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JUSTIFICATION OF GALERKIN AND COLLOCATIONS

METHODS FOR ONE CLASS OF SINGULAR

INTEGRO-DIFFERENTIAL EQUATIONS ON INTERVAL

A.I. FEDOTOV

Abstract. We justify the Galerkin and collocations methods for one class of singular
integro-differential equations defined on the pair of the weighted Sobolev spaces. The
exact solution of the considered equation is approximated by the linear combinations of the
Chebyshev polynomials of the first kind. According to the Galerkin method, we equate the
Fourier coefficients with respect to the Chebyshev polynomials of the second kind in the
right-hand side and the left-hand side of the equation. According to collocations method,
we equate the values of the right-hand side and the left-hand side of the equation at the
nodes being the roots of the Chebyshev polynomials the second kind.

The choice of the first kind Chebyshev polynomials as coordinate functions is due to the
possibility to calculate explicitly the singular integrals with Cauchy kernel of the products
of these polynomials and corresponding weight functions. This allows us to construct simple
well converging methods for the wide class of singular integro-differential equations on the
interval (−1, 1).

The Galerkin method is justified by the Gabdulkhaev–Kantorovich technique. The con-
vergence of collocations method is proved by the Arnold–Wendland technique as a conse-
quence of convergence of the Galerkin method. Thus, the covergence of both methods is
proved and effective estimates for the errors are obtained.
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1. Introduction

Considering the current state-of-art of the theory of approximate methods for solving singu-
lar integro-differential equations in the periodic and non-periodic cases, it can be stated that
while in the periodic case this theory is almost completed, in the non-periodic case one suc-
ceeded to obtain only particular results [1]–[6] for the first order equations. The reason for this
situation, in particular, is an essential difference between the properties of singular integrals
with the Hilbert and Cauchy kernels. And while in the periodic case the systems of orthogonal
trigonometric polynomials allow one to develop and justify simple computational schemes for
singular integro-differential equations of any order including a fractional one, see, for example,
[7], in the non-periodic case all computational schemes are constructed on the basis of two
well-known formulae for singular integrals of Chebyshev polynomials of the first and second
kind [8] and therefore, only problems of the first order are treated. An only exception is the
work by the author [9]1. But in this work a lack in the theory of approximate methods for
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such equations also made us to introduce strict artificial restrictions for the coefficients of the
equations to ensure the convergence of the method.

In the present work, being a continuation of work [6], we justify the Galerkin method and
collocation method for singular integro-differential equations from a much wider class than
one considered in [6]. The justification of the Galerkin method is made by employing a
Gabdulkhaev-Kantorovich technique, see, for instance, [10]. The collocation method is jus-
tified as a corollary of the convergence of the Galerkin method by Arnold-Wendland approach
[11]. We prove the convergence of both methods and obtain effective estimates for the errors.

2. Main definitions and notaions

As usually, by N we denote the set of natural numbers, N0 is the set of the natural numbers
with the zero, and R is the set of real numbers. We denote by

𝑝(𝑡) = (1 − 𝑡2)−
1
2 , 𝑞(𝑡) = (1 − 𝑡2)

1
2 , 𝑡 ∈ (−1, 1),

the weight functions corresponding to the Chebyshev polynomials of the first kind

𝑇𝑙(𝑡) = cos(𝑙 arccos 𝑡), 𝑙 ∈ N0, 𝑡 ∈ (−1, 1),

and to the Chebyshev polynomials of the second kind

𝑈𝑙(𝑡) =
sin(𝑙 arccos 𝑡)

sin(arccos 𝑡)
, 𝑙 ∈ N, 𝑡 ∈ (−1, 1).

We denote by 𝐻𝑠+1
𝑝 the Sobolev space of order 𝑠+ 1 ∈ R with a weight 𝑝, that is, the closure

of the set of polynomials {𝑇𝑙}𝑙∈N0 with respect to the norm

‖𝑥‖𝐻𝑠+1
𝑝

=

{︃∑︁
𝑙∈N0

𝑙2(𝑠+1)̂︀𝑥2

(︂
𝑙,−1

2

)︂}︃1/2

, 𝑙 =

{︃
𝑙, 𝑙 ∈ N,
1, 𝑙 = 0,

(2.1)

̂︀𝑥(0,−1

2
) =

1

𝜋

1∫︁
−1

𝑝(𝜏)𝑥(𝜏)𝑑𝜏, ̂︀𝑥(︂𝑙,−1

2

)︂
=

2

𝜋

1∫︁
−1

𝑝(𝜏)𝑥(𝜏)𝑇𝑙(𝜏)𝑑𝜏, 𝑙 ∈ N.

In the space 𝐻𝑠+1
𝑝 we define a scalar product

⟨𝑓, 𝑔⟩𝐻𝑠+1
𝑝

=
∑︁
𝑙∈N0

𝑙2(𝑠+1) ̂︀𝑓 (︂𝑙,−1

2

)︂̂︀𝑔(︂𝑙,−1

2

)︂
, 𝑓, 𝑔 ∈ 𝐻𝑠+1

𝑝 .

Being equipped with the above scalar product, the space 𝐻𝑠+1
𝑝 becomes a Hilbert one and norm

(2.1) is expressed via the scalar product

‖𝑥‖𝐻𝑠+1
𝑝

=
√︁

⟨𝑥, 𝑥⟩𝐻𝑠+1
𝑝

, 𝑥 ∈ 𝐻𝑠+1
𝑝 .

We denote by 𝐻𝑠
𝑞 the Sobolev space of order 𝑠 ∈ R with a weight 𝑞 , that is, the closure of

the set of polynomials{𝑈𝑙}𝑙∈N with respect to the norm

‖𝑦‖𝐻𝑠
𝑞

=

{︃∑︁
𝑙∈N

𝑙2𝑠̂︀𝑦2(︂𝑙, 1

2

)︂}︃1/2

, (2.2)

̂︀𝑦(︂𝑙, 1

2

)︂
=

2

𝜋

1∫︁
−1

𝑞(𝜏)𝑦(𝜏)𝑈𝑙(𝜏)𝑑𝜏, 𝑙 ∈ N.
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In the space 𝐻𝑠
𝑞 we also define a scalar product

⟨𝑓, 𝑔⟩𝐻𝑠
𝑞

=
∑︁
𝑙∈N

𝑙2𝑠 ̂︀𝑓 (︂𝑙, 1

2

)︂̂︀𝑔(︂𝑙, 1

2

)︂
, 𝑓, 𝑔 ∈ 𝐻𝑠

𝑞 .

Being equipped with the above scalar product, the space 𝐻𝑠
𝑞 becomes a Hilbert one, while norm

(2.2) is expressed via this scalar product:

‖𝑦‖𝐻𝑠
𝑞

=
√︁
⟨𝑦, 𝑦⟩𝐻𝑠

𝑞
, 𝑦 ∈ 𝐻𝑠

𝑞 .

Hereafter we suppose that the condition 𝑠 > 1/2 holds, under which (see, for instance, [12])
the space 𝐻𝑠

𝑞 is embedded into the space of continuous functions, while the space 𝐻𝑠+1
𝑝 is

embedded into the space of the functions having a first continuous derivative.
We denote by 𝐻𝑠+1,𝑠+1

𝑝,𝑝 the space of the functions of two variables, which belong to the space

𝐻𝑠+1
𝑝 as functions of each variable uniformly in the second variable. For functions ℎ ∈ 𝐻𝑠+1,𝑠+1

𝑝,𝑝

we define

̂︀ℎ(︂𝑚,
1

2
, 𝜏

)︂
=

2

𝜋

1∫︁
−1

𝑝(𝑡)ℎ(𝑡, 𝜏)𝑇𝑚(𝑡)𝑑𝑡, 𝑚 ∈ N0, 𝑡 ∈ (−1, 1),

which a 𝑚th Fourier coefficient of the function ℎ with respect to the first variable, and

̂︀ℎ(︂𝑡, 𝑙,−1

2

)︂
=

2

𝜋

1∫︁
−1

𝑝(𝜏)ℎ(𝑡, 𝜏)𝑇𝑙(𝑡)𝑑𝜏, 𝑙 ∈ N0, 𝜏 ∈ (−1, 1),

is 𝑙th Fourier coefficient of the function ℎ with respect to the second variable and

̂︀ℎ(︂𝑚,
1

2
, 𝑙,−1

2

)︂
=

4

𝜋2

1∫︁
−1

1∫︁
−1

𝑝(𝑡)𝑝(𝜏)ℎ(𝑡, 𝜏)𝑇𝑙(𝜏)𝑇𝑚(𝑡)𝑑𝜏𝑑𝑡,

(𝑚, 𝑙) ∈ N2
0, (𝑡, 𝜏) ∈ (−1, 1)2,

is (𝑚, 𝑙)th coefficient of the Fourier coefficient of the function ℎ with respect to the both
variables. The norm in the space 𝐻𝑠+1,𝑠+1

𝑝,𝑝 is defined by the identity

‖ℎ‖𝐻𝑠+1,𝑠+1
𝑝,𝑝

=

{︃∑︁
𝑚∈N0

∑︁
𝑙∈N0

𝑚2(𝑠+1)𝑙2(𝑠+1)̂︀ℎ2

(︂
𝑚,

1

2
, 𝑙,−1

2

)︂}︃ 1
2

, (2.3)

while the scalar product is defined by the identity

⟨𝑓, 𝑔⟩𝐻𝑠+1,𝑠+1
𝑝,𝑝

=

{︃∑︁
𝑚∈N0

∑︁
𝑙∈N0

𝑚2(𝑠+1)𝑙2(𝑠+1) ̂︀𝑓 (︂𝑚,
1

2
, 𝑙,−1

2

)︂̂︀𝑔(︂𝑚,
1

2
, 𝑙,−1

2

)︂}︃ 1
2

.

Being equipped with the above scalar product, the space 𝐻𝑠+1,𝑠+1
𝑝,𝑝 becomes a Hilbert one, while

norm (2.3) is expressed via this scalar product:

‖ℎ‖𝐻𝑠+1,𝑠+1
𝑝,𝑝

=
√︁

⟨ℎ, ℎ⟩𝐻𝑠+1,𝑠+1
𝑝,𝑝

, ℎ ∈ 𝐻𝑠+1,𝑠+1
𝑝,𝑝 .

We fix 𝑛 ∈ N and we denote by

𝑃𝑛𝑦(𝑡) =
𝑛∑︁

𝑘=1

𝑦(𝑡𝑘)𝜉𝑘(𝑡), 𝑡 ∈ (−1, 1),



94 A.I. FEDOTOV

an interpolation Lagrange polynomial of a function 𝑦 ∈ 𝐻𝑠
𝑞 over the nodes

𝑡𝑘 = cos
𝜋𝑘

𝑛 + 1
, 𝑘 = 1, 2, . . . , 𝑛. (2.4)

Here

𝜉𝑘(𝑡) =
𝑈𝑛+1(𝑡)

(𝑡− 𝑡𝑘)𝑈 ′
𝑛+1(𝑡𝑘)

, 𝑘 = 1, 2, . . . , 𝑛, 𝑡 ∈ (−1, 1),

are fundamental polynomials corresponding to nodes (2.4).
We denote by

𝑄𝑛𝑦(𝑡) =
𝑛∑︁

𝑙=1

̂︀𝑦(︂𝑙, 1

2

)︂
𝑈𝑙(𝑡), 𝑡 ∈ (−1, 1),

a partial sum of Fourier series of a function 𝑦 ∈ 𝐻𝑠
𝑞 over the system of polynomials {𝑈𝑙}𝑙∈𝑁 ,

while 𝐸𝑛(𝑦)𝑠𝑞 stands for the best approximation of this functions by the polynomials of order at
most 𝑛− 1 in the norm of the space 𝐻𝑠

𝑞 . It is known that the best approximation of a function
in a Hilbert space is given by a partial sum of its Fourier series and hence,

𝐸𝑛(𝑦)𝑠𝑞 = ‖𝑦 −𝑄𝑛𝑦‖𝐻𝑠
𝑞
, 𝑦 ∈ 𝐻𝑠

𝑞 .

3. Auxiliary results

In this section we provide two lemmata needed in what follows. The proof of the first lemma
was given, for instance, in [13], while the proof of the second lemma was provided in [10].

Lemma 3.1. Let 𝐷 and 𝑉 be linear operators acting from a Banach space 𝑋 into a Banach
space 𝑌 . Assume that the operator 𝐷 is invertible and the condition ‖𝑉 ‖𝑋→𝑌 ‖𝐷−1‖𝑌→𝑋 < 1
is satisfied. Then the operator 𝐷 + 𝑉 : 𝑋 → 𝑌 is also invertible and the estimate

‖(𝐷 + 𝑉 )−1‖𝑌→𝑋 6
‖𝐷−1‖𝑌→𝑋

1 − ‖𝑉 ‖𝑋→𝑌 ‖𝐷−1‖𝑌→𝑋

holds true.

We again denote by 𝑋 and 𝑌 some Banach space and let 𝑋𝑛 ⊂ 𝑋, 𝑌𝑛 ⊂ 𝑌 , 𝑛 = 1, 2, . . ., be
their subspaces. We consider the equations

𝐾𝑥 = 𝑦, 𝐾 : 𝑋 → 𝑌, (3.1)

𝐾𝑛𝑥𝑛 = 𝑦𝑛, 𝐾𝑛 : 𝑋𝑛 → 𝑌𝑛, 𝑛 = 1, 2, . . . , (3.2)

where 𝐾 and 𝐾𝑛, 𝑛 = 1, 2, . . . , are linear bounded operators.

Lemma 3.2. Assume that the operator 𝐾 : 𝑋 → 𝑌 is invertible and the operators 𝐾𝑛,
𝑛 = 1, 2, . . . , converge uniformly to 𝐾:

‖𝐾 −𝐾𝑛‖𝑋𝑛→𝑌 → 0 as 𝑛 → ∞.

If dim𝑋𝑛 = dim𝑌𝑛, 𝑛 = 1, 2, . . . , then for all 𝑛 satisfying the condition

𝑢𝑛 = ‖𝐾−1‖𝑌→𝑋‖𝐾 −𝐾𝑛‖𝑋𝑛→𝑌 < 1,

approximate equations (3.2) possess unique solutions 𝑥*
𝑛 ∈ 𝑋𝑛 for arbitrary right hand sides

𝑦𝑛 ∈ 𝑌𝑛 and the estimate

‖𝑥* − 𝑥*
𝑛‖𝑋 6

‖𝐾−1‖𝑌→𝑋

1 − 𝑢𝑛

(‖𝑦 − 𝑦𝑛‖𝑌 + 𝑢𝑛‖𝑦‖𝑌 )

holds, where 𝑥* = 𝐾−1𝑦 is the exact solution of equation (3.1).
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4. Formulation of problem

We consider a singular integro-differential equation

𝑥′(𝑡) + 𝑎(𝑡)𝑥(𝑡) +
𝑏(𝑡)

𝜋

1∫︁
−1

𝑝(𝜏)𝑥(𝜏)𝑑𝜏

𝜏 − 𝑡
+

2

𝜋

1∫︁
−1

𝑝(𝜏)ℎ(𝑡, 𝜏)𝑥(𝜏)𝑑𝜏 = 𝑦(𝑡), 𝑡 ∈ (−1, 1), (4.1)

with the condition
1∫︁

−1

𝑝(𝜏)𝑥(𝜏)𝑑𝜏 = 0. (4.2)

Here 𝑥 is a sought function, while 𝑎, 𝑏, ℎ and 𝑦 are known functions. We assume that the
functions 𝑎 and 𝑏 belong to the space 𝐻𝑠+1

𝑝 , the function ℎ belongs to the space 𝐻𝑠+1,𝑠+1
𝑝,𝑝 ,

while the function 𝑦 belongs to the space 𝐻𝑠
𝑞 . The singular integral is treated in the sense of

Cauchy-Lebesgue principle value.

5. Analysis of solvability

We rewrite problem (4.1), (4.2) as an operator equation:

𝐾𝑥 ≡ 𝐷𝑥 + 𝑉 𝑥 = 𝑦, 𝐾 : 𝑋 → 𝑌, (5.1)

𝑋 =

⎧⎨⎩𝑥 ∈ 𝐻𝑠+1
𝑝 |

1∫︁
−1

𝑝(𝜏)𝑥(𝜏)𝑑𝜏 = 0

⎫⎬⎭ , 𝑌 = 𝐻𝑠
𝑞 ,

𝐷𝑥(𝑡) = 𝑥′(𝑡), 𝑉 𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑥(𝑡) + 𝐺ℎ𝑥(𝑡), 𝑡 ∈ (−1, 1),

𝐴𝑥(𝑡) = 𝑎(𝑡)𝑥(𝑡), 𝐵𝑥(𝑡) =
𝑏(𝑡)

𝜋

1∫︁
−1

𝑝(𝜏)𝑥(𝜏)𝑑𝜏

𝜏 − 𝑡
,

𝐺ℎ𝑥(𝑡) =
2

𝜋

1∫︁
−1

𝑝(𝜏)ℎ(𝑡, 𝜏)𝑥(𝜏)𝑑𝜏, 𝑡 ∈ (−1, 1).

Theorem 5.1. For all 𝑎, 𝑏 ∈ 𝐻𝑠+1
𝑝 and ℎ ∈ 𝐻𝑠+1,𝑠+1

𝑝,𝑝 satisfying the condition

𝑢 = 𝐶𝑎‖𝑎‖𝐻𝑠+1
𝑝

+ 𝐶𝑏‖𝑏‖𝐻𝑠+1
𝑝

+ 𝐶ℎ‖ℎ‖𝐻𝑠+1,𝑠+1
𝑝,𝑝

< 1,

𝐶𝑎 =
1

4

(︂
𝜁(4𝑠 + 4) +

𝜋2

6
(1 + 22(𝑠+1)) +

𝜋2

3
22𝑠
(︀
22(𝑠+1)(1 + 3𝜁(2𝑠 + 2)) + 7𝜁(2𝑠 + 2) + 1

)︀)︂
,

𝐶𝑏 =
𝜋2

12
(1 + 22𝑠+1)(1 + 3𝜁(2𝑠 + 2)), 𝐶ℎ =

𝜋2

6
(1 + 22𝑠+1), 𝜁(𝑡) =

∞∑︁
𝑗=1

𝑗−𝑡,

operator equation (5.1) and hence, problem (4.1), (4.2) are uniquely solvable for arbitrary right
hand side 𝑦 ∈ 𝑌 and the estimate

‖𝐾−1‖𝑌→𝑋 6 (1 − 𝑢)−1

holds true.

Proof. First we are going to prove that the operator 𝐷 : 𝑋 → 𝑌 is invertible and the identities

‖𝐷‖𝑋→𝑌 = ‖𝐷−1‖𝑌→𝑋 = 1
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hold true. Indeed, we take arbitrary 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 and write them as Fourier series in the
corresponding spaces:

𝑥(𝑡) =
∑︁
𝑙∈N

̂︀𝑥(︂𝑙,−1

2

)︂
𝑇𝑙(𝑡), 𝑦(𝑡) =

∑︁
𝑙∈N

𝑦

(︂
𝑙,

1

2

)︂
𝑈𝑙(𝑡), 𝑡 ∈ (−1, 1).

In this case the equation

𝐷𝑥 = 𝑦, 𝐷 : 𝑋 → 𝑌,

becomes an infinite system of equations

𝑙̂︀𝑥(︂𝑙,−1

2

)︂
= ̂︀𝑦(︂𝑙, 1

2

)︂
, 𝑙 ∈ N,

and its solution is the function

𝑥(𝑡) =
∑︁
𝑙∈N

𝑙−1̂︀𝑦(︂𝑙, 1

2

)︂
𝑇𝑙(𝑡), 𝑡 ∈ (−1, 1).

An arbitrary choice of the element 𝑦 ∈ 𝑌 then implies the invertibility of the operator 𝐷 : 𝑋 →
𝑌 .

Now we are going to calculate the norms of the operators 𝐷 : 𝑋 → 𝑌 and 𝐷−1 : 𝑌 → 𝑋.
For an arbitrary element 𝑥 ∈ 𝑋 we have

‖𝐷𝑥‖2𝑌 =
∑︁
𝑙∈N

𝑙2𝑠
(︂
𝑙̂︀𝑥(︂𝑙,−1

2

)︂)︂2

=
∑︁
𝑙∈N

𝑙2(𝑠+1)̂︀𝑥2

(︂
𝑙,−1

2

)︂
= ‖𝑥‖2𝑋 .

For an arbitrary element 𝑦 ∈ 𝑌 we find:

‖𝐷−1𝑦‖2𝑋 =
∑︁
𝑙∈N

𝑙2(𝑠+1)

(︂
𝑙−1̂︀𝑦(︂𝑙, 1

2

)︂)︂2

=
∑︁
𝑙∈N

𝑙2𝑠̂︀𝑦2(︂𝑙, 1

2

)︂
= ‖𝑦‖2𝑌 .

This means that ‖𝐷‖𝑋→𝑌 = ‖𝐷−1‖𝑌→𝑋 = 1.
Let us estimate the norm of the operator 𝑉 : 𝑋 → 𝑌 . We again take an arbitrary element

𝑥 ∈ 𝑋

𝑥(𝑡) =
∑︁
𝑙∈N

̂︀𝑥(︂𝑙,−1

2

)︂
𝑇𝑙(𝑡), 𝑡 ∈ (−1, 1),

and apply the operator 𝑉 to this element:

𝑉 𝑥 = 𝐴𝑥 + 𝐵𝑥 + 𝐺ℎ𝑥. (5.2)

Let us estimate the norm in the space 𝑌 of each term in the right hand side of this identity.
For the first term we find that

‖𝐴𝑥‖2𝑌 =‖𝑎𝑥‖2𝐻𝑠
𝑞

=
∑︁
𝑚∈N

𝑚2𝑠̂︁𝑎𝑥2

(︂
𝑚,

1

2

)︂

=
4

𝜋2

∑︁
𝑚∈N

𝑚2𝑠

⎛⎝ 1∫︁
−1

𝑞(𝜏)
∑︁
𝑘∈N0

∑︁
𝑙∈N

̂︀𝑎(︂𝑘,−1

2

)︂ ̂︀𝑥(︂𝑙,−1

2

)︂
𝑇𝑘(𝜏)𝑇𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

=
4

𝜋2

∑︁
𝑚∈N

𝑚2𝑠

⎛⎝∑︁
𝑘∈N0

∑︁
𝑙∈N

̂︀𝑎(︂𝑘,−1

2

)︂ ̂︀𝑥(︂𝑙,−1

2

)︂ 1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑇𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

.
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Applying twice the Cauchy-Schwartz inequality, we obtain:

‖𝐴𝑥‖2𝑌 6
4

𝜋2

∑︁
𝑚∈N

𝑚2𝑠
∑︁
𝑘∈N0

𝑘2(𝑠+1)̂︀𝑎2(︂𝑘,−1

2

)︂∑︁
𝑙∈N

𝑙2(𝑠+1)̂︀𝑥2

(︂
𝑙,−1

2

)︂

·
∑︁
𝑘∈N0

∑︁
𝑙∈N

𝑘−2(𝑠+1)𝑙−2(𝑠+1)

⎛⎝ 1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑇𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

=
4

𝜋2
‖𝑎‖2

𝐻𝑠+1
𝑝

‖𝑥‖2
𝐻𝑠+1

𝑝

∑︁
𝑚∈N

𝑚2𝑠
∑︁
𝑘∈N0

∑︁
𝑙∈N

𝑘−2(𝑠+1)𝑙−2(𝑠+1)

·

⎛⎝ 1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑇𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

.

The integrals
1∫︁

−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑇𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏, 𝑘 ∈ N0, 𝑙,𝑚 ∈ N,

can be found explicitly. Indeed, making the change of the variables 𝜏 = cos𝜙, we get:

1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑇𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏 =

𝜋∫︁
0

cos 𝑘𝜙 cos 𝑙𝜙 sin𝑚𝜙 sin𝜙𝑑𝜙

=
1

8

⎛⎝ 𝜋∫︁
0

cos(𝑘 + 𝑙 + 𝑚− 1)𝜙𝑑𝜙 +

𝜋∫︁
0

cos(𝑘 + 𝑙 −𝑚 + 1)𝜙𝑑𝜙

+

𝜋∫︁
0

cos(𝑘 − 𝑙 + 𝑚− 1)𝜙𝑑𝜙 +

𝜋∫︁
0

cos(𝑘 − 𝑙 −𝑚 + 1)𝜙𝑑𝜙

−
𝜋∫︁

0

cos(𝑘 + 𝑙 + 𝑚 + 1)𝜙𝑑𝜙−
𝜋∫︁

0

cos(𝑘 + 𝑙 −𝑚− 1)𝜙𝑑𝜙

−
𝜋∫︁

0

cos(𝑘 − 𝑙 + 𝑚 + 1)𝜙𝑑𝜙−
𝜋∫︁

0

cos(𝑘 − 𝑙 −𝑚− 1)𝜙𝑑𝜙

⎞⎠ ,

and this is why
1∫︁

−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑇𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏 =
𝜋

8

as

𝑚 = 2, 3, . . . , 𝑙 = 1, 2, . . . ,𝑚− 1, 𝑘 = 𝑚− 𝑙 − 1; 𝑚 = 1, 𝑙 ∈ N, 𝑘 = 𝑙;

𝑚 = 2, 3, . . . , 𝑙 = 𝑚− 1,𝑚, . . . , 𝑘 = 𝑙 + 1 −𝑚;

and

𝑚 ∈ N, 𝑙 ∈ N, 𝑘 = 𝑚 + 𝑙 − 1;

1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑇𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏 = −𝜋

8
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as

𝑚 ∈ N, 𝑙 = 1, 2, . . . ,𝑚 + 1, 𝑘 = 𝑚 + 1 − 𝑙;

𝑚 ∈ N, 𝑙 = 𝑚 + 1,𝑚 + 2, . . . , 𝑘 = 𝑙 −𝑚− 1; 𝑚, 𝑙 ∈ N, 𝑘 = 𝑚 + 𝑙 + 1.

For other values of the indices 𝑘, 𝑙 and 𝑚 these integrals vanish. Thus, estimate (5.3) becomes

‖𝐴𝑥‖2𝑌 6
1

16
‖𝑎‖2

𝐻𝑠+1
𝑝

‖𝑥‖2
𝐻𝑠+1

𝑝

(︃
∞∑︁

𝑚=2

𝑚−1∑︁
𝑙=1

𝑚2𝑠𝑙−2(𝑠+1)(𝑚− 𝑙 − 1)−2(𝑠+1) +
∑︁
𝑙∈N

𝑙−4(𝑠+1)

+
∞∑︁

𝑚=2

∞∑︁
𝑙=𝑚−1

𝑚2𝑠𝑙−2(𝑠+1)(𝑙 −𝑚 + 1)−2(𝑠+1) +
∑︁
𝑚∈N

∑︁
𝑙∈N

𝑚2𝑠𝑙−2(𝑠+1)(𝑚 + 𝑙 − 1)−2(𝑠+1)

+
∑︁
𝑚∈N

𝑚+1∑︁
𝑙=1

𝑚2𝑠𝑙−2(𝑠+1)(𝑚 + 1 − 𝑙)−2(𝑠+1) +
∑︁
𝑚∈N

∞∑︁
𝑙=𝑚+1

𝑚2𝑠𝑙−2(𝑠+1)(𝑙 −𝑚− 1)−2(𝑠+1)

+
∑︁
𝑚∈N

∑︁
𝑙∈N

𝑚2𝑠𝑙−2(𝑠+1)(𝑚 + 𝑙 + 1)−2(𝑠+1)

)︃2

6
1

16
‖𝑎‖2

𝐻𝑠+1
𝑝

‖𝑥‖2
𝐻𝑠+1

𝑝
(𝜁(4𝑠 + 4)

+
∞∑︁

𝑚=2

(︃
𝑚2𝑠

(𝑚− 1)2(𝑠+1)
+
∑︁
𝑙∈N

𝑚2𝑠𝑙−2(𝑠+1)(𝑚− 𝑙 − 1)−2(𝑠+1)

)︃
+
∑︁
𝑚∈N

∑︁
𝑙∈N

𝑚2𝑠𝑙−2(𝑠+1)(𝑚 + 𝑙 − 1)−2(𝑠+1)

+
∑︁
𝑚∈N

(︃
𝑚2𝑠

(𝑚 + 1)2(𝑠+1)
+
∑︁
𝑙∈N

𝑚2𝑠𝑙−2(𝑠+1)(𝑚− 𝑙 + 1)−2(𝑠+1)

)︃
+
∑︁
𝑚∈N

∑︁
𝑙∈N

𝑚2𝑠𝑙−2(𝑠+1)(𝑚 + 𝑙 + 1)−2(𝑠+1))2

6
1

16
‖𝑎‖2

𝐻𝑠+1
𝑝

‖𝑥‖2
𝐻𝑠+1

𝑝

(︃
𝜁(4𝑠 + 4) + 22(𝑠+1)𝜋

2

6
+

∞∑︁
𝑚=2

∑︁
𝑙∈N

𝑚2𝑠𝑙−2(𝑠+1)(𝑚− 𝑙 − 1)−2(𝑠+1)

+
∑︁
𝑚∈N

∑︁
𝑙∈N

𝑚2𝑠𝑙−2(𝑠+1)(𝑚 + 𝑙 − 1)−2(𝑠+1) +
𝜋2

6
+
∑︁
𝑚∈N

∑︁
𝑙∈N

𝑚2𝑠𝑙−2(𝑠+1)(𝑚− 𝑙 + 1)−2(𝑠+1)

+
∑︁
𝑚∈N

∑︁
𝑙∈N

𝑚2𝑠𝑙−2(𝑠+1)(𝑚 + 𝑙 + 1)−2(𝑠+1)

)︃2

.

Let us estimate the expressions under the sum symbols via Hölder inequality and triangle
inequality. The first estimate reads as

‖𝐴𝑥‖2𝑌 6
1

16
‖𝑎‖2

𝐻𝑠+1
𝑝

‖𝑥‖2
𝐻𝑠+1

𝑝

(︂
𝜁(4𝑠 + 4) + (1 + 22(𝑠+1))

𝜋2

6

+
∞∑︁

𝑚=2

𝑚−2

(︂
𝑚

𝑚− 1

)︂2(𝑠+1)∑︁
𝑙∈N

(𝑚− 1 − 𝑙 + 𝑙)2(𝑠+1)

𝑙2(𝑠+1)(𝑚− 𝑙 − 1)2(𝑠+1)

+
∑︁
𝑚∈N

𝑚−2

(︂
𝑚

𝑚− 1

)︂2(𝑠+1)∑︁
𝑙∈N

(𝑚− 1 + 𝑙 − 𝑙)2(𝑠+1)

𝑙2(𝑠+1)(𝑚 + 𝑙 − 1)2(𝑠+1)
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+
∑︁
𝑚∈N

𝑚−2

(︂
𝑚

𝑚 + 1

)︂2(𝑠+1)∑︁
𝑙∈N

(𝑚 + 1 − 𝑙 + 𝑙)2(𝑠+1)

𝑙2(𝑠+1)(𝑚 + 1 − 𝑙)2(𝑠+1)

+
∑︁
𝑚∈N

𝑚−2

(︂
𝑚

𝑚 + 1

)︂2(𝑠+1)∑︁
𝑙∈N

(𝑚 + 𝑙 + 1 − 𝑙)2(𝑠+1)

𝑙2(𝑠+1)(𝑚 + 𝑙 + 1)2(𝑠+1)

)︂2

.

The second estimate is of the form
∞∑︁

𝑚=2

𝑚−2

(︂
𝑚

𝑚− 1

)︂2(𝑠+1)∑︁
𝑙∈N

(𝑚− 1 − 𝑙 + 𝑙)2(𝑠+1)

𝑙2(𝑠+1)(𝑚− 𝑙 − 1)2(𝑠+1)

6 22(𝑠+1)

∞∑︁
𝑚=2

𝑚−222𝑠+1

(︃∑︁
𝑙∈N

𝑙−2(𝑠+1) + 1 +
∑︁

𝑚−1̸=𝑙∈N

(𝑚− 𝑙 − 1)−2(𝑠+1)

)︃

6 24𝑠+3

∞∑︁
𝑚=2

𝑚−2(1 + 3𝜁(2𝑠 + 2)) 6 24𝑠+3𝜋
2

6
(1 + 3𝜁(2𝑠 + 2)),

∑︁
𝑚∈N

𝑚−2

(︂
𝑚

𝑚− 1

)︂2(𝑠+1)∑︁
𝑙∈N

(𝑚− 1 + 𝑙 − 𝑙)2(𝑠+1)

𝑙2(𝑠+1)(𝑚 + 𝑙 − 1)2(𝑠+1)

6 22(𝑠+1)𝜋
2

6
𝜁(2𝑠 + 2).

The next estimates are∑︁
𝑚∈N

𝑚−2

(︂
𝑚

𝑚 + 1

)︂2(𝑠+1)∑︁
𝑙∈N

(𝑚 + 1 − 𝑙 + 𝑙)2(𝑠+1)

𝑙2(𝑠+1)(𝑚 + 1 − 𝑙)2(𝑠+1)

6 22𝑠+1
∑︁
𝑚∈N

𝑚−2

(︃∑︁
𝑙∈N

𝑙−2(𝑠+1) + 1 +
∑︁

𝑚+1̸=𝑙∈N

(𝑚− 𝑙 + 1)−2(𝑠+1)

)︃

6 22𝑠+1𝜋
2

6
(1 + 3𝜁(2𝑠 + 2)),

and ∑︁
𝑚∈N

𝑚−2

(︂
𝑚

𝑚 + 1

)︂2(𝑠+1)∑︁
𝑙∈N

(𝑚 + 𝑙 + 1 − 𝑙)2(𝑠+1)

𝑙2(𝑠+1)(𝑚 + 𝑙 + 1)2(𝑠+1)

6 22(𝑠+1)
∑︁
𝑚∈N

𝑚−2

(︃∑︁
𝑙∈N

𝑙−2(𝑠+1) −
∑︁
𝑙∈N

(𝑚 + 𝑙 + 1)−2(𝑠+1)

)︃

6 22(𝑠+1)𝜋
2

6
𝜁(2𝑠 + 2).

We finally have:

‖𝐴𝑥‖𝑌 6 𝐶𝑎‖𝑎‖𝐻𝑠+1
𝑝

‖𝑥‖𝐻𝑠+1
𝑝

, (5.3)

𝐶𝑎 =
1

4

(︂
𝜁(4𝑠 + 4) +

𝜋2

6
(1 + 22(𝑠+1)) +

𝜋2

3
22𝑠
(︀
22(𝑠+1)(1 + 3𝜁(2𝑠 + 2)) + 7𝜁(2𝑠 + 2) + 1

)︀)︂
.

Since

1

𝜋

1∫︁
−1

𝑝(𝜏)𝑥(𝜏)𝑑𝜏

𝜏 − 𝑡
=
∑︁
𝑙∈N

̂︀𝑥(︂𝑙,−1

2

)︂
𝑈𝑙(𝑡), 𝑡 ∈ (−1, 1),



100 A.I. FEDOTOV

the square of the norm of the second term in the right hand side of identity (5.2) can be
represented as follows:

‖𝐵𝑥‖2𝑌 =
4

𝜋2

∑︁
𝑚∈N

𝑚2𝑠

⎛⎝ 1∫︁
−1

𝑞(𝜏)
∑︁
𝑘∈N0

∑︁
𝑙∈N

̂︀𝑏(︂𝑘,−1

2

)︂ ̂︀𝑥(︂𝑙,−1

2

)︂
𝑇𝑘(𝜏)𝑈𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

=
4

𝜋2

∑︁
𝑚∈N

𝑚2𝑠

⎛⎝∑︁
𝑘∈N0

∑︁
𝑙∈N

̂︀𝑏(︂𝑘,−1

2

)︂ ̂︀𝑥(︂𝑙,−1

2

)︂ 1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑈𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

.

Again applying twice the Cauchy-Schwartz inequalities to the sums, we find:

‖𝐵𝑥‖2𝑌 6
4

𝜋2

∑︁
𝑚∈N

𝑚2𝑠
∑︁
𝑘∈N0

𝑘2(𝑠+1)̂︀𝑏2(︂𝑘,−1

2

)︂∑︁
𝑙∈N

𝑙−2(𝑠+1)̂︀𝑥2

(︂
𝑙,−1

2

)︂

·
∑︁
𝑘∈N0

∑︁
𝑙∈N

𝑘−2(𝑠+1)𝑙−2(𝑠+1)

⎛⎝ 1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑈𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

=
4

𝜋2
‖𝑏‖2

𝐻𝑠+1
𝑝

‖𝑥‖2
𝐻𝑠+1

𝑝

∑︁
𝑚∈N

𝑚2𝑠
∑︁
𝑘∈N0

∑︁
𝑙∈N

𝑘−2(𝑠+1)𝑙−2(𝑠+1)

·

⎛⎝ 1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑈𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

.

The integrals

1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑈𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏 =

𝜋∫︁
0

cos 𝑘𝜙 sin 𝑙𝜙 sin𝑚𝜙𝑑𝜙

=
1

4

⎛⎝ 𝜋∫︁
0

cos(𝑙 −𝑚 + 𝑘)𝜙𝑑𝜙 +

𝜋∫︁
0

cos(𝑙 −𝑚− 𝑘)𝜙𝑑𝜙

−
𝜙∫︁

0

cos(𝑙 + 𝑚 + 𝑘)𝜙𝑑𝜙−
𝜋∫︁

0

cos(𝑙 + 𝑚− 𝑘)𝜙𝑑𝜙

⎞⎠ ,

𝑘 ∈ N0, 𝑙,𝑚 ∈ N,

can be found explicitly:

𝜋∫︁
0

cos(𝑘 −𝑚 + 𝑙)𝜙𝑑𝜙 = 𝜋, 𝑚 ∈ N, 𝑙 = 1, 2, ..,𝑚, 𝑘 = 𝑚− 𝑙;

𝜋∫︁
0

cos(−𝑘 −𝑚 + 𝑙)𝜙𝑑𝜙 = 𝜋, 𝑚 ∈ N, 𝑙 = 𝑚,𝑚 + 1, . . . , 𝑘 = 𝑙 −𝑚;

𝜋∫︁
0

cos(−𝑘 + 𝑚 + 𝑙)𝜙𝑑𝜙 = 𝜋 𝑚, 𝑙 ∈ N, 𝑘 = 𝑚 + 𝑙;
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and vanish for other values of the indices 𝑘, 𝑙 and 𝑚. This is why estimate (5.4) becomes:

‖𝐵𝑥‖2𝑌 6
1

4
‖𝑏‖2

𝐻𝑠+1
𝑝

‖𝑥‖2
𝐻𝑠+1

𝑝

(︃∑︁
𝑚∈N

𝑚2𝑠

𝑚∑︁
𝑙=1

(𝑚− 𝑙)−2(𝑠+1)𝑙−2(𝑠+1)

+
∑︁
𝑚∈N

𝑚2𝑠

∞∑︁
𝑙=𝑚

(𝑚− 𝑙)−2(𝑠+1)𝑙−2(𝑠+1) +
∑︁
𝑚∈N

𝑚2𝑠
∑︁
𝑙∈N

(𝑚 + 𝑙)−2(𝑠+1)𝑙−2(𝑠+1)

)︃2

=
1

4
‖𝑏‖2

𝐻𝑠+1
𝑝

‖𝑥‖2
𝐻𝑠+1

𝑝

(︃
𝜋2

6
+
∑︁
𝑚∈N

𝑚−2
∑︁
𝑙∈N

𝑚2(𝑠+1)

(𝑚− 𝑙)2(𝑠+1)𝑙2(𝑠+1)

+
∑︁
𝑚∈N

𝑚−2
∑︁
𝑙∈N

𝑚2(𝑠+1)

(𝑚 + 𝑙)2(𝑠+1)𝑙2(𝑠+1)

)︃2

6
1

4
‖𝑏‖2

𝐻𝑠+1
𝑝

‖𝑥‖2
𝐻𝑠+1

𝑝

(︂
𝜋2

6
+ 22𝑠+1

∑︁
𝑚∈N

𝑚−2
∑︁
𝑙∈N

(𝑚− 𝑙)2(𝑠+1) + 𝑙2(𝑠+1)

(𝑚− 𝑙)2(𝑠+1)𝑙2(𝑠+1)

+
∑︁
𝑚∈N

𝑚−2
∑︁
𝑙∈N

(𝑚 + 𝑙)2(𝑠+1) − 𝑙2(𝑠+1)

(𝑚 + 𝑙)2(𝑠+1)𝑙2(𝑠+1)

)︃2

6
1

4
‖𝑏‖2

𝐻𝑠+1
𝑝

‖𝑥‖2
𝐻𝑠+1

𝑝

(︃
𝜋2

6
+ 22𝑠+1

∑︁
𝑚∈N

𝑚−2

(︃∑︁
𝑙∈N

𝑙−2(𝑠+1) +
∑︁
𝑙∈N

(𝑚− 𝑙)−2(𝑠+1)

)︃

+
∑︁
𝑚∈N

𝑚−2

(︃∑︁
𝑙∈N

𝑙−2(𝑠+1) −
∑︁
𝑙∈N

(𝑚 + 𝑙)−2(𝑠+1)

)︃)︃2

6
1

4
‖𝑏‖2

𝐻𝑠+1
𝑝

‖𝑥‖2
𝐻𝑠+1

𝑝

(︂
𝜋2

6
+ 22𝑠+1𝜋

2

6
(1 + 3𝜁(2𝑠 + 2)) +

𝜋2

6
𝜁(2𝑠 + 2)

)︂2

6
1

4
‖𝑏‖2

𝐻𝑠+1
𝑝

‖𝑥‖2
𝐻𝑠+1

𝑝

(︂
𝜋2

6
(1 + 22𝑠+1)(1 + 3𝜁(2𝑠 + 2))

)︂2

.

A final estimate for the second term in the right hand side of identity (5.2) reads as

‖𝐵𝑥‖𝑌 6 𝐶𝑏‖𝑏‖𝐻𝑠+1
𝑝

‖𝑥‖𝐻𝑠+1
𝑝

, 𝐶𝑏 =
𝜋2

12
(1 + 22𝑠+1)(1 + 3𝜁(2𝑠 + 2)).

In order to estimate the norm of the third term in the right hand side of identity (5.2) we
observe that the expansion

ℎ(𝑡, 𝜏) =
∑︁
𝑘∈N0

̂︀ℎ(︂𝑡, 𝑘,−1

2

)︂
𝑇𝑘(𝜏), (𝑡, 𝜏) ∈ (−1, 1)2,

allows us to represent 𝐺ℎ𝑥 as

𝐺ℎ𝑥(𝑡) =
∑︁
𝑙∈N

̂︀ℎ(𝑡, 𝑙,−1

2
)̂︀𝑥(︂𝑙,−1

2

)︂
, 𝑡 ∈ (−1, 1).

Now the square of the norm of the third term can be estimated as

‖𝐺ℎ𝑥‖2𝑌 =
4

𝜋2

∑︁
𝑚∈N

𝑚2𝑠

⎛⎝ 1∫︁
−1

𝑞(𝜏)
∑︁
𝑙∈N

̂︀ℎ(︂𝜏, 𝑙,−1

2

)︂ ̂︀𝑥(︂𝑙,−1

2

)︂
𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2



102 A.I. FEDOTOV

6
4

𝜋2

∑︁
𝑚∈N

𝑚2𝑠

⎛⎝∑︁
𝑙∈N

̂︀𝑥(︂𝑙,−1

2

)︂ ∑︁
𝑘∈N0

̂︀ℎ(︂𝑘,−1

2
, 𝑙,−1

2

)︂ 1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

6
4

𝜋2

∑︁
𝑚∈N

𝑚2𝑠
∑︁
𝑙∈N

𝑙2(𝑠+1)̂︀𝑥2

(︂
𝑙,−1

2

)︂∑︁
𝑙∈N

𝑙−2(𝑠+1)
∑︁
𝑘∈N0

𝑘2(𝑠+1)̂︀ℎ2

(︂
𝑘,−1

2
, 𝑙,−1

2

)︂

·
∑︁
𝑘∈N0

𝑘−2(𝑠+1)

⎛⎝ 1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

6
4

𝜋2
‖𝑥‖2

𝐻𝑠+1
𝑝

‖ℎ‖2
𝐻𝑠+1,𝑠+1

𝑝,𝑝

∑︁
𝑚∈N

∑︁
𝑘∈N0

𝑚2𝑠𝑘−2(𝑠+1)

⎛⎝ 1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

.

The integrals
1∫︁

−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑈𝑚(𝜏)𝑑𝜏, 𝑘 ∈ N0, 𝑚 ∈ N,

are equal to 𝜋
4

for 𝑚 = 1, 𝑘 = 0 and for 𝑚 ∈ N, 𝑘 = 𝑚−1 and they are equal to −𝜋
4

for 𝑚 ∈ N,
𝑘 = 𝑚 + 1. For other values of the indices they vanish and hence,

‖𝐺ℎ𝑥‖2𝑌 6
1

4
‖𝑥‖2

𝐻𝑠+1
𝑝

‖ℎ‖2
𝐻𝑠+1,𝑠+1

𝑝,𝑝

(︃
1 +

∑︁
𝑚∈N

𝑚2𝑠(𝑚− 1)−2(𝑠+1) +
∑︁
𝑚∈N

𝑚2𝑠(𝑚 + 1)−2(𝑠+1)

)︃2

6
1

4
‖𝑥‖2

𝐻𝑠+1
𝑝

‖ℎ‖2
𝐻𝑠+1,𝑠+1

𝑝,𝑝

(︃
1 +

∑︁
𝑚∈N

𝑚−2

(︂
𝑚

𝑚− 1

)︂2(𝑠+1)

+
∑︁
𝑚∈N

𝑚−2

(︂
𝑚

𝑚 + 1

)︂2(𝑠+1)
)︃2

6
1

4
‖𝑥‖2

𝐻𝑠+1
𝑝

‖ℎ‖2
𝐻𝑠+1,𝑠+1

𝑝,𝑝

(︂
1 +

𝜋2

6
22(𝑠+1) +

𝜋2

6

)︂2

6
1

4
‖𝑥‖2

𝐻𝑠+1
𝑝

‖ℎ‖2
𝐻𝑠+1,𝑠+1

𝑝,𝑝

(︂
𝜋2

3
(1 + 22𝑠+1)

)︂2

,

that is,

‖𝐺ℎ𝑥‖𝑌 6 𝐶ℎ‖𝑥‖𝐻𝑠+1
𝑝

‖ℎ‖𝐻𝑠+1,𝑠+1
𝑝,𝑝

, 𝐶ℎ =
𝜋2

6
(1 + 22𝑠+1).

Collecting the obtained estimates, we find that

‖𝑉 ‖𝑋→𝑌 6 𝐶𝑎‖𝑎‖𝐻𝑠+1
𝑝

+ 𝐶𝑏‖𝑏‖𝐻𝑠+1
𝑝

+ 𝐶ℎ‖ℎ‖𝐻𝑠+1,𝑠+1
𝑝,𝑝

,

and by Lemma 3.1, for all 𝑎, 𝑏 and ℎ such that

𝑢 = 𝐶𝑎‖𝑎‖𝐻𝑠+1
𝑝

+ 𝐶𝑏‖𝑏‖𝐻𝑠+1
𝑝

+ 𝐶ℎ‖ℎ‖𝐻𝑠+1,𝑠+1
𝑝,𝑝

< 1,

the operator
𝐾 = 𝐷 + 𝑉, 𝐾 : 𝑋 → 𝑌,

is invertible and the inverse operator 𝐾−1 is bounded:

‖𝐾−1‖𝑌→𝑋 6 (1 − 𝑢)−1.

The proof is complete.

The conditions ensuring the invertibility of the operator 𝐾 : 𝑋 → 𝑌 provided in Theorem 5.1
are only sufficient. Indeed, the class of problems (4.1), (4.2) with invertible operators is much
wider. Nevertheless, Theorem 5.1 is needed to be sure that the assumption on the invertibility
of the operators in Theorem 6.1 in the next section to be non-empty.
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6. Galerkin method

We fix 𝑛 ∈ N and we seek an approximate solution to problem (4.1), (4.2) as a polynomial

𝑥𝑛(𝑡) =
𝑛∑︁

𝑙=1

̂︀𝑥(︂𝑙,−1

2

)︂
𝑇𝑙(𝑡), 𝑡 ∈ (−1, 1).

We find the unknown coefficients {̂︀𝑥 (︀𝑙,−1
2

)︀
}𝑛𝑙=1 via the system of linear equations in the

Galerkin method:
⟨𝐾𝑥𝑛, 𝑈𝑚⟩𝐻𝑠

𝑞
= ⟨𝑦, 𝑈𝑚⟩𝐻𝑠

𝑞
, 𝑚 = 1, 2, . . . , 𝑛. (6.1)

Theorem 6.1. Assume that the operator 𝐾 : 𝑋 → 𝑌 in problem (4.1), (4.2) is invertible
and the inverse operator 𝐾−1 is bounded. Then for all 𝑛 ∈ N such that

𝑢𝑛 =‖𝐾−1‖𝑌→𝑋

(︂
1

4
‖𝑎‖𝐻𝑠+1

𝑝
(22(𝑠+1) + (22(𝑠+1) + 1)2𝜁(2𝑠 + 2))

+
1

2
‖𝑏‖𝐻𝑠+1

𝑝
(22(𝑠+1) + 1)𝜁(2𝑠 + 2) +

1

2
‖ℎ‖𝐻𝑠+1,𝑠+1

𝑝,𝑝
22(𝑠+1)

)︂
𝑛−1 < 1

system of equations (6.1) possesses a unique solution {̂︀𝑥* (︀𝑙,−1
2

)︀
}𝑛𝑙=1, and approximate solutions

𝑥*
𝑛(𝑡) =

𝑛∑︁
𝑙=1

̂︀𝑥*
(︂
𝑙,−1

2

)︂
𝑇𝑙(𝑡), 𝑡 ∈ (−1, 1),

converge to the exact solution 𝑥* = 𝐾−1𝑦 of problem (4.1), (4.2) in the norm of the space 𝑋
with the rate

‖𝑥* − 𝑥*
𝑛‖𝑋 6

‖𝐾−1‖𝑌→𝑋

1 − 𝑢𝑛

(𝐸𝑛(𝑦)𝑠𝑞 + 𝑢𝑛‖𝑦‖𝑌 ).

Proof. We fix 𝑛 ∈ N and by 𝑋𝑛 = span{𝑇𝑙}𝑛𝑙=1 we denote a subspace of the space 𝑋 of dimension
𝑛, while 𝑌𝑛 = span{𝑈𝑙}𝑛𝑙=1 is a subspace of space 𝑌 of dimension 𝑛. Now we can write system
of equations (6.1) in an operator form as

𝐾𝑛𝑥𝑛 = 𝑦𝑛, 𝐾𝑛 : 𝑋𝑛 → 𝑌𝑛, 𝐾𝑛 = 𝑄𝑛𝐾, 𝑦𝑛 = 𝑄𝑛𝑦.

Let us estimate how close the operators 𝐾 and 𝐾𝑛 are on 𝑋𝑛. In order to do this, we take an
arbitrary element 𝑥𝑛 ∈ 𝑋𝑛 and estimate the difference 𝐾𝑥𝑛−𝐾𝑛𝑥𝑛 in the norm of the space 𝑌

‖𝐾𝑥𝑛 −𝐾𝑛𝑥𝑛‖𝑌 =‖𝐾𝑥𝑛 −𝑄𝑛𝐾𝑥𝑛‖𝑌 (6.2)

6‖𝐴𝑥𝑛 −𝑄𝑛𝐴𝑥𝑛‖𝑌 + ‖𝐵𝑥𝑛 −𝑄𝑛𝐵𝑥𝑛‖𝑌 + ‖𝐺ℎ𝑥𝑛 −𝑄𝑛𝐺ℎ𝑥𝑛‖𝑌 .
For the first term in the right hand side in (6.2) we get:

‖𝐴𝑥𝑛 −𝑄𝑛𝐴𝑥𝑛‖2𝑌 =
∞∑︁

𝑚=𝑛+1

𝑚2𝑠̂︂𝑎𝑥𝑛
2

(︂
𝑚,

1

2

)︂

=
4

𝜋2

∞∑︁
𝑚=𝑛+1

𝑚2𝑠

⎛⎝ 1∫︁
−1

𝑞(𝜏)
∑︁
𝑘∈N0

∞∑︁
𝑙=1

̂︀𝑎(︂𝑘,−1

2

)︂ ̂︀𝑥𝑛

(︂
𝑙,−1

2

)︂
𝑇𝑘(𝜏)𝑇𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

=
4

𝜋2

∞∑︁
𝑚=𝑛+1

𝑚2𝑠

⎛⎝∑︁
𝑘∈N0

𝑛∑︁
𝑙=1

̂︀𝑎(︂𝑘,−1

2

)︂ ̂︀𝑥𝑛

(︂
𝑙,−1

2

)︂ 1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑇𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

.

Applying twice the Cauchy-Schwartz inequality to the sums as in the proof of Theorem 5.1 we
get

‖𝐴𝑥𝑛 −𝑄𝑛𝐴𝑥𝑛‖2 6
4

𝜋2
‖𝑎‖2

𝐻𝑠+1
𝑝

‖𝑥𝑛‖2𝐻𝑠+1
𝑝

(6.3)
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·
∞∑︁

𝑚=𝑛+1

∑︁
𝑘∈N0

𝑛∑︁
𝑙=1

𝑚2𝑠𝑘−2(𝑠+1)𝑙−2(𝑠+1)

⎛⎝ 1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑇𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

.

The integrals

1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑇𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏, 𝑘 ∈ N0, 𝑙 = 1, 2, . . . , 𝑛, 𝑚 = 𝑛 + 1, 𝑛 + 2, . . . ,

have been calculated in the proof of Theorem 5.1. They are equal to 𝜋
8

as

𝑚 =𝑛 + 1, 𝑛 + 2, . . . , 𝑙 = 1, 2, . . . , 𝑛, 𝑘 = 𝑚− 𝑙 − 1;

𝑚 =𝑛 + 1, 𝑙 = 𝑛, 𝑘 = 0;

𝑚 =𝑛 + 1, 𝑛 + 2, . . . , 𝑙 = 1, 2, . . . , 𝑛, 𝑘 = 𝑚 + 𝑙 − 1;

and to −𝜋
8

as

𝑚 =𝑛 + 1, 𝑛 + 2, . . . , 𝑙 = 1, 2, . . . , 𝑛, 𝑘 = 𝑚− 𝑙 + 1;

𝑚 =𝑛 + 1, 𝑛 + 2, . . . , 𝑙 = 1, 2, . . . , 𝑛, 𝑘 = 𝑚 + 𝑙 + 1.

For other values of the indices 𝑘, 𝑙 and 𝑚 these integrals vanish. Thus, estimate (6.3) becomes

‖𝐴𝑥𝑛 −𝑄𝑛𝐴𝑥𝑛‖2𝑌 6
1

16
‖𝑎‖2

𝐻𝑠+1
𝑝

‖𝑥𝑛‖2𝐻𝑠+1
𝑝

·

(︃
∞∑︁

𝑚=𝑛+1

𝑛∑︁
𝑙=1

𝑚2𝑠𝑙−2(𝑠+1)(𝑚− 𝑙 − 1)−2(𝑠+1) + (𝑛 + 1)2𝑠𝑛−2(𝑠+1)

+
∞∑︁

𝑚=𝑛+1

𝑛∑︁
𝑙=1

𝑚2𝑠𝑙−2(𝑠+1)(𝑚 + 𝑙 − 1)−2(𝑠+1)

+
∞∑︁

𝑚=𝑛+1

𝑛∑︁
𝑙=1

𝑚2𝑠𝑙−2(𝑠+1)(𝑚− 𝑙 + 1)−2(𝑠+1)

+
∞∑︁

𝑚=𝑛+1

𝑛∑︁
𝑙=1

𝑚2𝑠𝑙−2(𝑠+1)(𝑚 + 𝑙 + 1)−2(𝑠+1)

)︃2

6
1

16
‖𝑎‖2

𝐻𝑠+1
𝑝

‖𝑥𝑛‖2𝐻𝑠+1
𝑝

(︀
22(𝑠+1)(𝑛 + 1)−2

+
∞∑︁

𝑚=𝑛+1

𝑚−2

(︂
𝑚

𝑚− 1

)︂2(𝑠+1) 𝑛∑︁
𝑙=1

(𝑚− 1 + 𝑙 − 𝑙)2(𝑠+1)

𝑙2(𝑠+1)(𝑚− 𝑙 − 1)2(𝑠+1)

+
∞∑︁

𝑚=𝑛+1

𝑚−2

(︂
𝑚

𝑚− 1

)︂2(𝑠+1) 𝑛∑︁
𝑙=1

(𝑚− 1 + 𝑙 − 𝑙)2(𝑠+1)

𝑙2(𝑠+1)(𝑚 + 𝑙 − 1)2(𝑠+1)

+
∞∑︁

𝑚=𝑛+1

𝑚−2

(︂
𝑚

𝑚 + 1

)︂2(𝑠+1) 𝑛∑︁
𝑙=1

(𝑚 + 1 − 𝑙 + 𝑙)2(𝑠+1)

𝑙2(𝑠+1)(𝑚− 𝑙 + 1)2(𝑠+1)

+
∞∑︁

𝑚=𝑛+1

𝑚−2

(︂
𝑚

𝑚 + 1

)︂2(𝑠+1) 𝑛∑︁
𝑙=1

(𝑚 + 1 + 𝑙 − 𝑙)2(𝑠+1)

𝑙2(𝑠+1)(𝑚 + 𝑙 + 1)2(𝑠+1)

)︂2

6
1

16
‖𝑎‖2

𝐻𝑠+1
𝑝

‖𝑥𝑛‖2𝐻𝑠+1
𝑝

(︀
22(𝑠+1)(𝑛 + 1)−2



JUSTIFICATION OF GALERKIN AND COLLOCATIONS METHODS . . . 105

+ 24𝑠+3

∞∑︁
𝑚=𝑛+1

𝑚−2

(︃
𝑛∑︁

𝑙=1

𝑙−2(𝑠+1) +
𝑛∑︁

𝑙=1

(𝑚− 𝑙 − 1)−2(𝑠+1)

)︃

+ 22(𝑠+1)

∞∑︁
𝑚=𝑛+1

𝑚−2

(︃
𝑛∑︁

𝑙=1

𝑙−2(𝑠+1) −
𝑛∑︁

𝑙=1

(𝑚 + 𝑙 − 1)−2(𝑠+1)

)︃

+ 22(𝑠+1)

∞∑︁
𝑚=𝑛+1

𝑚−2

(︃
𝑛∑︁

𝑙=1

𝑙−2(𝑠+1) +
𝑛∑︁

𝑙=1

(𝑚− 𝑙 + 1)−2(𝑠+1)

)︃

+
∞∑︁

𝑚=𝑛+1

𝑚−2

(︃
𝑛∑︁

𝑙=1

𝑙−2(𝑠+1) −
𝑛∑︁

𝑙=1

(𝑚 + 𝑙 + 1)−2(𝑠+1)

)︃)︃2

6
1

16
‖𝑎‖2

𝐻𝑠+1
𝑝

‖𝑥𝑛‖2𝐻𝑠+1
𝑝

(︃
22(𝑠+1)(𝑛 + 1)−2 + 24(𝑠+1)𝜁(2𝑠 + 2)

∞∑︁
𝑚=𝑛+1

𝑚−2

+ 22𝑠+3𝜁(2𝑠 + 2)
∞∑︁

𝑚=𝑛+1

𝑚−2 + 𝜁(2𝑠 + 2)
∞∑︁

𝑚=𝑛+1

𝑚−2

)︃2

6
1

16
‖𝑎‖2

𝐻𝑠+1
𝑝

‖𝑥𝑛‖2𝐻𝑠+1
𝑝

(22(𝑠+1) + (22(𝑠+1) + 1)2𝜁(2𝑠 + 2))2𝑛−2.

Finally we have

‖𝐴𝑥𝑛 −𝑄𝑛𝐴𝑥𝑛‖𝑌 6
1

4
‖𝑎‖𝐻𝑠+1

𝑝
‖𝑥‖𝐻𝑠+1

𝑝
(22(𝑠+1) + (22(𝑠+1) + 1)2𝜁(𝑠2 + 2))𝑛−1.

We represent the square of the norm of the second term in the right hand side of identity (6.2)
as follows:

‖𝐵𝑥𝑛 −𝑄𝑛𝐵𝑥𝑛‖2𝑌 =
4

𝜋2

∞∑︁
𝑚=𝑛+1

𝑚2𝑠

⎛⎝ 1∫︁
−1

𝑞(𝜏)
∑︁
𝑘∈N0

𝑛∑︁
𝑙=1

̂︀𝑏(︂𝑘,−1

2

)︂ ̂︀𝑥𝑛

(︂
𝑙,−1

2

)︂
𝑇𝑘(𝜏)𝑈𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

=
4

𝜋2

∞∑︁
𝑚=𝑛+1

𝑚2𝑠

⎛⎝∑︁
𝑘∈N0

𝑛∑︁
𝑙=1

̂︀𝑏(︂𝑘,−1

2

)︂ ̂︀𝑥𝑛

(︂
𝑙,−1

2

)︂ 1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑈𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

.

Twice applying Cauchy-Schwartz inequality to the sums, we find:

‖𝐵𝑥𝑛 −𝑄𝑛𝐵𝑥𝑛‖2𝑌 6
4

𝜋2

∞∑︁
𝑚=𝑛+1

𝑚2𝑠
∑︁
𝑘∈N0

𝑘2(𝑠+1)̂︀𝑏2(︂𝑘,−1

2

)︂

·
𝑛∑︁

𝑙=1

𝑙2(𝑠+1)̂︀𝑥2
𝑛

(︂
𝑙,−1

2

)︂ ∑︁
𝑘∈N0

𝑛∑︁
𝑙=1

𝑘−2(𝑠+1)𝑙−2(𝑠+1)

·

⎛⎝ 1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑈𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

(6.4)

=
4

𝜋2
‖𝑏‖2

𝐻𝑠+1
𝑝

‖𝑥𝑛‖2𝐻𝑠+1
𝑝

∞∑︁
𝑚=𝑛+1

𝑚2𝑠
∑︁
𝑘∈N0

𝑛∑︁
𝑙=1

𝑘−2(𝑠+1)𝑙−2(𝑠+1)

·

⎛⎝ 1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑈𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

.
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The integrals

1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑈𝑙(𝜏)𝑈𝑚(𝜏)𝑑𝜏, 𝑘 ∈ N0, 𝑙 = 1, 2, . . . , 𝑛, 𝑚 = 𝑛 + 1, 𝑛 + 2, . . . ,

have been also calculated in the proof of Theorem 5.1. The are equal to 𝜋
4

as

𝑚 = 𝑛 + 1, 𝑛 + 2, . . . , 𝑙 = 1, 2, . . . , 𝑛, 𝑘 = 𝑚− 𝑙;

and to −𝜋
4

as
𝑚 = 𝑛 + 1, 𝑛 + 2, . . . , 𝑙 = 1, 2, . . . , 𝑛, 𝑘 = 𝑚 + 𝑙.

For other values of the indices 𝑘, 𝑙 and 𝑚 these integrals vanish. Thus, estimate (6.4) becomes

‖𝐵𝑥𝑛 −𝑄𝑛𝐵𝑥𝑛‖2𝑌 6
1

4
‖𝑏‖2

𝐻𝑠+1
𝑝

‖𝑥𝑛‖2𝐻𝑠+1
𝑝

(︃
∞∑︁

𝑚=𝑛+1

𝑚2𝑠

𝑛∑︁
𝑙=1

𝑙2(𝑠+1)(𝑚− 𝑙)−2(𝑠+1)

+
∑︁

𝑚=𝑛+1

𝑚2𝑠

𝑛∑︁
𝑙=1

𝑙−2(𝑠+1)(𝑚 + 𝑙)−2(𝑠+1)

)︃2

6
1

4
‖𝑏‖2

𝐻𝑠+1
𝑝

‖𝑥𝑛‖2𝐻𝑠+1
𝑝

(︃ ∑︁
𝑚=𝑛+1

𝑚−2

𝑛∑︁
𝑙=1

𝑚2(𝑠+1)

𝑙2(𝑠+1)(𝑚− 𝑙)2(𝑠+1)

+
∞∑︁

𝑚=𝑛+1

𝑚−2

𝑛∑︁
𝑙=1

𝑚2(𝑠+1)

𝑙2(𝑠+1)(𝑚 + 𝑙)2(𝑠+1)

)︃2

6
1

4
‖𝑏‖2

𝐻𝑠+1
𝑝

‖𝑥𝑛‖𝐻𝑠+1
𝑝

(︃
22𝑠+1

∞∑︁
𝑚=𝑛+1

𝑚−2

(︃
𝑛∑︁

𝑙=1

𝑙−2(𝑠+1) +
𝑛∑︁

𝑙=1

(𝑚− 𝑙)−2(𝑠+1)

)︃

+
∞∑︁

𝑚=𝑛+1

𝑚−2

(︃
𝑛∑︁

𝑙=1

𝑙−2(𝑠+1) −
𝑛∑︁

𝑙=1

(𝑚 + 𝑙)−2(𝑠+1)

)︃)︃2

6
1

4
‖𝑏‖2

𝐻𝑠+1
𝑝

‖𝑥𝑛‖2𝐻𝑠+1
𝑝

(22(𝑠+1))𝑛−1𝜁(2𝑠 + 2) + 𝑛−1𝜁(2𝑠 + 2))2

=
1

4
‖𝑏‖2

𝐻𝑠+1
𝑝

‖𝑥𝑛‖2𝐻𝑠+1
𝑝

(22(𝑠+1) + 1)2𝑛−2𝜁2(2𝑠 + 2).

We finally obtain:

‖𝐵𝑥𝑛 −𝑄𝑛𝐵𝑥𝑛‖𝑌 6
1

2
‖𝑏‖𝐻𝑠+1

𝑝
‖𝑥𝑛‖𝐻𝑠+1

𝑝
(22(𝑠+1) + 1)𝜁(2𝑠 + 2)𝑛−1.

In order to estimate the third term in the right hand side of (6.2) we note that the expansion

ℎ(𝑡, 𝜏) =
∑︁
𝑘∈N0

̂︀ℎ(︂𝑡, 𝑘,−1

2

)︂
𝑇𝑘(𝜏), (𝑡, 𝜏) ∈ (−1, 1)2,

allows us to represent the function 𝐺ℎ𝑥𝑛 as a double series

𝐺ℎ𝑥𝑛(𝑡) =
∑︁
𝑘∈N0

𝑛∑︁
𝑙=1

̂︀ℎ(︂𝑘,−1

2
, 𝑙,−1

2

)︂ ̂︀𝑥𝑛

(︂
𝑙,−1

2

)︂
𝑇𝑘(𝑡), 𝑡 ∈ (−1, 1).

Now the square of the norm of the third term in the right hand side of (6.2) can be estimated
as

‖𝐺ℎ𝑥𝑛−𝑄𝑛𝐺ℎ𝑥𝑛‖2𝑌 =
∞∑︁

𝑚=𝑛+1

𝑚2𝑠𝐺ℎ𝑥𝑛

2
(𝑚,

1

2
)
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=
4

𝜋2

∞∑︁
𝑚=𝑛+1

𝑚2𝑠

⎛⎝ 1∫︁
−1

𝑞(𝜏)
∑︁
𝑘∈N0

𝑛∑︁
𝑙=1

̂︀ℎ(︂𝑘,−1

2
, 𝑙,−1

2

)︂̂︁𝑥𝑛

(︂
𝑙,−1

2

)︂
𝑇𝑘(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

=
4

𝜋2

∞∑︁
𝑚=𝑛+1

𝑚2𝑠

⎛⎝∑︁
𝑘∈N0

𝑛∑︁
𝑙=1

̂︀ℎ(︂𝑘,−1

2
, 𝑙,−1

2

)︂̂︁𝑥𝑛

(︂
𝑙,−1

2

)︂ 1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

6
4

𝜋2

∞∑︁
𝑚=𝑛+1

𝑚2𝑠

𝑛∑︁
𝑙=1

𝑙2(𝑠+1)̂︁𝑥𝑛
2

(︂
𝑙,−1

2

)︂ 𝑛∑︁
𝑙=1

𝑙−2(𝑠+1)
∑︁
𝑘∈N0

𝑘2(𝑠+1)̂︀ℎ2

(︂
𝑘,−1

2
, 𝑙,−1

2

)︂

·
∑︁
𝑘∈N0

𝑘−2(𝑠+1)

⎛⎝ 1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

6
4

𝜋2
‖𝑥𝑛‖2𝐻𝑠+1

𝑝
‖ℎ‖2

𝐻𝑠+1,𝑠+1
𝑝,𝑝

∞∑︁
𝑚=𝑛+1

∑︁
𝑘∈N0

𝑚2𝑠𝑘−2(𝑠+1)

⎛⎝ 1∫︁
−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑈𝑚(𝜏)𝑑𝜏

⎞⎠2

.

The integrals
1∫︁

−1

𝑞(𝜏)𝑇𝑘(𝜏)𝑈𝑚(𝜏)𝑑𝜏, 𝑘 ∈ N0, 𝑚 = 𝑛 + 1, 𝑛 + 2, . . . ,

have been calculated in the proof of Theorem 5.1. They are equal to 𝜋
4

as 𝑚 = 𝑛+ 1, 𝑛+ 2, . . . ,
𝑘 = 𝑚 − 1, and to −𝜋

4
as 𝑚 = 𝑛 + 1, 𝑛 + 2, . . . , 𝑘 = 𝑚 + 1. For other values of the indices 𝑘

and 𝑚 they vanish. This is why

‖𝐺ℎ𝑥𝑛 −𝑄𝑛𝐺ℎ𝑥𝑛‖2𝑌 6
1

4
‖𝑥𝑛‖2𝐻𝑠+1

𝑝
‖ℎ‖2

𝐻𝑠+1,𝑠+1
𝑝,𝑝

(︃
∞∑︁

𝑚=𝑛+1

𝑚2𝑠(𝑚− 1)−2(𝑠+1)

+
∞∑︁

𝑚=𝑛+1

𝑚2𝑠(𝑚 + 1)−2(𝑠+1)

)︃2

6
1

4
‖𝑥𝑛‖2𝐻𝑠+1

𝑝
‖ℎ‖2

𝐻𝑠+1,𝑠+1
𝑝,𝑝

(︃
∞∑︁

𝑚=𝑛+1

𝑚−2

(︂
𝑚

𝑚− 1

)︂2(𝑠+1)

+
∞∑︁

𝑚=𝑛+1

𝑚−2

(︂
𝑚

𝑚 + 1

)︂2(𝑠+1)
)︃2

6
1

4
‖𝑥𝑛‖2𝐻𝑠+1

𝑝
‖ℎ‖2

𝐻𝑠+1,𝑠+1
𝑝,𝑝

(22(𝑠+1) + 1)2𝑛−2.

We finally have:

‖𝐺ℎ𝑥𝑛 −𝑄𝑛𝐺ℎ𝑥𝑛‖𝑌 6
1

2
‖ℎ‖𝑠+1,𝑠+1

𝐻𝑝,𝑝
‖𝑥𝑛‖𝐻𝑠+1

𝑝
(𝑠2(𝑠+1) + 1)𝑛−1.

Collecting the obtained estimates, we find:

‖𝐾𝑥𝑛 −𝐾𝑛𝑥𝑛‖𝑌 6

(︂
1

4
‖𝑎‖𝐻𝑠+1

𝑝
(22(𝑠+1) + (22(𝑠+1) + 1)2𝜁(2𝑠 + 2))

+
1

2
‖𝑏‖𝐻𝑠+1

𝑝
(22(𝑠+1) + 1)𝜁(2𝑠 + 2) +

1

2
‖ℎ‖𝐻𝑠+1,𝑠+1

𝑝,𝑝
(22(𝑠+1))

)︂
𝑛−1‖𝑥𝑛‖𝑋 .
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This means that as 𝑛 → ∞, the operators 𝐾𝑛 converge uniformly to the operator 𝐾 with the
estimate

‖𝐾 −𝐾𝑛‖𝑋𝑛→𝑌 6

(︂
1

4
‖𝑎‖𝐻𝑠+1

𝑝
(22(𝑠+1) + (22(𝑠+1) + 1)2𝜁(2𝑠 + 2))

+
1

2
‖𝑏‖𝐻𝑠+1

𝑝
(22(𝑠+1) + 1)𝜁(2𝑠 + 2) +

1

2
‖ℎ‖𝐻𝑠+1,𝑠+1

𝑝,𝑝
(22(𝑠+1))

)︂
𝑛−1.

By Lemma 3.2, for all 𝑛 such that

𝑢𝑛 =‖𝐾−1‖𝑌→𝑋

(︂
1

4
‖𝑎‖𝐻𝑠+1

𝑝
(22(𝑠+1) + (22(𝑠+1) + 1)2𝜁(2𝑠 + 2))

+
1

2
‖𝑏‖𝐻𝑠+1

𝑝
(22(𝑠+1) + 1)𝜁(2𝑠 + 2) +

1

2
‖ℎ‖𝐻𝑠+1,𝑠+1

𝑝,𝑝
(22(𝑠+1))

)︂
𝑛−1 < 1

system of equations (6.1) possesses a unique solution {̂︁𝑥𝑛
* (︀𝑙,−1

2

)︀
}𝑛𝑙=1 for each right hand side

𝑦𝑛 ∈ 𝑌𝑛 and the approximate solutions

𝑥*
𝑛(𝑡) =

𝑛∑︁
𝑙=1

̂︁𝑥𝑛
*
(︂
𝑙,−1

2

)︂
𝑇𝑙(𝑡), 𝑡 ∈ (−1, 1),

converge to the exact solution 𝑋* of problem (4.1), (4.2) with the estimate

‖𝑥* − 𝑥*
𝑛‖𝑋 6

‖𝐾−1‖𝑌→𝑋

1 − 𝑢𝑛

(𝐸𝑛(𝑦)𝑠𝑞 + 𝑢𝑛‖𝑦‖𝑌 ).

The proof is complete.

7. Collocation method

We again fix 𝑛 ∈ N. As in the Galerkin method, we seek an approximate solution to problem
(4.1), (4.2) as a partial sum of the Fourier series

𝑥𝑛(𝑡) =
𝑛∑︁

𝑙=1

̂︁𝑥𝑛

(︂
𝑙,−1

2

)︂
𝑇𝑙(𝑡), 𝑡 ∈ (−1, 1),

but now its coefficients {̂︁𝑥𝑛

(︀
𝑙,−1

2

)︀
}𝑛𝑙=1 are sought by the collocation method via the system of

equations

𝐾𝑥𝑛(𝑡𝑘) = 𝑦(𝑡𝑘), 𝑘 = 1, 2, . . . , 𝑛,

over nodes (2.4).
Denoting 𝑤 = 𝐾𝑥𝑛 − 𝑦, we can write the Galerkin method as the system of equations

2

𝜋

1∫︁
−1

𝑞(𝜏)𝑤(𝜏)𝑈𝑙(𝜏)𝑑𝜏 = 0, 𝑙 = 1, 2, . . . , 𝑛, (7.1)

while the collocation method is written as the system of equations

𝑤(𝑡𝑘) = 0, 𝑘 = 1, 2, . . . , 𝑛. (7.2)

We approximate integrals (7.1) by interpolating quadrature sums

2

𝜋

1∫︁
−1

𝑞(𝜏)𝑃𝑛𝑤(𝜏)𝑈𝑙(𝜏)𝑑𝜏 =
2

𝑛 + 1

𝑛∑︁
𝑘=1

𝑤(𝑡𝑘)𝑈𝑙(𝑡𝑘) sin2 𝜋𝑘

𝑛 + 1
, 𝑙 = 1, 2, . . . , 𝑛,
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and we denote by

𝑟𝑙 =
2

𝜋

1∫︁
−1

𝑞(𝜏)𝑤(𝜏)𝑈𝑙(𝜏)𝑑𝜏 − 2

𝑛 + 1

𝑛∑︁
𝑘=1

𝑤(𝑡𝑘)𝑈𝑙(𝑡𝑘) sin2 𝜋𝑘

𝑛 + 1
, 𝑙 = 1, 2, . . . , 𝑛,

the error terms of these quadrature sums. We form a polynomial

𝑅𝑛𝑤(𝑡) =
𝑛∑︁

𝑙=1

𝑟𝑙𝑈𝑙(𝑡), 𝑡 ∈ (−1, 1,

by the numbers {𝑟𝑙}𝑛𝑙=1. Now we write the system of equations for the Galerkin method for the
function 𝑤 −𝑅𝑛𝑤

2

𝜋

1∫︁
−1

𝑞(𝜏)(𝑤 −𝑅𝑛𝑤)(𝜏)𝑈𝑙(𝜏)𝑑𝜏 = 0, 𝑙 = 1, 2, . . . , 𝑛. (7.3)

We call system of equations (7.3) a modified Galerkin method for problem (4.1), (4.2).

Lemma 7.1. Collocation method (7.2) and modified Galerkin method (7.3) are equivalent
in the sense that identities (7.2) hold if and only if identities (7.3) hold.

Proof. We represent identities (7.3) as

2

𝜋

1∫︁
−1

𝑞(𝜏)(𝑤 −𝑅𝑛𝑤)(𝜏)𝑈𝑙(𝜏)𝑑𝜏 =
2

𝑛 + 1

𝑛∑︁
𝑘=1

𝑤(𝑡𝑘)𝑈𝑙(𝑡𝑘) sin2 𝜋𝑘

𝑛 + 1
, 𝑙 = 1, 2, . . . , 𝑛.

Now identities (7.3) are trivially implied by identities (7.2).
Suppose that identities (7.3) hold. The polynomials 𝑈𝑙, 𝑙 = 0, 1, . . . , 𝑛, are linearly inde-

pendent. Each of them is uniquely determined by its values at the points 𝑡𝑘, 𝑘 = 0, 1, . . . , 𝑛,
and this is why the vectors 𝑈𝑙(𝑡𝑘), 𝑘 = 0, 1, . . . , 𝑛, 𝑙 = 0, 1, . . . , 𝑛, form a linearly independent
system of vectors. This implies that the matrix (𝑈𝑙(𝑡𝑘))𝑛𝑙,𝑘=1 is non-degenerate and this is why
a homogeneous system of equations

𝑛∑︁
𝑘=1

𝑤(𝑡𝑘)𝑈𝑙(𝑡𝑘) sin2 𝜋𝑘

𝑛 + 1
= 0, 𝑙 = 1, 2, . . . , 𝑛,

has only the zero solution

𝑤(𝑡𝑘) sin2 𝜋𝑘

𝑛 + 1
= 0, 𝑘 = 1, 2, . . . , 𝑛.

Since

sin2 𝜋𝑘

𝑛 + 1
̸= 0, 𝑘 = 1, 2, . . . , 𝑛,

then

𝑤(𝑡𝑘) = 0, 𝑘 = 1, 2, . . . , 𝑛.

The proof is complete.

Theorem 7.1. Let the inverse operator 𝐾 : 𝑋 → 𝑌 of problem (4.1), (4.2) be invertible
and the inverse operator be bounded. Then for all 𝑛 ∈ N such that

𝑢𝑛 =
‖𝐾‖𝑋→𝑌 ‖𝐾−1‖𝑌→𝑋

1 − 𝑢𝑛

<
1

2
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the system of equations of the collocation method (7.2) has a unique solution {̂︁𝑥𝑛
* (︀𝑙,−1

2

)︀
}𝑛𝑙=1

and the approximate solutions

𝑥*
𝑛(𝑡) =

𝑛∑︁
𝑙=1

̂︁𝑥𝑛
*
(︂
𝑙,−1

2

)︂
𝑇𝑙(𝑡), 𝑡 ∈ (−1, 1),

converge to the exact solution 𝑥* of problem (4.1), (4.2) with the rate

‖𝑥* − 𝑥*
𝑛‖𝑋 6

2‖𝐾−1‖𝑌→𝑋

1 − 𝑢𝑛

(𝐸𝑛(𝑦)𝑠𝑞 + 𝑢𝑛‖𝑦‖𝑌 ).

Proof. Following Lemma 7.1, we write the system of equations of collocation method (7.2) as
system of equations (7.3) of a modified Galerkin method. Then, in operator form system of
equations (7.3) reads as 𝑄𝑛𝑤 = 𝑄𝑛𝑅𝑛𝑤. Making the inverse change 𝑤 = 𝐾𝑥𝑛 − 𝑦, we obtain
the equation

𝑄𝑛𝐾𝑥𝑛 = 𝑄𝑛(𝑦 + 𝑅𝑛𝑤)

of the Galerkin method for equation

𝐾𝑥 = 𝑦 + 𝑅𝑛𝑤. (7.4)

By Theorem 6.1, the operator 𝐾𝑛 = 𝑄𝑛𝐾 is invertible in the pair of spaces (𝑋𝑛, 𝑌𝑛) and the
error of the approximate solution 𝑥*

𝑛 of equation (7.4) in the Galerkin method, and hence, of
problem (4.1), (4.2) in the collocation method is estimated by the inequality

‖𝑥* − 𝑥*
𝑛‖𝑋 6

‖𝐾−1‖𝑌→𝑋

1 − 𝑢𝑛

(𝐸𝑛(𝑦 + 𝑅𝑛𝑤)𝑠𝑞 + 𝑢𝑛‖𝑦 + 𝑅𝑛𝑤‖𝑌 ), 𝑤 = 𝐾𝑥*
𝑛 − 𝑦. (7.5)

Since 𝑅𝑛𝑤 is a polynomial of degree at most 𝑛−1, then 𝐸(𝑦+𝑅𝑛𝑤)𝑠𝑞 = 𝐸𝑛(𝑦)𝑠𝑞. The coefficients
𝑟𝑙, 𝑙 = 1, 2, . . . , 𝑛, are the first 𝑛 Fourier coefficients of the function 𝑤 − 𝑃𝑛𝑤 and this is why
𝑅𝑛𝑤 = 𝑄𝑛(𝑤−𝑃𝑛𝑤). But 𝑃𝑛𝑤 = 0 and hence 𝑅𝑛𝑤 = 𝑄𝑛𝑤. Now estimate (7.5) can be written
as

‖𝑥* − 𝑥*
𝑛‖𝑋 6

‖𝐾−1‖𝑌→𝑋

1 − 𝑢𝑛

(𝐸𝑛(𝑦)𝑠𝑞 + 𝑢𝑛‖𝑦‖𝑌 ) +
‖𝐾−1‖𝑌→𝑋

1 − 𝑢𝑛

𝑢𝑛‖𝑄𝑛(𝐾𝑥*
𝑛 − 𝑦)‖𝑌

6
‖𝐾−1‖𝑌→𝑋

1 − 𝑢𝑛

(𝐸𝑛(𝑦)𝑠𝑞 + 𝑢𝑛‖𝑦‖𝑌 ) +
‖𝐾−1‖𝑌→𝑋

1 − 𝑢𝑛

𝑢𝑛‖𝐾‖𝑋→𝑌 ‖𝑥*
𝑛 − 𝑥*‖𝑋 .

For all 𝑛 such that

𝑢𝑛 =
‖𝐾−1‖𝑌→𝑋‖𝐾‖𝑋→𝑋

1 − 𝑢𝑛

<
1

2
,

we obtain the estimate

1

2
‖𝑥* − 𝑥*

𝑛‖𝑋 6
‖𝐾−1‖𝑌→𝑋

1 − 𝑢𝑛

(𝐸𝑛(𝑦)𝑠𝑞 + 𝑢𝑛‖𝑦‖𝑌 ).

Then we finally find

‖𝑥* − 𝑥*
𝑛‖𝑋 6

2‖𝐾−1‖𝑌→𝑋

1 − 𝑢𝑛

(𝐸𝑛(𝑦)𝑠𝑞 + 𝑢𝑛‖𝑦‖𝑌 ).

The proof is complete.
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