃒⃒⃒ ∞∑︁
𝑚=1

𝛾𝑚𝜁
𝑚

⃒⃒⃒⃒
on |𝜁| = 1.

Summing up the series, we obtain:⃒⃒⃒⃒
− 1 +

𝑤

3(1 − 𝑤)2

⃒⃒⃒⃒
>

⃒⃒⃒⃒
𝑤

3(1 − 𝑤)2

⃒⃒⃒⃒
(𝑤 := 𝑧𝜁, |𝑤| = 𝑟),

which is equivalent to the condition⃒⃒⃒
(𝑤 − 1)2 − 𝑤

3

⃒⃒⃒
> 𝑟 (|𝑤| = 𝑟).

The minimum of the left hand side in this inequality on the circumference |𝑤| = 𝑟 < 1 is
obviously attained as 𝑤 := |𝑤| = 𝑟 and is equal to |(𝑟− 1)2 − 𝑟/3| =: ℎ(𝑟). If 𝑟 ∈ (𝑟1, 1), where

𝑟1 :=
7 −

√
13

6
≈ 0.5657,

then ℎ(𝑟) 6 13/35 < 𝑟1 and inequality ℎ(𝑟) > 𝑟 hence fails. If 𝑟 ∈ (0, 𝑟1), then the expression
under the absolute value sign is positive and the inequality ℎ(𝑟) > 𝑟 becomes

(𝑟 − 1)2 − 𝑟

3
> 𝑟.

Choosing a maximal among its solutions lying in an admissible interval (0, 𝑟1), we arrive at the
sought 𝑟max.

3. Proof of Theorem 2.1

3.1. Solution of system (2.2). We consider the function

𝑔(𝑧) = exp
𝑎(1 + 𝑧)

2(1 − 𝑧)
, |𝑧| < 1, 𝑎 ∈ C, 𝑎 ̸= 0,

and its Maclaurin series [7, Sect. 11.2]

𝑔(𝑧) =
∞∑︁
𝑛=0

𝑐𝑛𝑧
𝑛, 𝑐𝑛 = 𝑐𝑛(𝑎) = 𝑒

𝑎
2

𝑛∑︁
𝑘=1

(︂
𝑛− 1

𝑘 − 1

)︂
𝑎𝑘

𝑘!
.

The roots of the 𝑛th Maclaurin polynomial

𝑔𝑛(𝑧) =
𝑛∑︁

𝑘=0

𝑐𝑘𝑧
𝑘, 𝑔𝑛(0) = 𝑒

𝑎
2 ,

are non-zero; we denote them by 𝑧𝑘 = 𝑧𝑛,𝑘(𝑎), 𝑘 = 1, . . . , 𝑛. It is obvious that

𝑔′(𝑧)

𝑔(𝑧)
− 𝑔′𝑛(𝑧)

𝑔𝑛(𝑧)
= 𝑂(𝑧𝑛) (𝑧 → 0).

On the other hand, in some neighbourhood of the point 𝑧 = 0 we have:

𝑔′(𝑧)

𝑔(𝑧)
=

𝑎

(1 − 𝑧)2
= 𝑎

∞∑︁
𝑚=1

𝑚𝑧𝑚−1
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and

𝑔′𝑛(𝑧)

𝑔𝑛(𝑧)
=

𝑛∑︁
𝑘=1

1

𝑧 − 𝑧𝑘
= −

∞∑︁
𝑚=1

(︃
𝑛∑︁

𝑘=1

𝑧−𝑚
𝑘

)︃
𝑧𝑚−1.

Therefore, for all 𝑛 = 1, 2, . . . and each complex 𝑎 ̸= 0 we have

𝑧−𝑚
1 + · · · + 𝑧−𝑚

𝑛 = −𝑚𝑎, 𝑚 = 1, . . . , 𝑛.

Hence, a unique solution of system (2.2) reads as

𝜆𝑛,𝑘(𝑎) := (𝑧𝑛,𝑘(𝑎))−1, 𝑘 = 1, . . . , 𝑛. (3.1)

3.2. Estimate (2.3) in case 𝑎 > 1. It is known [7, Sect. 11.2] that 𝑐𝑛(𝑎) = 𝑒2
√
𝑎𝑛(1+𝑜(1)) as

𝑛 → ∞ (𝑎 > 0). We shall need an explicit estimate for quantities 𝑐𝑛(𝑎) from above and one
elementary inequality.

Lemma 3.1. As 𝑎 > 1, 𝑛 > 3𝑎, we have

𝑐𝑛(𝑎) < 1
4
𝑒(

5
2
−
√
3)(𝑎+1)𝑒

3
2 𝑒2

√
𝑎𝑛 < 𝑒𝑎+1𝑒2

√
𝑎𝑛.

Lemma 3.2. As 𝑏 > 1, 𝑥 > 1, we have 𝑒−𝑏𝑥 + 𝑒−
𝑏
𝑥 < 1.

The proofs of these two lemmata will be provided in Section 4.
By means of these lemmata, as 𝑛 > 3𝑎 > 3, we establish the estimate

|𝑔𝑛(𝑧)| > 0, |𝑧| 6 𝑟𝑛(𝑎) = 𝑒𝑥𝑛 , 𝑥𝑛 := − 3
√
𝑎√

𝑛 + 1
− 𝑎 + 1

𝑛 + 1
,

which in view of (3.1) implies immediately (2.3) for the case 𝑎 > 1.
Indeed, |𝑔(𝑧)| > 1 in the circle 𝐷 since

Re
𝑎(1 + 𝑧)

2(1 − 𝑧)
=

𝑎

2

1 − |𝑧|2

1 − 2Re 𝑧 + |𝑧|2
> 0.

In view of Lemma 3.1, in the circle |𝑧| 6 𝑒𝑥𝑛 we have:

|𝑔𝑛(𝑧)| > |𝑔(𝑧)| −
∞∑︁

𝑘=𝑛+1

𝑐𝑘|𝑧|𝑘 > 1 − 𝑇𝑛(𝑎), 𝑇𝑛(𝑎) :=
∞∑︁

𝑘=𝑛+1

𝑒𝑎+1𝑒2
√
𝑎𝑘𝑒𝑘𝑥𝑛 .

We are going to show that 𝑇𝑛(𝑎) < 1. As 𝑘 > 𝑛 + 1 we have

𝑎 + 1 + 2
√
𝑎𝑘 + 𝑘𝑥𝑛 6 2

√
𝑎𝑘 − 3

√
𝑎√

𝑛 + 1
𝑘 6 −

√
𝑎√

𝑛 + 1
𝑘,

and this is why

𝑇𝑛(𝑎) <
∞∑︁

𝑘=𝑛+1

(︁
𝑒
−

√
𝑎√

𝑛+1

)︁𝑘
=

𝑒−
√

𝑎(𝑛+1)

1 − 𝑒
−

√
𝑎√

𝑛+1

.

It remains to note that 𝑒−
√

𝑎(𝑛+1) < 1 − 𝑒
−

√
𝑎√

𝑛+1 by Lemma 3.2.

Remark 3.1. The positivity of the parameter 𝑎 is essential since in the case 𝑎 < 0 the
absolute value |𝑔(𝑧)| is not separated from zero in 𝐷:

𝑔(𝑥) ∼ 𝑒
𝑎

1−𝑥 → 0 (𝑥 > 0, 𝑥 → 1 − 0).
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3.3. Estimate (2.3) in case 0 < 𝑎 < 1. In view of (3.1) and 𝛼 = 1 it is sufficient to
establish that |𝑔𝑛(𝑧)| > 0 in the circle |𝑧| 6 𝑟𝑛(1), 𝑛 > 3. But as 𝑎 ∈ (0, 1) we have

𝑐𝑛(𝑎)𝑒−
𝑎
2 =

𝑛∑︁
𝑘=1

(︂
𝑛− 1

𝑘 − 1

)︂
𝑎𝑘

𝑘!
< 𝑎

𝑛∑︁
𝑘=1

(︂
𝑛− 1

𝑘 − 1

)︂
1

𝑘!
= 𝑎𝑒−

1
2 𝑐𝑛(1), 𝑛 > 1, (3.2)

which yields

𝑐𝑛(𝑎) < 𝑎𝑒
𝑎−1
2 𝑐𝑛(1) < 𝑐𝑛(1).

Therefore,
∞∑︁

𝑘=𝑛+1

𝑐𝑘(𝑎)(𝑟𝑛(1))𝑘 <
∞∑︁

𝑘=𝑛+1

𝑐𝑘(1)(𝑟𝑛(1))𝑘 < 𝑇𝑛(1) < 1

for each 𝑛 > 3, see Section 3.2. This completes the proof of Theorem 2.1.

We also mention that if 𝑎 ∈
(︀
0,
(︀
𝑛𝑒2+2

√
𝑛
)︀−1]︀

, then

Λ𝑛(𝑎) <
(︀
𝑎𝑛𝑒2+2

√
𝑛
)︀ 1

𝑛 6 1.

Indeed, by Lemma 3.1 and the identities

𝑐1(1) =
√
𝑒, 𝑐2(1) =

3

2

√
𝑒

we have
𝑐𝑛(𝑎) < 𝑎𝑐𝑛(1) < 𝑎𝑒2+2

√
𝑛, 𝑛 = 1, 2, . . . , 0 < 𝑎 < 1,

which for each 𝛾 > 1 yields

|𝑔𝑛(𝑧)| > 𝑒
𝑎
2 −

𝑛∑︁
𝑘=1

𝑐𝑘|𝑧|𝑘 > 1 − 𝑛 · 𝑎𝑒2+2
√
𝑛𝛾𝑛, |𝑧| 6 𝛾.

4. Proofs of Lemmata

4.1. Proof of Lemma 3.1. It was shown in [7, Sect. 11.2] that the maximal term in the
sum expressing 𝑐𝑛(𝑎), see Section 3.1, has the index

𝑝 =
[︁
1
2

√︀
(𝑎 + 1)2 + 4𝑎𝑛− 1

2
(𝑎 + 1)

]︁
;

here [𝑥] is the greatest integer not exceeding 𝑥. Thus,

𝑐𝑛(𝑎) 6 𝑛𝑒
𝑎
2

(︂
𝑛− 1

𝑝− 1

)︂
𝑎𝑝

𝑝!
≡ 𝑒

𝑎
2

𝑛!𝑝𝑎𝑝

𝑝!2(𝑛− 𝑝)!
. (4.1)

We note that under the assumptions of the lemma we have

𝑝 > 1, 𝑛− 𝑝 > 1.

Indeed, if 𝑝 = 0, then √︀
(𝑎 + 1)2 + 4𝑎𝑛− (𝑎 + 1) < 2,

and hence 𝑛 < 1 + 2/𝑎. This contradicts to the inequalities 𝑛 > 3𝑎 > 3. Hence, 𝑝 > 1. An
easily checked estimate

𝑝 6
√
𝑎𝑛− 1

2
(
√

3 − 1)(𝑎 + 1) <
√
𝑎𝑛 (4.2)

implies the second relation:

1 + 𝑝 < 1 +
√
𝑎𝑛 6

𝑛

3
+

𝑛√
3
< 𝑛.

We then have

𝑝 >
1

2

√︀
(𝑎 + 1)2 + 4𝑎𝑛− 1

2
(𝑎 + 1) − 1 >

√
𝑎𝑛− 1

2
(𝑎 + 3)
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and therefore,
√
𝑎𝑛 < 𝑝 +

1

2
(𝑎 + 3). (4.3)

Transforming the right hand side in (4.1) by means of the Stirling’s formula

𝑛! =
√

2𝜋𝑛
(︀
𝑛𝑒−1

)︀𝑛
𝜀𝑛, 1 < 𝜀𝑛+1 < 𝜀𝑛 < exp 1

12𝑛
,

we arrive at the estimate

𝑐𝑛(𝑎)

𝑒
𝑎
2

<

√
𝑛𝑛𝑛𝑎𝑝𝑒𝑝

2𝜋𝑝2𝑝 ·
√
𝑛− 𝑝(𝑛− 𝑝)𝑛−𝑝

=
𝑒𝑝

2𝜋
√︀

1 − 𝑝
𝑛

(︂√
𝑎𝑛

𝑝

)︂2𝑝(︂
1 +

𝑝

𝑛− 𝑝

)︂𝑛−𝑝

.

We note that in view of the inequalities (4.2), (4.3), 𝑎 6 𝑛/3, we have

2𝜋

√︂
1 − 𝑝

𝑛
> 2𝜋

√︁
1 − 1√

3
> 4,

√
𝑎𝑛

𝑝
< 1 +

𝑎 + 3

2𝑝
.

By inequalities (1 + 𝑥)1/𝑥 < 𝑒 (𝑥 > 0) and (4.2) this yields

𝑐𝑛(𝑎) < 𝑒
𝑎
2 · 𝑒

𝑝

4
𝑒𝑎+3𝑒𝑝 = 𝑒

3𝑎
2
+3−ln 4𝑒2𝑝,

where

3

2
𝑎 + 3 − ln 4 + 2𝑝 6

3

2
𝑎 + 3 − ln 4 + 2

√
𝑎𝑛− (

√
3 − 1)(𝑎 + 1)

=

(︂
5

2
−
√

3

)︂
(𝑎 + 1) +

(︂
3

2
− ln 4

)︂
+ 2

√
𝑎𝑛

<𝑎 + 1 + 2
√
𝑎𝑛.

The proof of Lemma 3.1 is complete.

Remark 4.1. Let us justify estimate (2.4). In the circle

|𝑧| 6 exp

(︂
− 2√

3
− 1

3

)︂
we have ⃒⃒⃒⃒

⃒
∞∑︁

𝑘=𝑛+1

𝑐𝑘(𝑛
3
)𝑧𝑘

⃒⃒⃒⃒
⃒ 6 𝑇𝑛 :=

∞∑︁
𝑘=𝑛+1

𝑒𝑡𝑘 ,

where, owing to 𝑘 > 𝑛 + 1 > 50 and the previous estimate of the quantities 𝑐𝑛(𝑎) for 𝑎 = 𝑛/3,

𝑡𝑘 =

(︂
5

2
−

√
3

)︂
𝑛 + 3

3
+

(︂
3

2
− ln 4

)︂
+

2
√
𝑛𝑘√
3

− 2𝑘√
3
− 𝑘

3

6

(︂
5

2
−

√
3

)︂
2

3
+

(︂
3

2
− ln 4

)︂
− 𝑘

3

(︂
3

2
−
√

3

)︂
=(0.62567 . . .− 𝑘 · 0.01735 . . .) − 𝑘 · 0.06

<− 0.06𝑘.

This gives the needed estimate:

𝑇𝑛 < 𝑒−0.06(𝑛+1)(1 − 𝑒−0.06)−1 < 𝑒−3(1 − 𝑒−0.06)−1 = 0.8549 . . . < 1.
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4.2. Proof of Lemma 3.2. Since 𝐹 (𝑥) := 𝑒−𝑏𝑥 + 𝑒−𝑏/𝑥 → 1 (𝑥 → +∞), it is sufficient to
show that 𝐹 ′(𝑥) > 0 as 𝑥 > 1.
We have 𝐹 ′(𝑥) = −𝑏𝑒−𝑏𝑥 + 𝑏𝑥−2𝑒−𝑏/𝑥. The inequality 𝐹 ′(𝑥) > 0 (𝑥 > 1) is equivalent to the

inequality 𝑒𝑏(𝑥−𝑥−1) > 𝑥2 and therefore, to the inequality

𝐺(𝑥) := 𝑏
(︀
𝑥− 𝑥−1

)︀
− 2 ln𝑥 > 0.

But the latter is true since 𝐺(1) = 0 and in view of 𝑏 > 1,

𝐺′(𝑥) = 𝑏
(︀
1 + 𝑥−2

)︀
− 2𝑥−1 >

(︀
1 − 𝑥−1

)︀2
> 0.

The proof of Lemma 3.2 is complete.
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