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SUM-DIFFERENCE EQUATION FOR

ANALYTIC FUNCTIONS GENERATED BY

TRIANGLE AND ITS APPLICATIONS

F.N. GARIF’YANOV, E.V. STREZHNEVA

Abstract. Let 𝐷 be a triangle and Γ by the half of its boundary 𝜕𝐷. We consider an

element-wise linear sum-difference equation in the class of functions holomorphic outside

Γ and vanishing at infinity. The solution is sought in the form of a Cauchy-type integral

over Γ with an unknown density. The boundary values satisfy the Hölder condition on each

compact subset in Γ containing no nodes. At most logarithmic singularities are admitted

at the nodes. In order to regularize the equation to 𝜕𝐷, we introduce a piecewise linear

Carleman shift. It maps each side into itself changing the orientation. In this case, the

midpoints of the sides are fixed points. We regularize the equation and find its solvability

condition for. We consider a particular case when the number of solvability conditions can

be counted exactly. We provide applications to interpolation problems for entire functions

of exponential type. Previously, similar problems were investigated for tetragon, pentagon,

and hexagon.
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polation problems for entire functions of exponential type.
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1. Introduction and formulation of problem

In series of works [1]–[3] there were considered sum-difference equations generated by some
polygons. In paper [1] this was a tetragon, while in papers [2] and [3] these were respectively
pentagon and hexagon having two equal and parallel sides. Such equations are closely related
with interpolation problems for entire functions of exponential type.
Let 𝐷 be a triangle with vertices at 𝑡1 = 0, 𝑡2 = 1, 𝑡3, where Im 𝑡3 ̸= 0, and sides ℓ𝑗 taken in

the order of positive bypassing its boundary (𝑡 ∈ ℓ1 ⇒ Im 𝑡 = 0). We introduce functions

𝜎𝑗(𝑧) = 𝑡𝑗 + 𝑡𝑗+1 − 𝑧, 𝑗 = 1, 3, 𝑡4 = 𝑡1.

These functions map 𝐷 into triangles having with it a common side. A piece-wise linear
function 𝛼(𝑡) = {𝜎𝑗(𝑡), 𝑡 ∈ ℓ𝑗} maps each side ℓ𝑗 into itself with changing the orientation, and
the center of the side 𝜏𝑗 is a fixed point of the shift. Thus, this is an Carleman involutive shift
discontinuous at the vertices. The superpositions 𝜎𝑗𝜎𝑘, 𝑗 ̸= 𝑘, 𝑘 = 1, 3, are of form

𝜎4(𝑧) = 𝑧 − 1, 𝜎5 = 𝜎−1
4 , 𝜎6(𝑧) = 𝑧 − 𝑡3,

𝜎7 = 𝜎6 − 1, 𝜎8(𝑧) = 𝑧 − 𝑡3 + 1, 𝜎9 = 𝜎−1
8 .

Extra three transforms

𝜎10(𝑧) = −𝑧, 𝜎11(𝑧) = 2 − 𝑧, 𝜎12(𝑧) = 2𝑡3 − 𝑧
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map 𝐷 into triangles having with it a common vertex. Let Γ be a half of the boundary 𝜕𝐷 (a
set of segments) satisfying two conditions. First, Γ ∩ 𝛼(Γ) = ∅, and second, Γ ∪ 𝛼(Γ) = 𝜕𝐷.
These identities are treated up to the vertices in 𝐷 and the nodes in Γ. It is clear that Γ contains
at least two vertices and all points 𝜏𝑗, 𝑗 = 1, 3. First such choice of Γ was proposed in paper
[4].
We consider a sum-difference equation

(𝑉 𝑓) (𝑧) ≡ 𝑓(𝑧) +
12∑︁

𝑚=1

𝑓(𝜎𝑚(𝑧)) = 𝑔(𝑧), 𝑧 ∈ 𝐷, (1.1)

under the following assumptions.

1. A solution 𝑓(𝑧) is holomorphic outside Γ and vanishes at infinity. Its boundary values
𝑓±(𝑡) satisfies Hölder conditions on Γ. At the nodes Γ and the vertices 𝐷, the solution can
have at most logarithmic singularities.

2. A free time 𝑔(𝑧) is holomorphic in 𝐷 and its boundary value satisfies 𝑔+(𝑡) ∈ 𝐻𝜇 (𝜕𝐷).

We denote such class of solutions by 𝐵. A convex envelope of the set Γ is a conjugate
indicator diagram of an entire function of exponential type 𝐹 (𝑧) associated in the Borel sense
[5, Sect. 1, Subsect. 1] with the lower function 𝑓(𝑧) ∈ 𝐵. This allows us to apply equation
(1.1) to studying interpolation problems for entire functions of exponential type. In Section 2
we propose a method of regularization of equation (1.1). We obtain a condition of equivalence
of this regularization. One particular case is studied completely. In Section 3 the obtained
results are applied to studying some interpolation problems for entire functions of exponential
type.

2. Regularization of equation. Particular case

We seek a solution to equation (1.1) as a Cauchy type integral

𝑓(𝑧) =
1

2𝜋𝑖

∫︁
Γ

(𝜏 − 𝑧)−1 𝜙(𝜏)𝑑𝜏 (2.1)

with an unknown density 𝜙(𝜏) ∈ 𝐻𝜇

(︀
Γ
)︀
. Then it follows from (1.1) that

(𝐸𝜙) (𝑧) ≡ 1

2𝜋𝑖

∫︁
Γ

𝜙(𝜏)𝐴(𝑧, 𝜏)𝑑𝜏 = 𝑔(𝑧), 𝑧 ∈ 𝐷,

where

𝐴(𝑧, 𝜏) = (𝜏 − 𝑧)−1 +
12∑︁

𝑚=1

(𝜏 − 𝜎𝑚(𝑧))−1 . (2.2)

Passing to the limit as 𝑧 → 𝑡, (𝑡 ∈ Γ), by the Sokhotskii formula we obtain(︀
𝐸+𝜙

)︀
(𝑡) ≡ 2−1𝜙(𝑡) +

1

2𝜋𝑖

∫︁
Γ

𝜙(𝜏)𝐴(𝑡, 𝜏)𝑑𝜏 = 𝑔+(𝑡), 𝑡 ∈ Γ.

Passing to the limit as 𝑧 → 𝛼(𝑡), we find(︀
𝐸+𝜙

)︀
𝛼(𝑡) ≡ −2−1𝜙(𝑡) +

1

2𝜋𝑖

∫︁
Γ

𝜙(𝜏)𝐴(𝛼(𝑡), 𝜏)𝑑𝜏 = 𝑔+𝛼(𝑡), 𝑡 ∈ Γ.
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We deduct the second identity from the first one and arrive at the equation

(𝑇𝜙) ≡ 𝜙(𝑡) +
1

2𝜋𝑖

∫︁
Γ

𝐾(𝑡, 𝜏)𝜙(𝜏)𝑑𝜏 = 𝑔+(𝑡) − 𝑔+(𝛼(𝑡)) (2.3)

with the kernel

𝐾(𝑡, 𝜏) = 𝐴(𝑡, 𝜏) − 𝐴(𝛼(𝑡), 𝜏). (2.4)

Lemma 2.1. Kernel (2.4) is bounded.

Proof. The proof is based on straightforward checking the statement for various options of
location of the points 𝜏 and 𝑡 on the sides of the triangle.
Equation (2.3) is a Fredholm equation of second kind. Suppose that it is solvable. Then we

go back to equation (1.1). We get:

(2.3) ⇒
(︀
𝐸+𝜙

)︀
(𝑡) −

(︀
𝐸+𝜙

)︀
(𝛼(𝑡)) = 𝑔+(𝑡) − 𝑔+(𝛼(𝑡)) ⇒ (𝐸𝜙) (𝑧) = 𝑔(𝑧) + 𝐶

since the Carleman problem 𝑎+(𝑡) = 𝑎+(𝛼(𝑡)) possesses a unique solution 𝑎(𝑧) = 𝑐𝑜𝑛𝑠𝑡 by a
locally conformal gluing principle [6]. The proof is complete.

Theorem 2.1. Problem (1.1) has finitely many, namely, 𝑁+1 solvability conditions. Among
of them, 𝑁 conditions are the solvability conditions of integral condition (2.3), while one more
condition

(𝐸𝜙) (𝑧0) = 𝑔(𝑧0), 𝑧0 ∈ 𝐷 (2.5)

ensures the equivalence of the regularization.

We consider a particular case, when we can find the number 𝑁 exactly. Let 𝑡3 = 𝑖 and
Γ =

⋃︀3
𝑗=1 ℓ

′
𝑗, where

ℓ′1 = (0, 0.5), ℓ′2 = (1, 0.5(1 + 𝑖)), ℓ′3 = (0, 0.5𝑖).

We consider a homogeneous equation

𝑇𝜙 = 0. (2.6)

We let

𝑀 = max |𝜙(𝑡)| , 𝑡 ∈ Γ. (2.7)

We first assume that identity (2.7) is attained as 𝑡 ∈ ℓ′1. Under such location of the point 𝑡 we
get:

𝐾(𝑡, 𝜏) = (𝑢 + 𝑖)−1 + (𝑢− 1 − 𝑖)−1 + (𝑣 − 2𝑖)−1 − (𝑣 − 1 + 𝑖)−1

− (𝑣 − 2 − 𝑖)−1 − (𝑢 + 1 − 2𝑖)−1

= (2𝑡− 1)
(︁

(𝑢 + 𝑖)−1 (𝑣 − 1 + 𝑖)−1 + (𝑢− 1 − 𝑖)−1 (𝑣 − 2 − 𝑖)−1

− (𝑣 − 2𝑖)−1 (𝑢 + 1 − 2𝑖)−1
)︁
,

where 𝑢 = 𝜏 − 𝑡, 𝑣 = 𝜏 + 𝑡.
The absolute value of the kernel attains its maximal value at 𝑡 = 0, while the absolute value

of each term in square brackets does not exceed 1 and taking into consideration the lengths of
the segments ℓ′𝑗 we obtain:

3

(︂
1 +

1√
2

)︂
< 2𝜋,

which implies 𝜙 ≡ 0.
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Suppose that identity (2.7) is attained as 𝑡 ∈ ℓ′2. Then

𝐾(𝑡, 𝜏) = (𝑢− 1)−1 + (𝑢− 𝑖)−1 + 𝑣−1 − (𝑣 + 2 − 𝑖)−1 − (𝑣 − 1 − 2𝑖)−1 − (𝑢 + 1 + 𝑖)−1

= (2𝑡− 1 − 𝑖)
(︀
(𝑢− 1)−1 (𝑣 − 2 − 𝑖)−1 + (𝑢− 𝑖)−1 (𝑣 − 1 − 2𝑖)−1 − 𝑣−1 (𝑢 + 1 + 𝑖)−1)︀ .

The maximum of the absolute value of the kernel is attained at 𝑡 = 1 and the absolute value of
the sum in the square brackets does not exceed 2.17, that is,(︂

1 +
1√
2

)︂
|𝐾(𝑡, 𝜏)| ≤ 6,

and this again implies that 𝜙 ≡ 0.
It remains to suppose that identity (2.7) is attained at 𝑡 ∈ ℓ′3. Then

𝐾(𝑡, 𝜏) = (𝑢 + 1)−1 + (𝑢− 𝑖 + 1)−1 + (𝑢− 2)−1 − (𝑣 − 𝑖 + 1)−1

− (𝑣 + 1 − 2𝑖)−1 − (𝑢− 2 + 𝑖)−1

= (2𝑡− 1)
(︀
(𝑢 + 1)−1 (𝑣 − 𝑖 + 1)−1 + (𝑢− 𝑖 + 1)−1 (𝑣 + 1 − 2𝑖)−1

− (𝑣 − 2𝑖)−1 (𝑢− 2 + 𝑖)−1)︀ .
The absolute value of the kernel attains its maximum at 𝑡 = 0, while the absolute value of

each term in square brackets does not exceed 1 and taking into consideration the lengths of the
segments ℓ′𝑗 we obtain

3

(︂
1 +

1√
2

)︂
< 2𝜋,

and this again implies that 𝜙 ≡ 0. We note that in this case we do not need sharper estimates.
Thus, homogeneous equation (2.6) possesses only the trivial solution.

Theorem 2.2. In the considered example 𝑁 = 0, that is, problem (1.1) possesses one solv-
ability condition (2.5).

3. Applications

Equation (1.1) is closely related with interpolation problems for entire functions of expo-
nential type. We restrict ourselves by considering a following example. Let 𝐹 (𝑧) be an entire
function of exponential type associated in the Borel sense with the lower function 𝑓(𝑧) ∈ 𝐵.
Its indicator diagram is a trapezoid 𝐷0 with vertices at 0, 1, (𝑖 + 1) /2, 𝑖/2.

Remark 3.1. A conjugate indicator diagram can be a smaller convex set 𝐷′ ⊂ 𝐷0. In order
this to be the case, it is necessary but not sufficient the free term 𝑔(𝑧) to be analytically continued
from 𝐷 into some neighbourhood of the infinity and 𝑔(∞) = 0. Then relation (1.1) holds not
only as 𝑧 ∈ 𝐷, but also in this neighbourhood, that is, the problem is overdetermined and its
solution can be obtained in an explicit form. Such case is not of a great interest; for more
details see [2].

We take a triangle ∆1 = 𝐷 ∖𝐷0 and let 𝑧0 ∈ ∆1. We also let

𝑔(𝑧) = 𝐶0 +
∞∑︁
𝑘=1

𝐶𝑘(𝑧 − 𝑧0)
𝑘

𝑘!

and suppose that the convergence radius of this series is 𝑅 > |𝑧0 − 1| .
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For 𝑧 ∈ ∆ we rewrite relation (1.1) in the form

𝐻(𝑧) ≡
∫︁
𝜃0

𝐹 (𝜏) exp(−𝑧𝜏)𝑑𝜏 +
12∑︁
𝑘=1

∫︁
𝜃𝑘

𝐹 (𝜏) exp(−𝜏𝜎𝑘(𝑧))𝑑𝜏 = 𝑔(𝑧), 𝑧 ∈ ∆. (3.1)

Here 𝜃𝑘 is the ray arg 𝜏 = −𝜋/2 for 𝑘 = 0, 4, 5, 7, 9, 12, the ray arg 𝜏 = 𝜋/2 for 𝑘 = 1, 6, 8, 10, 11,
the ray arg 𝜏 = −𝜋/4 for 𝑘 = 2 and the ray arg 𝜏 = 𝜋 for 𝑘 = 3. The coefficient 𝐶0 is chosen
so that solvability condition (2.5) holds. Equating the Taylor coefficients in the left and right
hand sides of the identity at the point 𝑧0, we obtain

𝑑𝑘𝐻(𝑧)

𝑑𝑧𝑘

⃒⃒⃒⃒
𝑧=𝑧0

= 𝐶𝑘, 𝑘 = 1,∞. (3.2)

Theorem 3.1. Interpolation problem (3.2) for an entire function of exponential type 𝐹 (𝑧)
associated in the Borel sense with the lower function 𝑓(𝑧) ∈ 𝐵 is solvable and has a unique
solution.

Now we return back to the general case and make some remarks.

Remark 3.2. Let 𝑡𝑗 ∈ Γ for all 𝑗, that is, 𝐷0 = 𝐷. Then there arise non-classical interpola-
tion problems for entire functions of exponential type. A general impression on such problems
is given by work [7]. Here the authors considered a problem on recovering an entire function
of exponential type by identities relating the Taylor coefficients of the lower function with the
Stieltjes momenta of the upper function with respect to some exponential weight.

Remark 3.3. As it has been already mentioned, there is some freedom in choosing the set
Γ, hence, also in the choice of the conjugate indicator diagram 𝐷0. In particular, for all
𝛾 ∈ [0.75, 1] one can choose Γ so that the quotient of the area 𝐷0 to the area of the triangle is
equal to 𝛾.

Remark 3.4. Let the closure Γ contains only two vertices. Then the proposed regularization
method can be also applied to the equations obtained by excluding some terms from the operator
𝑉 . The matter is that some terms in (2.2) are bounded as 𝑧 = 𝑡 ∈ Γ. This is why in (1.1) we
can omit the terms corresponding to such 𝜎𝑚. For instance, in the considered example we can
choose all or some of five terms corresponding to the transforms 𝜎𝑚, 𝑚 = 6, 9, and 𝜎12. But
the transforms 𝜎𝑚, 𝑚 = 0, 3, can not be omitted for any choice of Γ. Moreover, let 𝑏(𝑧) ∈ 𝐴[𝐷]
and 𝑏(𝐷) ∩𝐷 = ∅. Then we can regularize the equation

(𝑉 𝑓) (𝑧) + 𝑓(𝑏(𝑧)) = 𝑔(𝑧), 𝑧 ∈ 𝐷.

Let us compare these results with ones obtained earlier for other 𝑛-gons. We denote by
𝑝 the minimal number of the terms in the left hand side of the corresponding sum-difference
equation, under which it admits the regularization in the above way. For the sake of definiteness
we suppose that the set Γ contains all vertices of the polygon, see Remark 3.4. Then for 𝑛 = 4
we have 𝑝 = 9 [1], for 𝑛 = 5 we have 𝑝 = 7 [2] and for 𝑛 = 6 we have 𝑝 = 7 [3]. But for 𝑛 = 3
we get 𝑝 = 13.
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