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JUSTIFICATION OF GALERKIN AND COLLOCATIONS
METHODS FOR ONE CLASS OF SINGULAR
INTEGRO-DIFFERENTIAL EQUATIONS ON INTERVAL

A.I. FEDOTOV

Abstract. We justify the Galerkin and collocations methods for one class of singular
integro-differential equations defined on the pair of the weighted Sobolev spaces. The
exact solution of the considered equation is approximated by the linear combinations of the
Chebyshev polynomials of the first kind. According to the Galerkin method, we equate the
Fourier coefficients with respect to the Chebyshev polynomials of the second kind in the
right-hand side and the left-hand side of the equation. According to collocations method,
we equate the values of the right-hand side and the left-hand side of the equation at the
nodes being the roots of the Chebyshev polynomials the second kind.

The choice of the first kind Chebyshev polynomials as coordinate functions is due to the
possibility to calculate explicitly the singular integrals with Cauchy kernel of the products
of these polynomials and corresponding weight functions. This allows us to construct simple
well converging methods for the wide class of singular integro-differential equations on the
interval (—1,1).

The Galerkin method is justified by the Gabdulkhaev—Kantorovich technique. The con-
vergence of collocations method is proved by the Arnold—Wendland technique as a conse-
quence of convergence of the Galerkin method. Thus, the covergence of both methods is
proved and effective estimates for the errors are obtained.
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1. INTRODUCTION

Considering the current state-of-art of the theory of approximate methods for solving singu-
lar integro-differential equations in the periodic and non-periodic cases, it can be stated that
while in the periodic case this theory is almost completed, in the non-periodic case one suc-
ceeded to obtain only particular results [1]-[6] for the first order equations. The reason for this
situation, in particular, is an essential difference between the properties of singular integrals
with the Hilbert and Cauchy kernels. And while in the periodic case the systems of orthogonal
trigonometric polynomials allow one to develop and justify simple computational schemes for
singular integro-differential equations of any order including a fractional one, see, for example,
[7], in the non-periodic case all computational schemes are constructed on the basis of two
well-known formulae for singular integrals of Chebyshev polynomials of the first and second
kind [8] and therefore, only problems of the first order are treated. An only exception is the
work by the author [9}[1_1 But in this work a lack in the theory of approximate methods for
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such equations also made us to introduce strict artificial restrictions for the coefficients of the
equations to ensure the convergence of the method.

In the present work, being a continuation of work [6], we justify the Galerkin method and
collocation method for singular integro-differential equations from a much wider class than
one considered in [6]. The justification of the Galerkin method is made by employing a
Gabdulkhaev-Kantorovich technique, see, for instance, [10]. The collocation method is jus-
tified as a corollary of the convergence of the Galerkin method by Arnold-Wendland approach
[T1]. We prove the convergence of both methods and obtain effective estimates for the errors.

2.  MAIN DEFINITIONS AND NOTAIONS

As usually, by IN we denote the set of natural numbers, INq is the set of the natural numbers
with the zero, and R is the set of real numbers. We denote by

p)=(1=£)2 )=~ te(-L1),
the weight functions corresponding to the Chebyshev polynomials of the first kind
Ti(t) = cos(l arccost), [ € Ny, te(—1,1),
and to the Chebyshev polynomials of the second kind

sin(l arccost)

Ul(t) = leN, te(—1,1).

sin(arccost) ’

We denote by H;“ the Sobolev space of order s+ 1 € R with a weight p, that is, the closure
of the set of polynomials {7 };en, with respect to the norm

1/2
1 [, leN
_ 2(5+1 - _ ) )
Hsﬂ_{Ejz (z 2)} , 1_{1’ o, (2.1)

1€Ng

||

1 1

70, ~5) = - /1 p(Pa(r)dr, 7 (z,—%) _ % /1 p(Pe(D)T(r)dr, L.

In the space H;“ we define a scalar product
~ 1\ - 1
<f7 g>H1§+1 = Z £2(S+1)f <l> _§> g (l, _§> ) fag € H;Jrl.
1eNg

Being equipped with the above scalar product, the space H;“ becomes a Hilbert one and norm
(2.1)) is expressed via the scalar product

@l = (@ ahggrrs @€ HIH.

We denote by H; the Sobolev space of order s € R with a weight ¢ , that is, the closure of
the set of polynomials{U;};cn with respect to the norm

N
Hy = {lesf <l, 5)} ; (2.2)
lelN

1

ﬂ(l%) = %/Q(T)y(T)Ul(T)dT, leN.

-1

Iyl
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In the space H; we also define a scalar product

(fs9)ms = les}?(l,%) §(l,%) : f.g€H;.

lelN

Being equipped with the above scalar product, the space H; becomes a Hilbert one, while norm
(2.2)) is expressed via this scalar product:

lyllas = /W, v)ug, vy € H;.

Hereafter we suppose that the condition s > 1/2 holds, under which (see, for instance, [12])
the space H; is embedded into the space of continuous functions, while the space H;’“ is
embedded into the space of the functions having a first continuous derivative.

We denote by HI‘;’;LS“ the space of the functions of two variables, which belong to the space
H;“ as functions of each variable uniformly in the second variable. For functions h € H;;LS“
we define

1
~ 1 2
h (m, 5,7) = - /p(t)h(t,T)Tm(t)dt, m € Ny, te(—1,1),
T
2

which a mth Fourier coefficient of the function A with respect to the first variable, and

1
~ 1 2
h (t,l, —§> =— /p(T)h(t,T)Tl(t)dT, [ € Ny, T € (-1,1),

™
-1

is [th Fourier coefficient of the function h with respect to the second variable and

ﬁ(m; 1 ) // h(t, 7)T}(7) T (t)drt,

(m,1) € (t,7) € (=1,1)%

s (m,l)th coefficient of the Fourier coefficient of the function h with respect to the both
variables. The norm in the space H3t"*™" is defined by the identity

~ 1 1
H;,_‘z;l’s-‘rl - { Z Z m2(5+1)l2(5+1)h2 (m7 57 l7 _5)} ) (23)

meNg [€INg

(NI

15

while the scalar product is defined by the identity

1
1 1 1 1\ |’

. 2(s+1)72(s+1) - i - =
<ngs+1s+1_{ E E m [ f(m,Q,l, 2>g(m,2,l, 2)} )

meNg [€Ng

Being equipped with the above scalar product, the space H}ffgl’sﬂ becomes a Hilbert one, while
norm ([2.3)) is expressed via this scalar product:

||hHHI§JZ§1»S+1 = <h, h>H;;21,s+1, h € H;,‘;LS-‘:-I'

We fix n € IN and we denote by

Yy t) = Zy(tk>£k(t)v te (_17 1)7
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an interpolation Lagrange polynomial of a function y € Hy over the nodes

t, = cos k=1,2,...,n. (2.4)

n+1
Here
fk (t) _ Un-i—lft) 7
(t = te)Uy, o ()
are fundamental polynomials corresponding to nodes .
We denote by

(1
c%mw=§jyci)w@x te(-1,1)
=1
a partial sum of Fourier series of a function y € H; over the system of polynomials {U,}en,
while £, (y); stands for the best approximation of this functions by the polynomials of order at
most n — 1 in the norm of the space H;. It is known that the best approximation of a function
in a Hilbert space is given by a partial sum of its Fourier series and hence,

En(y)y = lly — Quyl

HE» yEHZ;

3. AUXILIARY RESULTS

In this section we provide two lemmata needed in what follows. The proof of the first lemma
was given, for instance, in [I3], while the proof of the second lemma was provided in [10].

Lemma 3.1. Let D and V be linear operators acting from a Banach space X into a Banach
space Y. Assume that the operator D is invertible and the condition |V ||x_y||D7|yox < 1
15 satisfied. Then the operator D +V : X — Y 1is also invertible and the estimate

1D 'lyx

D+ V)! <
12+ VI vy S T s D s

holds true.

We again denote by X and Y some Banach space and let X, C X, Y, CY, n=1,2,..., be
their subspaces. We consider the equations

Kz =y, K: X—=>Y,
Koz, = yn, K, : X, —=Y,, n=12,...,
where K and K,, n =1,2,..., are linear bounded operators.

Lemma 3.2. Assume that the operator K : X — Y s invertible and the operators K,
n=1,2,..., converge uniformly to K:

|K — K,llx,»y — 0 as n — o0.
If dim X,, =dimY,,, n=1,2,..., then for all n satisfying the condition
un = [ K lysx [ K = Kallx, -y < 1,

approrimate equations possess unique solutions x) € X, for arbitrary right hand sides
Yn € Y, and the estimate

| Ky ox
1—u,

holds, where x* = K 'y is the exact solution of equation .

*

[l =2 llx < (ly = wally + unllylly)
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4.

FORMULATION OF PROBLEM

We consider a singular integro-differential equation

() + a(t)x(t) + b®) /p(T)x(T)dT

T—1

™
-1

with the condition

Here z is a sought function, while a, b, h and y are known functions.

+2 [ oot ra(rar = y(o),

-1

/ p(F)a(r)dr = 0.

€ (—1,1),

95

(4.1)

(4.2)

We assume that the

functions a and b belong to the space H;*l, the function h belongs to the space Hg;l’sﬂ,

while the function y belongs to the space H;.

Cauchy-Lebesgue principle value.

5.

We rewrite problem (4.1)), (4.2)

Kr=Dx+Vzx =y,
X = erS+1|/

Dux(t) = 2'(t),

Gha(t) = 2 / (Pt ) (r)dr,

™

Theorem 5.1. For all a,b € H3*' and h € H3TM*+ satisfying the condition

u=Cyllal

el

s+ Callh

ANALYSIS OF SOLVABILITY
as an operator equation:

K: X =Y,
=0,, Y =H],

Va(t) = Ax(t) + Bx(t) + Ghx(t),

€ (—1,1).

s+1,s+1 < 1
Hpap ’

The singular integral is treated in the sense of

te(-1,1),

2 2
C, = i (<(4s +4) + %(1 + 220y 4 %225 (2261 + 3¢(2s +2)) + 7¢(2s +2) + 1)> ,

2
Cp= (1 +22H)(14+3¢(25+2), Cp=

12

2
T2,

=> i
j=1

operator equation and hence, problem , are uniquely solvable for arbitrary right

hand side y € Y and the estimate

holds true.

1K lyox < (1 —u)™

Proof. First we are going to prove that the operator D : X — Y is invertible and the identities

|D||xsy =D yox =1
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hold true. Indeed, we take arbitrary z € X and y € Y and write them as Fourier series in the
corresponding spaces:

. 1 1
o0 =3 7 (1-3) 10, w0 =y (1;)00,  te 1
lEN lEN
In this case the equation
Dz =y, D:X =Y,

becomes an infinite system of equations

1 1
Zll,—= )=yl = leN
(D) =a(tl). ren

and its solution is the function
RPN 1
:Zl Y Z’E E(t)> tG(_Ll)'
lEN

An arbitrary choice of the element y € Y then implies the invertibility of the operator D : X —
Y.

Now we are going to calculate the norms of the operators D : X — Y and D! :Y — X.
For an arbitrary element x € X we have

R 1\\? 1)~ 1
Dl = S (13 (1-3) ) = S ees (1.-3) = k.
leEN leN

For an arbitrary element y € Y we find:

Iyl = e (177 (1 —)) =S (1) =ik

lelN lelN

This means that | D] x.y = |D 7 lyox = 1.
Let us estimate the norm of the operator V' : X — Y. We again take an arbitrary element

reX
w(t)=) 7 (z, —%> Ti(t), te(-1,1),

lelN

and apply the operator V' to this element:
Vo = Az + Bx + Gha. (5.2)

Let us estimate the norm in the space Y of each term in the right hand side of this identity.
For the first term we find that

_ 1

1Az])3 =llaz]

Z%m%m% /lq(f) PP (k; —%> 7 (z, —%) T (7T (r) U () 2

melN kelNg leN

=Dl DI (k ——) (1,—3) / Q)T T (7)Un(7)d7
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Applying twice the Cauchy-Schwartz inequality, we obtain:

4 S S S 1
HA'TH%/ g; Z m2 Z k,2( +1 (k’ __) ZZQ +1 (l _5)
meN kelNg lelN

1 2

. Z Zk_2(s+1)l_2(s+1) /q(T)Tk(T)Tl(T)U (1)dr

kelNg leIN
s § m2s § : § :]{Z 2(S+1l 2(s+1)

meN kelNgy leN
2

=l

/q(T)Tk(T)Tl(T)Um(T)dT

The integrals
1

/(](T)Tk(T)Tl(T)Um(T)dT, k € INo, [,m e N,
1
can be found explicitly. Indeed, making the change of the variables 7 = cos ¢, we get:
1 T
/q(T)Tk(T)Tl(T)Um(T)dT —/cos ke cos Ly sin mep sin odg

-1 0

1 ™ s
=3 /cos(k:—i—l—l—m—1)g0d<p+/cos(k:—|—l—m—|—1)<pdgo

0
by

—i—/cos(k:—l—i—m—l gpdg0+ cos(k — 1l —m+ 1)pdy

0
s

—/cos(k:—i—l—i—m—f—l gpdg@—/cos E+1l—m—1)pdp
0

0
7r

—/cos(k;—l+m+1)gpdgp—/cos(k—l—m—1)<pdg0 )
0

and this is why

as
m=23,..., [=12,...m—1, k=m-—1-1; m=1, [N, k=I;
m=23,..., l=m—-1m,..., k=Il+1—m
and

meN, €N, k=m+1-1; /q(T)Tk(T)Tl(T)Um(T)dT = —

-1

s
8
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as

meN, [=1,2,... m+1, k=m+1-—1
melN, I=m+1m+2,..., k=[l—-m-—1; m,leN, k=m+I1l+1.

For other values of the indices k, [ and m these integrals vanish. Thus, estimate (5.3) becomes

oo m—1
HAJ?HY ST6 Ha\ 3t Hl’| it (Z Z m25]~2(s+1) (#)72(‘94&) + Z [—4(s+1)
m=2 [=1 lelN
+ Z Z m2s1— 2s+1 —2(s+1) + Z Zm2sl 2(s+1) m+l ) 2(s+1)
m=2l=m—1 meN leIN
m+1
+ Z Zm%l 2(s+1) m+1 2(s+1) + Z Z m2sl— 2s+1 . 1) 2(s+1)
meN [=1 meN [=m+1
2
+sz281 2(s+1 m—l—l—i—l) S+1>
meN leIN
<—Mdﬁwmﬂiwdd%+4)
2s7—2(s+1) 1\ —2(s+1)
3 (e + S 10y
€
+sz25l 2(s+1) m—i—l ) 2(s+1)
meN [eN

2s7—2(s+1) o —2(s+1)
+ Z < + 1 2(s+1 + Zm l (ﬁ) )
+ Z ZmQSZ 2 s+1 m_|_ l + 1) s+1))

meN [eIN
<ol ol <<<4s A z S A i — 1) e
m=2 [elN
+ Z ZmQSl 2(s+1) m—i—l 1) 2(s+1) + + Z ZmQSl 2 s+1 — 1+ 1) 2(s+1)
melN [eN meN [eN
2
+ Z ZmQSl ) (m 4+ 1+1)" SH)) .
meN [eN

Let us estimate the expressions under the sum symbols via Hoélder inequality and triangle
inequality. The first estimate reads as

2

1 T
“AxH%/ <E||a| fq;+1 || Z;H <C(4s +4)+ (1+ 22(5’-5-1))E
oo 2(s+1) (s+1)
(M (m—=1-1+1)%
(@) Remaeee

2(s+1) (s+1)
—92 m ( — ]. + l — l)
+) m <m—1) %;Hsﬂ(mﬂ 1)26+D
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Y 2(5“)2 (m+1— [+ )26+
| 2 PO (m 4 1 = 1))

meN
N Z 2(s+1) Z (m+l+1— l)?(s—i—l) 2
—~ m + 1 [2(s+1) m+l+1)2(s+1) ’

The second estimate is of the form
im—Q m 2(s+1) Z ( —1—1+ l)2(s+1)
m— 1 126+ (m — [ — 1)2(s+1)
m=2 leEN _

< 22(s+1) Z m292s+1 (Zl 2(s+1) + 14+ Z - 1 (s+1))

m=2 IeEN m—1£lEN

< 2%t Z m=2(1 + 3¢(2s +2)) < 2435 . (1 +3¢(25 + 2)),

D M S (= 11— 1)t
m—1 l23+1 (m+1—1)26+D

meN

2
< 22<5+1>€§(23 +2).
The next estimates are

ZmiQ m 2s+1) m+1—l+l> (s+1)
mt 1 < T2+ (it 1 — )20

meN

<228+1Zm (Zl28+1 +1+ Z —l+1 (s+1))

melN leEN m-+1#£leN

2
< 228“%(1 +3¢(25 +2)),

and

Z » m 2(s+1) Z (m +l4+1— l)2(s+l)
m ———
m+ 1 S PO (m 4 14 1)

< 92(s+1) Z m=2 (Z l72(s+1) _ Z(m 41+ 1)2(s+1)>

meN lelN lelN
2
< 22<S+1>%§(25 +2).

We finally have:
[Az[ly < Callal

Hs+1||x| Hs+l (53)

C, = i (g(4s +4) + %2(1 + 2204y 4 ?225 (22TD(1 + 3¢(2s +2)) + 7¢(2s +2) + 1)) :

Since

e IEN
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the square of the norm of the second term in the right hand side of identity (5.2)) can be
represented as follows:

| Bz||2 :% > m* /lq(T) >3 (k; —%> T (z, —%) T (T U (T) Uy (7)dr

meN k€lNg leIN

2

2

DN DI <k —%) 7 (z, —%) ]Q(T)Tk(T)UZ(T)Um(T)dT

melN kelNg €N

Again applying twice the Cauchy-Schwartz inequalities to the sums, we find:

‘BxHY <_ Z m2s Z k2 s+1 (k __> Zl 2(s+1) 7 ( ’_%)

meN keNg leN
1 2
DD S /Q(T)Tk(T)Uz(T)Um(T)dT
kelNg leN )
4 ) s s
:F“b” s+1||IL'||Hs+1 Z m2 Z ZE 2( ‘H)l 2(s+1)
melN k€lNg leIN
1 2

/ ()T (FYUL(F) Ui (7)dr

o1
The integrals

™

1
/q(T)Tk(T)Ul<T)Um(T)dT = / cos ke sin lp sin mede
“1

[e=]

™ ™

1
=1 /cos(l —m+ k)pdp + /cos(l —m — k)pdyp

0
¢

—/cos(l+m+k<pdg0 /cosl—i—m k)pde |,
0 0

ke Ny, I,m e N,

can be found explicitly:

/cos(k—m—i—l)godgo:m melN, [=1,2,...m, k=m-—I;
0

™

/cos(—k—m+l)godg0:7r, meWN, l=mm+1,..., k=I01—m;
0

T

/cos(—k—l—m+l)gpdg0:7r m,l €N, k=m+1
0
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and vanish for other values of the indices k, [ and m. This is why estimate ({5.4)) becomes:

e (Z 2s Z (s+1)l—2(s+1)

meN

+Z 252 s+1l25+1+z ZSZm—i—l s+1125+1)>2

meN melN lelN

1Bz} < ||b|

e ()

2(s+1)

2 -9 m
Hyt! ( - Z m Z _ l)2(s+1)l2(s+1)

meN lE]N
2
m2(s+1)
T Z m- Z (m + 1)2C+D26+D)

1
=_1|p||2
71

bl

meN lelN
1 . B 2(s+1) + 12(s+1
Z||b| HS+1||:U| HH ( + 22 1 Z 22 —l (s+1)]2(s+1)
meN leN
2
. m+l) (s+1) —1 2(s+1)
+ Z m Z m 4 )26+ 20+
meN lelN
1 2
S (€ S (Zl 2e1) 4 Y — ) 2o )
meN leN leN
2
F3 (e )
melN lelN leN
1 2 i 25417 i ’
Z_JLHbH s+1||IL‘|H;+1 6 +2 6 (1+3C(28+2))+EC(28+2)
1 2 9541 2
<l el (G0 270 4 325 4 2))

A final estimate for the second term in the right hand side of identity (5.2)) reads as

71.2

at,  Ch= 12(1+228+1)(1+3c(2s+2)).

In order to estimate the norm of the third term in the right hand side of identity (5.2]) we
observe that the expansion

|Bx|ly < Cyl[b|

Hs+l H.CIZ"

= h (t k, — )Tk( ), (L) e(=L1)7

kelNg
allows us to represent Ghx as
1
E —— —= —1,1).
Ghx(t lemhtl (l, 2), te(—1,1)

Now the square of the norm of the third term can be estimated as

|th||y_ DI / %h(r,l, )f(l—%) U (7)dr

meN
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1 2
_4 N 1 ~ 11
<5 Z 1>z (l, ——) > h (k —5 b —5) / 4(7) T (7)Up(7)dT
leN kelNg el
4 2s 28+1 2(s+1) 2(s+1 1 1
—QZ > z-- SN k,—i,l,—§
me leN lelN kelNg
1 2
P [ 4O Un(ryr
€N 21
1 2
4 —2(s
<PH[BH s+1||h||Hs+1 1 Z Z m?s 2+ /q(T)Tk(T)Um(T)dT
meN k€Ng

—1

The integrals
1

/q(T)Tk<T)Um(T)dT, k € Ny, m € NN,

-1
are equal to 7 form =1, k = 0 and for m € N, k = m —1 and they are equal to —7 for m € N,
k =m + 1. For other values of the indices they vanish and hence,

2
1 s —2(s S —zls
|Gha|[3 <Z||$||§{;+1||h||§{;;1,3+1 (1 + Y m* (= 1) Y e (m + 1) +1))

meN meN
1 m ) 26D 2(s+1)\ 2
- 2 2 —9
<l {1432 m <_m " 1) e (m+ 1)
meN meN
Ly 2 T2 sty , T ’
gl_le’ H;“Hh‘ HLet (1 + EQ (s+1) + E

<Ll ]2 )
\4 Hg+1 H;:;l,s+l 3 ,

that is,
2

IGhally < Chll| priten, G = %(1 492ty
Collecting the obtained estimates, we find that
IVlixoy < Callallgses + Colbll s + Callhll e
and by Lemma [3.1] for all a, b and h such that
w = Cullall =1 + Colbll gz + ChllA

el

H;«;l,s«l»l < ]_,
the operator
K=D+YV, K: X =Y,
is invertible and the inverse operator K ! is bounded:
1K yox < (1 —u)™h

The proof is complete. n

The conditions ensuring the invertibility of the operator K : X — Y provided in Theorem
are only sufficient. Indeed, the class of problems (4.1]), (4.2) with invertible operators is much

wider. Nevertheless, Theorem is needed to be sure that the assumption on the invertibility
of the operators in Theorem [6.1] in the next section to be non-empty.
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6. GALERKIN METHOD

We fix n € IN and we seek an approximate solution to problem (4.1)), (4.2) as a polynomial

a(t) = i@ (z, —%) ),  te(=1,1).

=1

We find the unknown coefficients {Z (I, —1)}7, via the system of linear equations in the
Galerkin method:
(K2, Unn) s = (Y, Un) s, m=1,2...,n. (6.1)

Theorem 6.1. Assume that the operator K : X — Y in problem , 15 1nvertible
and the inverse operator K= is bounded. Then for all n € N such that

1
wy =Ky ox (ZHCLHH5“<22(S+1) + (2267 £ 1)2¢(25 4 2))

1 1
+ 51l e (207D £ 1)¢(25 + 2) + Slnl Hzp,sm?(s“)) nl<1

system of equations possesses a unique solution {T* (l, —%) ey, and approzimate solutions

2 (1) = zn:f (z, —%) @), te(—11),

1=1
converge to the exact solution x* = K1y of problem , in the norm of the space X
with the rate .
K ly-x

1—u,

*

[2" = 2nllx < (En(y)g + unllylly)-

Proof. We fixn € IN and by X,, = span{7;}}".; we denote a subspace of the space X of dimension
n, while Y,, = span{U,}}_; is a subspace of space Y of dimension n. Now we can write system
of equations (6.1)) in an operator form as

Knxn = Un, Kn : Xn — Yny Kn = QnK; Yn = Qny

Let us estimate how close the operators K and K,, are on X,,. In order to do this, we take an
arbitrary element z,, € X,, and estimate the difference Kz, — K,,z, in the norm of the space Y

| Kz, — Kpxnlly =Kz, — QuK x|y (6.2)
<Az, — QuAz,|ly + || Br, — QnBxy|ly + ||Ghay — QGhay||y.
For the first term in the right hand side in (6.2)) we get:

> _ 1
Az, — QnAan%/ = Z m28a$n2 (m7 _)

m=n-+1 2
40 ; % ' :
= 3 ot | o 3 357 (k) (g B
m=ntl S keNo I=1
1 2
4 . 2s = _~ 1 R 1
== 2 | 2 2 (k=g )a (l=g ) [T Un(r)dr
m=n+l k€N, =1

Applying twice the Cauchy-Schwartz inequality to the sums as in the proof of Theorem we
get

4
HAxn - QnAanQ <_2||a’
s

?{;H 0] ?q;“ (6.3)
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1 2

Y S S gy / AT Telr)To(r) U (7)dr

m=n+1 k‘EIN() =1 1

The integrals
1
/q(T)Tk<T)Tl(T)Um(T)dT, k € Ny, [=1,2,...,n, m=n+1n+2,...,
51

have been calculated in the proof of Theorem . They are equal to g as

m=n+1n+2,..., [=1,2,...,n, k=m-—1-—1;
m=n+ 1, l=n, k = 0;
m=n+1n+2,..., [=1,2,...,n, k=m+1-—1,;

and to —% as

m=n+1n+2,..., [=1,2,.... n, k=m-—1+1;
m=n+1n+2,..., [=1,2,...,n, k=m+1+1.
For other values of the indices k, [ and m these integrals vanish. Thus, estimate (6.3) becomes
1
16

. ( Z Zm2sl—2(s+1)(m R 1)—2(s+1) + (TL + 1)2sn—2(s+1)

m=n+1 [=1

lal

?‘I;H ||xn| ?_I;+1

+ Z Z m25l—2(s+1)(m 41— 1)—2(s+1)

m=n+1 [=1

+ Z Zm2sl—2(s+1)(m — I+ 1)—2(s+1)

m=n+1 [=1

9] n 2
+ Z Zm2sl—2(s+1)(m+l+1)—2(s+1)>

m=n+1 [=1

1 2 2(s+1 -2
éEHa\ H;+1 (2 (s+ )(n+ 1)

% L m 2(s+1) n (m 14— l>2(s+1)
+ Z m m—1 ; l2(3+1)(m S 1)2(s+1)

N > L m \ 2D 2 (m— 141 —1)2s+1)
m S —
E : m—1 ;_:1 26D (m 4 [ — 1)26+D)

o0 2(s+1) n . 2(s+1)
_ m (m+1—101+1)
£ 3w

?{;H ||

1 m—+1 — 12(5+1)(m — 1+ 1)2(s+1)
m -
m=nt1 m+1 £ 24D (m [ 4 1)26+D

1 2 2 2(s+1 —2
gﬁ”a‘ H;+1”xn| T (2 et )(TL+ 1)
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_|_24s+3 io: m- (Zl 2(s+1) +Z _l_l S+1)>

m=n-+1
4 92(s+1) Z m=2 (Z ]2+ Z(m 41— 1)2(s+1)>
m=n+1 = =1
+ 22(s+1) Z m—2 (Zl 2(s+1) + Z —1 + 1 s—‘,—l))
m=n-+1 =1
00 n n 2
£y (D-M—z<m+l+1>‘2“*”>>
m=n-+1 =1 =1
<E”(l‘ ?{5"'1 ||l’n| ?154—1 (22(S+1)(n + 1)_2 + 24(S+I)C(28 + 2) Z m_2
m=n+1

o oo 2
+ 2253¢(25 + 2) Z m=2 + ((25 4 2) Z m_2>

m=n+1 m=n-+1
1
||a||Hs+1 e (224D 4 (2267 + 1)%((25 + 2))*n 2
Finally we have

1
HAxn - QnAanY < Z”a‘

o 2l (22070 4 (226F0 1192 (52 + 2))n

We represent the square of the norm of the second term in the right hand side of identity (6.2)

as follows:

2
[

1B, ~ QuBral == 3 m /1q D330 <k —-) o (1, —%) To(7) Ui (7)Une(7)dr

m=n-+1 el kelNg =1

D D33 (I EN (Y / ATV Un(1)d7

m=n-+1 kelNg 1=1

Twice applying Cauchy-Schwartz inequality to the sums, we find:

y/— 1
_ 2 2s 2(s+1)72 _
B~ QuBall <25 30w 0 £ (k-5 )
m=n+1 keNg
212 s+1 (l __) Z Zk S+1)l 2(s+1)
kelNy I=1
1 2

/ q(7) Tk (T)U(T)Upp (T)dT (6.4)

—1

4 S R
:ﬁHbH?{;HHan?{;ﬂ Z m? Z ZE 2(s+1) = 2(s+1)

m=n+1 k€lNg =1
1 2

/ ()T U (F) U ()

—1
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The integrals
1

/q(T)Tk(T)Ul(T)Um(T)dT, EkelNg, (=1,2,....n, m=n+1n+2 ...,

~1
have been also calculated in the proof of Theorem The are equal to 7 as

[=1,2,....n, k=m—1

m=n+1n+2,...,

and to —7 as
m=n+1n+2,..., [=1,2,...,n, k=m-+1.
For other values of the indices k, [ and m these integrals vanish. Thus, estimate (6.4)) becomes
1 2N s (s
||Bl’n — QnBl'n“%/ <Z—1||b||?{;+1||l‘n||§{;+1 ( Z m2 ZZQ( +1)(m — l) 2(s+1)
m=n+1 =1

n 2
+ Z mQSZl_2(S+1)(m+ l)—2(s+1))

m=n+1 =1
1 ) ) . 2(s+1)
S P N e S Zlm) — 7
m=n+1

2(s+1)
T Z Zl?(s—‘rl m+l (s+1)>

m=n+1
1
gZHb’?{S“Hxn‘Hgﬂ <225+1 Z m- (Zl 2(S+1)+Z s+1)>
m=n+1
0 2
+ Z m~ <Zl 2(s+1) Z(m+l) s+1)>>
m=n+1 =1
1
_Hb’ s+1 H‘rn‘ 541 (22(s+1))n_1 (28 + 2) + n_1C(25 + 2))
NPl ;
1
s+1 || Ln || gs+1 n- s .
Bl | g2 (22670 + 1) 72C%(25 + 2)

We finally obtain:
ps (220D £ 1)¢(25 + 207!

1
[1B2n = @uBally < 5l10] g+ llzn]

In order to estimate the third term in the right hand side of (6.2)) we note that the expansion

= h (t k, = )Tk( ), (L) e(=L1)7

kelNg
allows us to represent the function Ghz, as a double series
1\ . 1
Ghan(t) = ) Zh ( —5> Tn (z, —§> Ti(t),  te(=1,1).

kelNg =1
Now the square of the norm of the third term in the right hand side of (6.2) can be estimated

as

00 ., 1
h n—&n h n 5 = 2 h n A
|Ghx,—Q,Ghx,||y Z m**Ghx (m,z)

m=n+1
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2

4 i e / 33 Zh ( _;> T (z, _%> T (1)U (7)dr

m=n+1 kelNp =1
1 2
—ii Ziﬁ R (T)T(7)Upn (7)d
2 9 Ty Ln "9 q\T)LE\T)Um(T)aT
kelNog =1 _
i i zszn:l2 s+1 <l __) Zl 2(s+1) Z k2(5+1 <k: _l l _1>
2 2772
=n+1 = k€lNg
1 2
Y w0 | [ aminanan
kelNg —1
1 2
4 = ol
<§H$n| ?1;+1||h||§{;4;1,s+1 Z Z m2 2T /q(T)Tk(T)Um(T)dT
' m=n+1 k€lNg 1

The integrals
1

/q(T)Tk(T)Um(T)dT, EelNog, m=n+1,n+2,...,
-1
have been calculated in the proof of Theorem . They are equal to T asm=n+1,n+2,...,

k=m—1and to —F asm =n+1,n+2,..., k =m+ 1. For other values of the indices k
and m they vanish. This is why

1
Hthn - QnthnH?/ gz_l”x”‘ i]{;*l “h’

[e.e]
2 E 2 —2 1
Hs+1,5+1 < m 5(7” - 1) (S+ )
p,p

m=n+1

0o 2
+ Z m25(m+1>2(s+1)>

m=n+1

1 i m 2(s+1)
<ZLHZUnH s+1||h||Hs+1é+1 Z m=2 <m)

m=n+1

2(s+1)\ 2
m
o> (7))

m=n-+1

1
<Z|’x"| ?q;ﬂ 17 Z;;LSH(QQ(SH) +1)*n7%

We finally have:

1
|Gh = QuGhially < SRS g (247D + 1)

Collecting the obtained estimates, we find:

1
| K2, — Korally < (z||a| et (204D (2260 112 (25 4 2)

1 . 1 s .
Sl (22650 +1)C(25 +2) + Sl ggnens (2 “))) 7 aallx.
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This means that as n — oo, the operators K, converge uniformly to the operator K with the
estimate

1
||K — Kn”Xn—>Y < (Z||a| H3* (22(8-1—1) + (22(s+1) + 1)25(23 + 2))

1 ) 1 ) _
+ 51Ibl s (2207 £ 1)¢(2s +2) + Sl17l gzttt (2% +1>)) n.

By Lemma [3.2] for all n such that

1
wn =Ky o x (Zl\aHH;H(ﬂS“) + (226D £ 1)2¢(25 4 2))

1 S 1 S -
+ §||b| H;+1(22( 4 1)((2s+2) + §||h| H;;l,s+1(22( +1))> n <1

system of equations 1} possesses a unique solution {z," (l , —%)}?:1 for each right hand side
Yyn € Y, and the approximate solutions

n

50 =37 (1-5) T € (L),

=1

converge to the exact solution X* of problem (4.1]), (4.2) with the estimate

K ly—x

1—u,

*

[2" = wpllx < (En(y)g + unllylly)-

The proof is complete. O

7. COLLOCATION METHOD

We again fix n € IN. As in the Galerkin method, we seek an approximate solution to problem

(4.1)), (4.2) as a partial sum of the Fourier series
o 1

="z (1. -2 )10, te(-1,1),

() =35 (1) T, e (1)

but now its coefficients {z,, (l , —%)}?:1 are sought by the collocation method via the system of
equations

K$n(tk) = y(tk), k= 1,2, e, n,

over nodes ([2.4)).
Denoting w = Kz, — y, we can write the Galerkin method as the system of equations
1
2
- /q(T)w(T)Ul(T)dT =0, [=1,2,...,n, (7.1)
™

~1
while the collocation method is written as the system of equations

w(ty) =0, k=1,2,...,n. (7.2)
We approximate integrals (7.1)) by interpolating quadrature sums

1
n

> w(ty)Ui(ty,) sin® -

k=1

% / o(7) (1) Uy()dr =

-1

Tk
+1’

[=1,2,...,n,
n—+1 "



JUSTIFICATION OF GALERKIN AND COLLOCATIONS METHODS ... 109

and we denote by

1 n

2 .o Tk
T = _/q<T)W(T>Ul(T)dT - n——|—1 ;U)(tkﬂjl(tk) Sll’12 n + 1’ [ = 1727 <oy Ty

s
-1

the error terms of these quadrature sums. We form a polynomial

n

Rnw(t) :ZTlUl(t), t e (—1,1,

=1

by the numbers {r;}]",. Now we write the system of equations for the Galerkin method for the
function w — R,,w

%/q(T)(w CRaw)(nUi(r)dr =0, 1=12....n. (7.3)

We call system of equations ([7.3|) a modified Galerkin method for problem (4.1)), (4.2).

Lemma 7.1. Collocation method and modified Galerkin method are equivalent
in the sense that identities hold if and only if identities hold.

Proof. We represent identities (7.3) as

1
n

2 / 4(7) (w0 — Ryw)()Uy(r)dr =

-1
Now identities are trivially implied by identities .

Suppose that identities hold. The polynomials U;, [ = 0,1,...,n, are linearly inde-
pendent. Each of them is uniquely determined by its values at the points tx, £ = 0,1,...,n,
and this is why the vectors Uj(ty), k = 0,1,...,n, 1 =0,1,...,n, form a linearly independent
system of vectors. This implies that the matrix (U;(t))}'—; is non-degenerate and this is why
a homogeneous system of equations

2

n+1k:1

k
w(ty) Uy () sin? — =1,2,....n.
n

+1’

n

k
w(ty) Uy (t) sin? =0, [=1,2,...,n,
2; (t)Uiltn) sin” 2=

has only the zero solution

Since

then
U)(tk):(), k:1,2,...,n.

The proof is complete. 0

Theorem 7.1. Let the inverse operator K : X — Y of problem , be invertible
and the inverse operator be bounded. Then for all n € N such that
[K[[xov K ysx 1

n — <
Y 1—u, 2
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the system of equations of the collocation method has a unique solution {T," (l, —%)}1"21
and the approximate solutions

s =Y 5 (1-3) 10, e -1,

=1

converge to the exact solution x* of problem , with the rate

< 2By ox

Tl < T
n

[l (En(y)g + unllylly)-

Proof. Following Lemma , we write the system of equations of collocation method ([7.2)) as
system of equations ((7.3) of a modified Galerkin method. Then, in operator form system of
equations (|7.3)) reads as Q,w = @, R,w. Making the inverse change w = Kz, — y, we obtain
the equation

of the Galerkin method for equation
Kz =y+ R,w. (7.4)

By Theorem [6.1] the operator K,, = @, K is invertible in the pair of spaces (X,,Y,) and the
error of the approximate solution z¥ of equation (7.4 in the Galerkin method, and hence, of
problem (4.1)), (4.2) in the collocation method is estimated by the inequality

*

ot sl < VX g 4 Ry by ¢ Baly), w=Kay -y (75)
Since R,w is a polynomial of degree at most n—1, then E(y+ R,w); = E,(y);. The coefficients
r;, | = 1,2,...,n, are the first n Fourier coefficients of the function w — P,w and this is why

R,w = Q,(w— P,w). But P,w = 0 and hence R,w = Q,w. Now estimate ([7.5)) can be written
as

. <||K71||Y—>X E ()" 1K lyox Kot —
2" — a7 || x \T( n(y)qﬂLunHyHY)ﬂLﬁunHQn( z, — Y)lly
K ly—x ] K Hlyox -
S (Eay) +wallylly) + T | K xoy e = 2x

For all n such that

. — o x I xx L
1—wu, 2
we obtain the estimate
]- * * HK_1||Y—>X S
gl —azallx < ﬁ(En(y)q + unlylly)-
Then we finally find
- 2| K ly—x s
o = 3l < T2 ) 4wl

The proof is complete. O
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