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REPRESENTATION OF ANALYTIC FUNCTIONS BY

EXPONENTIAL SERIES IN HALF-PLANE

WITH GIVEN GROWTH MAJORANT

G.A. GAISINA

Abstract. In this paper we study representations of analytic in the half-plane
Π0 = {𝑧 = 𝑥 + 𝑖𝑦 : 𝑥 > 0} functions by the exponential series taking into consideration a
given growth.

In the theory of exponential series one of fundamental results is the following general
result by A.F. Leontiev: for each bounded convex domain 𝐷 there exists a sequence {𝜆𝑛} of
complex numbers depending only on the given domain such that each function 𝐹 analytic in
𝐷 can be expanded into an exponential series 𝐹 (𝑧) =

∑︀∞
𝑛=1 𝑎𝑛𝑒

𝜆𝑛𝑧, the convergence of which
is uniform on compact subsets of 𝐷. Later a similar results on expansions into exponential
series, but taking into consideration the growth, was also obtained by A.F. Leontiev for the
space of analytic functions of finite order in a convex polygon. He also showed that the
series of absolute values

∑︀∞
𝑛=1

⃒⃒
𝑎𝑛𝑒

𝜆𝑛𝑧
⃒⃒
admits the same upper bound as the initial function

𝐹 . In 1982, this fact was extended to the half-plane Π+
0 by A.M. Gaisin.

In the present paper we study a similar case, when as a comparing function, some de-
creasing convex majorant serves and this majorant is unbounded in the vicinity of zero. In
order to do this, we employ the methods of estimating based on the Legendre transform.

We prove a statement which generalizes the corresponding result by A.M. Gaisin on
expanding analytic in half-plane functions into exponential series taking into consideration
the growth order.

Keywords: analytic functions, exponential series, growth majorant, bilogarithmic Levin-
son condition.

Mathematics Subject Classification: 30D10

1. Introduction

This paper is devoted to the problem on expanding analytic in a half-plane functions into
exponential series taking into account the growth determined by some convex majorant.
Let 𝐷 be a convex domain in the complex plane C and 𝐴(𝐷) be the space of analytic in 𝐷

functions with the topology of uniform convergence on compact subsets in 𝐷.
In the theory of exponential series one of the main results is the following one by A.F. Leon-

tiev, see [1, Ch. V, Sect. 3, Subsect. 1].
Let 𝐷 be a bounded convex domain. Then there exists a sequence {𝜆𝑛} depending only on

the domain 𝐷 such that each function 𝐹 in 𝐴(𝐷) can be expanded into an exponential series

𝐹 (𝑧) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
𝜆𝑛𝑧.
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in 𝐷.
In this theorem the sequence of exponents 𝜆𝑛 (𝑛 = 1, 2, . . .) is chosen as simple zeroes of an

entire function 𝐿 of exponential type and completely regular growth with appropriate estimates
for |𝐿′(𝜆𝑛)| from below. Such entire function always exists, see [1, Ch. IV, Sect. 6, Subsect.
2]. In view of this we recall that the problem on existence of entire functions with prescribed
asymptotic properties in the most general form was solved in [2], while in [3] this result was
specified both for estimates of the entire function and for the size of exceptional sets, see [4].
It was also shown in [1] that each entire function Φ can be represented by an exponential

series

Φ(𝑧) =
∞∑︁
𝑛=1

𝐴𝑛𝑒
𝜈𝑛𝑧

in the entire plane, and the exponents 𝜈𝑛, 𝑛 = 1, 2, . . . ,, which can be chosen on at least three
rays, are the zeroes of an entire function 𝐿 of a proximate order 𝜌(𝑟), lim𝑟→∞ 𝜌(𝑟) = 1, see [1,
Ch. VIII, Sect. 1, Subsect. 3].
The issues on representation by exponential series in unbounded domains 𝐷, 𝐷 ̸= C, are of

a special interest. In [1], a case of such domains of special shape was considered. Later it was
found out that each function 𝐹 ∈ 𝐴(𝐷), where 𝐷 is an arbitrary unbounded domain, can be
represented by a series

𝐹 (𝑧) =
∞∑︁
𝑛=1

𝑐𝑛𝑒
𝜇𝑛𝑧

in 𝐷, see [5]. This is implied by the results of [3], [6] on approximating subharmonic functions
by the logarithm of the absolute value of an entire function. Here we are interested in the case
of the half-plane, which was considered separately in [1].

Theorem A. Let 𝐹 be a function regular in the left half-plane

Π−
0 = {𝑧 = 𝑥 + 𝑖𝑦 : 𝑥 < 0}.

Then there exists a sequence {𝜇𝑛}, 𝜇𝑛 > 0, lim𝑛→∞
𝑛
𝜇𝜌
𝑛

= 𝜏 , 0 < 𝜏 < ∞ (𝜌 > 1 is arbitrary)

independent of 𝐹 such that

𝐹 (𝑧) =
∞∑︁
𝑛=1

𝐵𝑛𝑒
𝜇𝑛𝑧 + entire function, 𝑧 ∈ Π−

0 . (1.1)

We mention that in this theorem the condition 𝜌 > 1 is essential: the exponents 𝜇𝑛, 𝑛 =
1, 2, . . ., can not be zeroes of entire functions of exponential type, see [1, Ch. VIII, Sect. 1,
Subsect. 3].
Theorem A is implied by the following statement [1, Ch. VIII, Sect. 1, Subsect. 3].
Let 𝐹 be a function regular in the half-plane Π−

0 . Then there exist a function 𝑓 regular in Π−
0

and continuous in the closure Π
−
0 and satisfying in Π

−
0 the condition 𝑓(𝑧) = 𝑂

(︀
1
𝑧2

)︀
as 𝑧 → ∞,

an entire function 𝑀(𝜆) =
∑︀∞

𝑛=0 𝑐𝑛𝜆
𝑛 with a growth at most of the right order of the minimal

type and an entire function Φ such that

𝐹 (𝑧) = 𝑀(𝐷)𝑓(𝑧) + Φ(𝑧), 𝑧 ∈ Π−
0 .

We recall that a differential operator of an infinite order 𝑀(𝐷) can act on the function 𝑓 in
the entire regularity domain, which is Π−

0 in our case. Indeed, the function 𝑀(𝜆) grows not
faster than an entire function of the first order of the minimal type and this is why

lim
𝑛→∞

𝑛
√︀

𝑛!|𝑐𝑛| = 0. (1.2)
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Let 𝑎 be an arbitrary point in Π−
0 . Since 𝑓 is regular in some neighbourhood {𝑧 : |𝑧−𝑎| < 𝜌}

of the point 𝑎, then sup|𝑡−𝑎|<𝜌 |𝑓(𝑡)| = 𝐾 < ∞, and hence

|𝑓 (𝑛)(𝑧)|
𝑛!

6
𝜌𝐾(︀
𝜌
2

)︀𝑛+1 , |𝑧 − 𝑎| 6 𝜌

2
.

But then, taking into consideration (1.2), for each 𝜀 > 0 we have

|𝑐𝑛𝑓 (𝑛)(𝑧)| 6 𝐴(𝜀)𝐾

(︂
2𝜀

𝜌

)︂𝑛

, |𝑧 − 𝑎| 6 𝜌

2
, 𝑛 > 0,

and this is why
∞∑︁
𝑛=0

|𝑐𝑛𝑓 (𝑛)(𝑧)| 6 𝐴(𝜀)𝐾
∞∑︁
𝑛=0

(︂
2𝜀

𝜌

)︂𝑛

=
𝐴(𝜀)𝐾

1 − 𝑞
,

if 𝑞 = 2𝜀
𝜌
< 1. Hence, this series converges uniformly in a sufficiently small neighbourhood of

the point 𝑎 ∈ Π−
0 . Moreover,

|𝑀(𝐷)𝑓(𝑧)| 6 𝐵 max
|𝑡−𝑎|6𝜌

|𝑓(𝑡)|, |𝑧 − 𝑎| 6 𝜌

2
.

In this paper we discuss the following problem.
Let the growth of the function 𝐹 , 𝐹 ∈ 𝐴(Π−

0 ), in the vicinity of the imaginary access be
controlled in certain sense by some majorant 𝐻 : [−1, 0) → (0,+∞), 𝐻(𝑥) ↑ 0 as 𝑥 → 0−.
Then find an expansion of form (1.1) such that the growth of the series of the absolute values∑︀∞

𝑛=1 |𝐵𝑛𝑒
𝜇𝑛𝑧| be also governed by the majorant 𝐻.

We mention that in terms of the growth order, this problem was first studied by A.F. Leontiev
in [7] for convex polygons and later by A.M. Gaisin in [8] for a half-plane.

2. Necessary facts

We shortly dwell on the properties of a Legendre transform.
Let R+ = [0,∞), 𝐻 : R+ → R+ be a decreasing function, 𝐻(𝑦) ↓ 0 as 𝑦 → ∞, 𝐻(𝑦) ↑ ∞ as

𝑦 → 0+. We choose a point 𝑑 > 0 by the condition 𝑚(𝑑) = 1, where 𝑚(𝑦) = ln𝐻(𝑦).
We consider a lower Legendre transformation of the function 𝑚(𝑦):

𝜙(𝑥) = (𝐿𝑚)(𝑥) = inf
0<𝑦6𝑑

[𝑚(𝑦) + 𝑦𝑥], 𝑥 > 0. (2.1)

As a lower envelope of the increasing linear functions, 𝜙(𝑥) = (𝐿𝑚)(𝑥) is concave increasing on
R+ function and 𝜙(𝑥) > 0. It is clear that 𝜙(𝑥) ↑ ∞ as 𝑥 → +∞.
The greatest convex minorant ℎ(𝑦) of the function𝑚(𝑦) is called an upper Legendre transform

of the function 𝜙(𝑥):

ℎ(𝑦) = (𝑈𝜙)(𝑦) = sup
𝑥>0

[𝜙(𝑥) − 𝑥𝑦], 𝑦 > 0.

Lemma 2.1 ([9], [10]). The integrals

𝑑0∫︁
0

lnℎ(𝑦)𝑑𝑦,

𝑑∫︁
0

ln𝑚(𝑦)𝑑𝑦,

∞∫︁
1

𝜙(𝑥)

𝑥2
𝑑𝑥

converge and diverge simultaneously; the point 𝑑0 is chosen by the condition ℎ(𝑑0) = 1.

By this lemma and to simplify further calculations, we can suppose that the function 𝑚(𝑦)
is convex. Hence, in this case ℎ(𝑦) ≡ 𝑚(𝑦).
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Let the function 𝐻, which was introduced above, satisfies the Levinson condition

𝑑∫︁
0

ln ln𝐻(𝑦)𝑑𝑦 < ∞. (2.2)

Then the function 𝜙 possesses the following properties: 0 6 𝜙(𝑥) ↑ ∞, 𝜙(𝑥) = 𝑜(𝑥) as 𝑥 → ∞,
moreover,

∞∫︁
1

𝜙(𝑥)

𝑥2
𝑑𝑥 < ∞. (2.3)

Usually it is assumed that for each 𝑘 ∈ N
lim
𝑦→0

𝑦𝑘𝐻(𝑦) = ∞.

Then, it is easy to confirm, that

lim
𝑥→∞

𝜙(𝑥)

ln𝑥
= ∞. (2.4)

The following lemma holds true [11].

Lemma 2.2. If the functions 𝑚(𝑦) = ln𝐻(𝑦) (𝑦 > 0) and 𝑚(𝑒−𝑠) (𝑠 ∈ R) are convex, then
the function 𝜙 is logarithmically convex (the function 𝜙(𝑒𝑡) is convex in 𝑡 > 0).

This lemma can be easily confirmed in the case when 𝑚(𝑦) is a function of the class 𝐶2(R+).
Indeed, let

𝜙(𝑥) = inf
𝑦>0

[𝑚(𝑦) + 𝑦𝑥] = 𝑚(𝑦(𝑥)) + 𝑦(𝑥)𝑥,

where the function 𝑦 = 𝜙(𝑥) is uniquely determined by the equation 𝑚′(𝑦) = −𝑥; since 𝑚(𝑦)
is decreasing convex function, then 𝑦(𝑥) ↓ 0 as 𝑥 → +∞. Then

[𝜙(𝑒𝑡)]′ = 𝑥𝜙′(𝑥), [𝜙(𝑒𝑡)]′′ = 𝑥[𝜙′(𝑥) + 𝑥𝜙′′(𝑥)], 𝑥 = 𝑒𝑡.

We are interested in the sign of the expression 𝜉(𝑥) = 𝜙′(𝑥) + 𝑥𝜙′′(𝑥). Then

𝜙′(𝑥) = 𝑦, 𝜙′′(𝑥) =
1

𝑥′(𝑦)
=

1

−𝑚′′(𝑦)
,

since 𝑚′(𝑦) = −𝑥, 𝑦 = 𝑦(𝑥). Therefore,

𝜙′(𝑥) + 𝑥𝜙′′(𝑥) = 𝑦 +
𝑥

−𝑚′(𝑦)
=

𝑦𝑚′′(𝑦) + 𝑚′(𝑦)

𝑚′′(𝑦)
.

By 𝑚′′(𝑥) > 0 since 𝑚 is convex. Since 𝑚(𝑒−𝑡) is convex, then

0 6 [𝑚(𝑒−𝑡)]′′ = 𝑦[𝑚′′(𝑦)𝑦 + 𝑚′(𝑦)], 𝑦 > 0.

This yields 𝑚′′(𝑦)𝑦 + 𝑚′(𝑦) > 0. Therefore, 𝜙′(𝑥) + 𝑥𝜙′′(𝑥) > 0, that is, 𝜙(𝑒𝑡) is convex.
We shall make use of the following lemma [12].

Lemma 2.3 (Y. Domar). If a function 𝜙, 0 6 𝜙(𝑥) ↑ ∞, satisfies conditions (2.3), (2.4),
and 𝜙 is logarithmically convex, then there exists an even entire function of exponential type

𝐺(𝑧) =
∞∑︁
𝑛=0

𝑎2𝑛𝑧
2𝑛, 𝑎2𝑛 > 0 (𝑧 = 𝑥 + 𝑖𝑦),

belonging to the converging class, that is, such that
∞∫︁
1

ln𝐺(𝑥)

𝑥2
𝑑𝑥 < ∞,
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and

0 < 𝑐1 6 𝐺(𝑥)𝑒−2𝜙(𝑥) 6 𝑐2|𝑥|2𝑘, |𝑥| > 1, (2.5)

where 𝑘 ∈ N, while 𝑐1 and 𝑐2 are some positive constants independent 𝑥1.

3. Expansions of analytic in half-plane functions of

a given growth into exponential series

Let Π−
0 = {𝑧 = 𝑥 + 𝑖𝑦 : 𝑥 < 0}, Π+

0 = {𝑧 = 𝑥 + 𝑖𝑦 : 𝑥 > 0}. By 𝐾0 we denote the class of
functions 𝐹 possessing the properties:
1) 𝐹 is regular in Π+

0 ;
2) 𝐹 (𝑧) → 0 as 𝑧 → ∞ in each half-plane Π+

𝑠 = {𝑧 = 𝑥 + 𝑖𝑦 : 𝑥 > 𝑠 > 0} uniformly with
respect to arg 𝑧;
3) for each 𝑠 > 0

𝑇𝐹 (𝑠) =
1

2𝜋

∫︁
Re𝑧=𝑠>0

|𝐹 (𝑧)||𝑑𝑧| < ∞.

Given 𝐹 ∈ 𝐾0, we let

𝐴(𝑡) =
1

2𝜋𝑖

∫︁
Re𝑧=𝑠>0

𝐹 (𝑧)𝑒𝑧𝑡𝑑𝑧. (3.1)

Then the inversion formula holds [13, Ch. VI, Sect. 1, Subsect. 79]

𝐹 (𝑧) =

+∞∫︁
0

𝐴(𝑡)𝑒−𝑧𝑡𝑑𝑡, 𝑧 ∈ Π+
0 .

We introduce one more class of functions. We shall say that 𝐹 ∈ 𝐾1 if and only the function

𝐹 is regular in Π+
0 , continuous in Π

+

0 = {𝑥 = 𝑥+ 𝑖𝑦 : 𝑥 > 0} and in Π
+

0 it obeys the condition:
as |𝑧| → ∞

|𝐹 (𝑧)| = 𝑂

(︂
1

|𝑧|2

)︂
.

In what follows we shall need the following result by M.V. Keldysh on approximation of
holomorphic functions by entire functions [14].
Let Γ be a Jordan curve starting and ending in infinity, 𝐸 be a domain bounded by the curve

Γ, 𝑓 be a holomorphic in 𝐸 function continuous on 𝐸 ∪ Γ excluding the infinity point.
For arbitrary 𝜀 and 𝜂 there exist an entire function 𝑔 satisfying the inequality

|𝑓(𝑧) − 𝑔(𝑧)| < 𝜀 exp
(︁
−|𝑧|

1
2
−𝜂
)︁

in 𝐸, where 𝐸 is the closure of 𝐸.
The following theorem holds.

Theorem 3.1. Let 𝐹 ∈ 𝐾0 and

𝑇𝐹 (𝑠) 6 𝐴𝐹𝐻(𝑠), 𝑠 > 0,

where 𝐻 : R+ → R+, 𝐻 is a decreasing function, 𝐻(𝑠) ↓ 0 as 𝑠 → +∞, 𝐻(𝑠) ↑ ∞ as 𝑠 → 0+,
𝐻(𝑑) = 𝑒. We also assume that

lim
𝑠→0

𝑠𝑘𝐻(𝑠) = ∞ 𝑘 is arbitrary, 𝑘 ∈ N,

1If the function 𝜙 does not obey condition (2.3), then 𝐺 satisfies estimates (2.5).
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while the functions 𝑚(𝑠) = ln𝐻(𝑠) (𝑠 > 0) and 𝑚(𝑒−𝑡) (𝑡 ∈ R) are convex. Then there exists
an entire function

𝑀(𝜆) =
∞∑︁
𝑛=0

𝑐𝑛𝜆
𝑛, ln |𝑀(𝜆)| 6 𝐶𝑀𝜙(|𝜆|)

and a function 𝑓 ∈ 𝐾1 such that

𝐹 (𝑧) = 𝑀(𝐷)𝑓(𝑧) + Φ(𝑧), 𝑧 ∈ Π+
0 ,

where Φ is some entire function, 𝜙(𝑟) (𝑟 = |𝜆|) is the lower Legendre transform of the function
𝑚(𝑠), 𝜙(𝑟) = o(𝑟) as 𝑟 → ∞, and 𝜙 is logarithmically convex.

Proof. A function 𝐹 belongs to the class 𝐾0. Then the function 𝐴(𝑡) defined by formula (3.1)
continuous on R, 𝐴(𝑡) ≡ 0 as 𝑡 6 0. It is independent on 𝑠 > 0. Let us estimate from above.
We have: for 𝑡 > 0 and each 𝑠 > 0

|𝐴(𝑡)| 6 𝑇𝐹 (𝑠)𝑒𝑠𝑡 6 𝐴𝐹 exp(𝑚(𝑠) + 𝑠𝑡), 𝑚(𝑠) = ln𝐻(𝑠).

Hence,
|𝐴(𝑡)| 6 𝐴𝐹 𝑒

𝜙(𝑡), 𝑡 > 0, (3.2)

where 𝜙(𝑡) = (𝐿𝑚)(𝑡) = inf0<𝑠6𝑑[𝑚(𝑠) + 𝑠𝑡], 𝜙 is a concave increasing in 𝑡 > 0 function. By
Lemma 2.2, it is convex with respect to the variable ln 𝑡, that is, it is logarithmic convex. For
all 𝑡 > 0, 0 < 𝑠 6 𝑑 we obviously have 𝜙(𝑡) − 𝑠𝑡 6 𝑚(𝑠). This yields:

𝑚*(𝑠) = sup
𝑡>0

[𝜙(𝑡) − 𝑡𝑠] 6 𝑚(𝑠), 0 < 𝑠 6 𝑑.

Therefore, 𝜙(𝑡) = 𝑜(𝑡) as 𝑡 → ∞. Indeed, otherwise there exists 𝜀0 > 0 and a sequence 𝑡𝑛,
𝑡𝑛 → ∞, such that 𝜙(𝑡𝑛) > 𝜀0𝑡𝑛. But then we would have had 𝑚*(𝑠) ≡ ∞ on (0, 𝜀0), which is
impossible.
Let 𝐺 be an even entire function in Lemma 2.3. It satisfies estimates (2.5). Hence, in view

of (3.2), ⃒⃒⃒⃒
𝐴(𝑡)

𝐺(𝑡)

⃒⃒⃒⃒
6 𝐴𝐹 𝑐

−1
1 𝑒−𝜙(𝑡), 𝑡 > 0.

Taking into consideration condition (2.4), we get 𝜙(𝑡) > 𝑁 ln 𝑡 > ln(1 + 𝑡2), 𝑁 > 2, 𝑡 > 𝑡0.
Hence, ⃒⃒⃒⃒

𝐴(𝑡)

𝐺(𝑡)

⃒⃒⃒⃒
6 𝐵𝐹

1

1 + 𝑡2
, 𝑡 > 0. (3.3)

Now we consider a function

Ψ(𝑧) =

∞∫︁
0

𝐴(𝑡)

𝐺(𝑡)
𝑒−𝑧𝑡𝑑𝑡, 𝑧 ∈ Π+

0 .

It follows from (3.3) that the function Ψ is regular in Π+
0 and continuous in Π

+

0 . As a sought
function 𝑀 we take 𝐺:

𝑀(𝜆) = 𝐺(𝜆) =
∞∑︁
𝑛=0

𝑎2𝑛𝜆
2𝑛, 𝑎2𝑛 > 0.

Then

𝑀(𝐷)𝑒−𝑧𝑡 =

(︃
∞∑︁
𝑛=0

𝑎2𝑛𝑡
2𝑛

)︃
𝑒−𝑧𝑡 = 𝐺(𝑡)𝑒−𝑧𝑡.

This is why

𝑀(𝐷)Ψ(𝑧) =

∞∫︁
0

𝐴(𝑡)𝑒−𝑧𝑡𝑑𝑡 = 𝐹 (𝑧), 𝑧 ∈ Π+
0 .
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Thus,

𝐹 (𝑧) = 𝑀(𝐷)Ψ(𝑧), 𝑧 ∈ Π+
0 .

We apply the Keldysh theorem to the function Ψ letting 𝐸 = Π+
0 , Γ = 𝑖R; we recall that Ψ is

regular in Π+
0 and is continuous in Π

+

0 . Then there exists an entire function 𝑔 such that

|Ψ(𝑧) − 𝑔(𝑧)| < exp
(︁
−|𝑧|

1
3

)︁
, 𝑧 ∈ Π

+

0 .

We let 𝑓(𝑧) = Ψ(𝑧) − 𝑔(𝑧). Then 𝑓 ∈ 𝐾1 and

𝐹 (𝑧) = 𝑀(𝐷)Ψ(𝑧) = 𝑀(𝐷)𝑓(𝑧) + 𝑀(𝐷)𝑔(𝑧).

The function Φ(𝑧) = 𝑀(𝐷)𝑔(𝑧) is entire. Therefore, 𝐹 (𝑧) = 𝑀(𝐷)𝑓(𝑧) + Φ(𝑧), 𝑧 ∈ Π+
0 .

It remains to estimate the growth of the entire function 𝑀 . We have:

|𝑀(𝜆)| 6 max
|𝜇|=𝑟

|𝐺(𝜇)| =
∞∑︁
𝑛=0

𝑎2𝑛𝑟
2𝑛, 𝑎2𝑛 > 0.

In view of (2.5), this implies:

|𝑀(𝜆)| 6 𝑐2𝑟
2𝑘𝑒2𝜙(𝑟) 6 𝑐3𝑒

3𝜙(𝑟), 𝑟 > 0.

Thus,

ln𝑀(|𝜆|) 6 𝐶𝑀𝜙(|𝜆|).
The proof is complete.

As a corollary, the prove a theorem on expansion into an exponential series.

Theorem 3.2. Let 𝐹 ∈ 𝐾0 and

𝑇𝐹 (𝑠) 6 𝐴𝐹𝐻(𝑠), 𝑠 > 0,

where the majorant 𝐻 satisfies the assumptions of Theorem 3.1. Then there exists a sequence
of exponents {𝜆𝑛}, 𝜆𝑛 > 0, lim𝑛→∞

𝑛
𝜆𝜌
𝑛

= 𝜏 , 0 < 𝜏 < ∞ (𝜌 > 1 is arbitrary), independent of 𝐹
such that

𝐹 (𝑧) =
∞∑︁
𝑛=1

𝐵𝑛𝑒
−𝜆𝑛𝑧 + entire function, 𝑧 ∈ Π+

0 ,

and for some 𝑘 ∈ N
∞∑︁
𝑛=1

|𝐵𝑛𝑒
−𝜆𝑛𝑧| 6 𝐵𝐻𝑘

(︁𝑥
𝑘

)︁
, 𝑧 = 𝑥 + 𝑖𝑦 ∈ Π+

0 .

Proof. By Theorem 3.1 we have

𝐹 (𝑧) = 𝑀(𝐷)𝑓(𝑧) + Φ(𝑧), 𝑓 ∈ 𝐾1, (3.4)

where Φ is an entire function. Since 𝑓 ∈ 𝐾1, then in the half-plane Π+
0 by [1, Ch. VIII, Sect. 1,

Subsect. 2] we have

𝑓(𝑧) =
∞∑︁
𝑛=1

𝐴0
𝑛𝑒

−𝜆𝑛𝑧 + entire function, (3.5)

where 𝜆𝑛 > 0, lim𝑛→∞
𝑛
𝜆𝜌
𝑛

= 𝜏 , 0 < 𝜏 < ∞, 𝜌 > 1 is arbitrary, 𝐴0
𝑛 = 𝑂(𝜆2

𝑛) as 𝑛 → ∞. Hence,

by (3.4), (3.5) we get the representation

𝐹 (𝑧) =
∞∑︁
𝑛=1

𝐴0
𝑛𝑀(𝜆𝑛)𝑒−𝜆𝑛𝑧 + entire function, 𝑧 ∈ Π+

0 . (3.6)
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Let us estimate the series of absolute values

𝐵(𝑧) =
∞∑︁
𝑛=1

|𝐵𝑛𝑒
−𝜆𝑛𝑧|, 𝐵𝑛 = 𝐴0

𝑛𝑀(𝜆𝑛), 𝑧 ∈ Π+
0 .

The estimates for 𝑀(𝜆𝑛) have been obtained in Theorem 3.1. Taking them into consideration,
we find

|𝐵𝑛| 6
1

𝜆𝜈
𝑛

𝜆2+𝜈
𝑛 𝑒𝐶𝑀𝜙(𝜆𝑛) 6

1

𝜆𝜈
𝑛

𝑒𝐿𝑀𝜙(𝜆𝑛), 𝑛 > 1, 𝜈 > 0,

where 𝐿𝑀 is a constant independent of 𝑛. But in (3.5) the exponents 𝜆𝑛 are such that 𝜆𝜌
𝑛 > 𝜏0𝑛

for some 𝜏0 > 0, 𝑛 > 1. We choose 𝜈 so that 𝜈 > 2𝜌. Then 𝜆𝜈
𝑛 > 𝜏1𝑛

2, 𝑛 > 1, 0 < 𝜏1 < 𝜏0.
Therefore, for 𝑧 ∈ Π+

0 , we have:

𝐵(𝑧) 6
∞∑︁
𝑛=1

1

𝜏1𝑛2
exp [𝐿𝑀𝜙(𝜆𝑛) − 𝜆𝑛𝑥] .

Hence, for some 𝑘 ∈ N, 𝑘 > 𝑘0,

𝐵(𝑧) 6 𝐵 exp (𝑘𝜙(𝜆𝑛) − 𝜆𝑛𝑥) 6 𝐵𝑒𝑘𝑚(𝑥
𝑘 ),

where 𝑚(𝑥) = (𝑈𝜙)(𝑥) is the upper Legendre transform of the function 𝜙.
Thus, if 𝑇𝐹 (𝑥) 6 𝐴𝐹𝐻(𝑥), then representation (3.6) holds true and

∞∑︁
𝑛=1

⃒⃒
𝐴0

𝑛𝑀(𝜆𝑛)𝑒−𝜆𝑛𝑧
⃒⃒
6 𝐵𝐻𝑘

(︁𝑥
𝑘

)︁
,

where 𝐵 is a positive constant, 𝑘 ∈ N. The proof is complete.

We note that if the majorant 𝐻 for the initial function 𝐹 obeys a bilogarithmic Levinson
condition

𝑑∫︁
0

ln ln𝐻(𝑥)𝑑𝑥 < ∞, (3.7)

then the majorant 𝐻𝑘(𝑥) = 𝐵𝐻𝑘
(︀
𝑥
𝑘

)︀
for series (3.6) of the absolute values obeys condition

(3.7). This aspect is essential in issues related with the normality of families of holomorphic
functions, namely, in theorems of Levinson-Sjöberg-Wolff type, see, for instance, [9], [10]. It
turns out that if condition (3.7) holds, then in some cases one can answer the following question:
under which conditions an entire function in expansion (1.1) is bounded in the vertical strip
{𝑧 = 𝑥 + 𝑖𝑦 : |𝑥| < 1}? This result is postponed for another paper.

Remark 3.1. Let the majorant 𝐻 coincides with the function exp
(︀(︀

1
𝑠

)︀𝜇)︀
, 𝜇 > 0, as 0 < 𝑠 6

1; in this case 𝑑 = 1. Exactly this function is used as a comparison function in studying the
class of analytic in Π+

0 functions in terms of the order 𝜌, see [8], [15]. In the considered here
situation

𝜌 = lim
𝑠→0+

ln ln𝑇𝐹 (𝑠)

ln 1
𝑠

is the order of the function 𝑇𝐹 (𝑠).

For the function 𝑚(𝑠) =
(︀
1
𝑠

)︀𝜇
we have: 𝑚′′(𝑠) = 𝜇(𝜇 + 1)𝑠−𝜇−2 > 0. Hence, the function

𝑚(𝑠) is convex. The function 𝑚(𝑒−𝑡) is also convex since 𝑚(𝑒−𝑡) = 𝑒𝑡𝜇, 𝑡 ∈ R. Since 𝐻(𝑠) ↑ ∞
as 𝑠 → 0+ and 𝐻(𝑠) ↓ 𝑒 as 𝑠 → 1−. This is why, according to Theorem 3.2, expansion (3.6)
holds since for some 𝐵 > 0, 𝑘 ∈ N we have

𝐵(𝑧) =
∞∑︁
𝑛=1

⃒⃒
𝐴0

𝑛𝑀(𝜆𝑛)𝑒−𝜆𝑛𝑧
⃒⃒
6 𝐵𝐻𝑘

(︁𝑥
𝑘

)︁
= 𝐵𝑒𝑘(

𝑘
𝑠 )

𝜇

.
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Thus, if

𝑇𝐹 (𝑠) 6 𝐴𝐹 exp

(︂(︂
1

𝑠

)︂𝜇)︂
,

then in (3.6)

𝐵(𝑧) 6 𝐵𝑒𝑏(
1
𝑠)

𝜇

, 𝑏 = 𝑘1+𝜇.

In this way, Theorem 3.2 generalizes a corresponding result in [8] on expanding analytic in
Π+

0 functions into exponential series taking into consideration the growth order.
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