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HYPERBOLIC DIFFERENTIAL-DIFFERENCE EQUATIONS

WITH NONLOCAL POTENTIALS

N.V. ZAITSEVA

Abstract. We consider a three-parametric set of solutions for a two-dimensional hyperbolic
differential-difference equation in a half-plane containing the sum of a differential operator
and shift operators with respect to a spatial variable ranging on the entire real axis (or a
differential-difference equation with nonlocal potentials). All shifts in potentials with respect
to the spatial variable are arbitrary real numbers and no commensurability is assumed. This
is the most general case.

Nowadays, elliptic and parabolic functional-differential equations, and, in particular,
differential-difference equations, are studied well enough. The aim of this work is to inves-
tigate hyperbolic differential-difference equations with shift operators in the space variable,
which, as far as we know, have not been studied previously. The nature of the physical
problems leading to such equations is fundamentally different from the problems for the
classical equations of mathematical physics. To construct solutions, we employ a classical
operation scheme is used, according to which the direct and then the inverse Fourier trans-
forms are formally applied to the equation. However, if in the classical case the application
of the Fourier transform leads to the study of polynomials with respect to the dual variable,
in our case, due to the fact that in the Fourier images a shift operator is a multiplier, the
symbol of the differential-difference operator is no longer a polynomial, but a combination of
a power function and trigonometric functions with incommensurable arguments. This gives
rise to computational difficulties and completely different effects in the solution. Generally
speaking, this scheme leads to solutions in the sense of generalized functions. However, in
this case it is possible to prove that the obtained solutions are classical.

We prove a theorem that if the real part of the symbol of the differential-difference opera-
tor in the spatial variable involved in the equation is positive, then the constructed solutions
are classical. Classes of equations for which this condition is satisfied are given. We obtain
the relations for the coefficients and shifts in the equation ensuring the required positivity
for the real part of the symbol of the differential-difference operator in the equation.

Keywords: hyperbolic equation, differential-difference equation, incommensurable shifts,
classical solution.

Mathematics Subject Classification: 35R10, 35L10

1. Introduction

First a differential-difference equation appeared in a work by J. Bernoulli [1] in the prob-
lem on a tight massless of a finite length, along which equal and equally-spaced masses are
distributed. The equation he considered then arose while developing the sound theory and
attracted the attention of many other mathematicians, see, for instance [2] and the references
therein. Book [3] provides a rich content on the theory of linear differential-difference equations
with constant coefficients arising often in the theory of automatic control. In book [4], the
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theory of linear differential-difference equations with varying coefficients is presented in details
and a lot of attention is paid to an asymptotic behavior of solutions and to the stability theory.
The study of problems in mechanics of continuum media lead the researchers to considering

partial differential-difference equations. At present, problems for such equations in bounded do-
mains are rather well studied, see, for instance, [5]–[10] and the references therein. In unbounded
domains, problems for parabolic [11] and elliptic differential-difference equations [12]–[16] were
studied in details. In particular, works [14], [15] were devoted to strongly elliptic equations with
nonlocal potentials in one of spatial variables arising in models of nonlinear optics. Hyperbolic
differential-difference equations were earlier studied for the case, when the shift operators in the
equation acts in the time [17]. In works [18]–[20] there were considered hyperbolic differential-
difference equations involving superpositions of differential operators and the shift operator in
the spatial variable.
Let 𝑎, 𝑏𝑘, ℎ𝑘, 𝑘 = 1, 𝑛, be given real number. In the half-plane (𝑥, 𝑡) ∈ R1 × (0,+∞) we

consider a hyperbolic equation involving the sum of a differential operator and shift operators
along the spatial variable

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
= 𝐿𝑢

def
= 𝑎2

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
−

𝑛∑︁
𝑘=1

𝑏𝑘𝑢(𝑥− ℎ𝑘, 𝑡), (1.1)

and according the terminology of [3], we call it differential-difference equation. All shifts ℎ𝑘,
𝑘 = 1, 𝑛, in the equation are arbitrary quantities.
There are well-known problems in mathematical physics giving rise to classical partial dif-

ferential equations involving, apart of the derivatives, the unknown function or a potential.
An example is the equation of small oscillations of a heavy homogeneous filament with a fixed
upper end-point near its vertical equilibirum. When studying electric oscillations in wires, the
current equation (or the voltage equation) contains an unknown function, if one does not neglect
the losses (leakage) through the insulation of the wires and the magnitude of the resistance.
The propagation of electrical oscillations is described by telegraph equations. It is possible to
introduce acoustic analogs of resistance and leakage, the friction of the gas against the vessel
walls and the porosity of the medium, respectively, and obtain hyperbolic equations with the
classical potential.
The solutions of a hyperbolic equation

𝑢𝑡𝑡 − 𝑎2𝑢𝑥𝑥 + 𝑐 𝑢 = 0,

in which the phase velocity of harmonic waves depends on the frequency, that is, the wave
dispersion is described, arise as 𝑐 ̸= 0.
The diffusion process of an unstable gas (diffusion with decay) leads to the equation

𝑢𝑡 = 𝑎2△𝑢+ 𝛽 𝑢,

where 𝛽 < 0 is a characteristics of a material. Diffusion processes under the presence of chain
reactions (for example, the process of neutron multiplication) are of great interest; the study
of therse processes lead one to the equation

𝑢𝑡 = 𝑎2△𝑢+ 𝛽 𝑢,

where 𝛽 > 0 (diffusion with propagation).
The study of steady-state vibrations (mechanical, acoustic, electromagnetic, etc.) leads to

the wave equation
△𝑢+ 𝑐 𝑢 = 0,

where 𝑐 > 0. Moreover, there are many problems on steady oscillations in an inhomogeneous
media, which are problems in the diffraction theory.
In considered equation (1.1) the potentials are nonlocal since all real shifts ℎ𝑘, 𝑘 = 1, 𝑛, are

not infinitesimal and can be arbitrary large. We note that the shift operator is not relatively
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bounded with respect to the differential operator. Equation (1.1) relates the value of the
sought function 𝑢 at (𝑛+1) different points in the half-plane (𝑥, 𝑡) ∈ R1 × (0,+∞), and this is
the principal difference between differential-difference equations and the classical equations in
mathematical physics.
The real part of the symbol of the differential-difference operator 𝐿 is of form

Re𝐿(𝜉) = −𝑎2𝜉2 −
𝑛∑︁

𝑘=1

𝑏𝑘 cos (ℎ𝑘𝜉).

The operator −𝐿(𝜉) is called positive if −Re𝐿(𝜉) > 0 for each 𝜉 ∈ R1, i.e., if the inequality

𝑎2𝜉2 +
𝑛∑︁

𝑘=1

𝑏𝑘 cos (ℎ𝑘𝜉) > 0 (1.2)

holds. In what follows we assume that the operator −𝐿(𝜉) is positive.

Definition 1.1. A function 𝑢(𝑥, 𝑡) is called a classical solution of equation (1.1) if at each
point of the half-plane (𝑥, 𝑡) ∈ R1× (0,+∞) there exist classical derivatives 𝑢𝑡𝑡 and 𝑢𝑥𝑥 defined
in terms of the limits of the quotients of finite differences and at each point relation (1.1) is
satisfied.

2. Construction of solutions

In order to find solutions of equation (1.1), we employ a classical Gelfand-Shilov operation
scheme [21, Sect. 10], according to which we apply the Fourier transform 𝐹𝑥 to identity (1.1)
and then for the function ̂︀𝑢(𝜉, 𝑡) = 𝐹𝑥[𝑢](𝜉, 𝑡) we get an ordinary differential equation

𝑑2̂︀𝑢(𝜉, 𝑡)
𝑑𝑡2

= −

(︃
𝑎2𝜉2 +

𝑛∑︁
𝑘=1

𝑏𝑘𝑒
𝑖ℎ𝑘𝜉

)︃̂︀𝑢(𝜉, 𝑡), 𝜉 ∈ (−∞,+∞). (2.1)

Its characteristic equation has the roots

𝑘1,2 = ± 𝑖

⎯⎸⎸⎷𝑎2𝜉2 +
𝑛∑︁

𝑘=1

𝑏𝑘𝑒𝑖ℎ𝑘𝜉 = ± 𝑖𝜌(𝜉)𝑒𝑖 𝜙(𝜉),

where

𝜌(𝜉) :=

⎛⎝(︃𝑎2𝜉2 + 𝑛∑︁
𝑘=1

𝑏𝑘 cos (ℎ𝑘𝜉)

)︃2

+

(︃
𝑛∑︁

𝑘=1

𝑏𝑘 sin (ℎ𝑘𝜉)

)︃2
⎞⎠ 1

4

, (2.2)

𝜙(𝜉) :=
1

2
arctan

𝑛∑︀
𝑘=1

𝑏𝑘 sin (ℎ𝑘𝜉)

𝑎2𝜉2 +
𝑛∑︀

𝑘=1

𝑏𝑘 cos (ℎ𝑘𝜉)
. (2.3)

We note that for all real value of the parameters 𝑎, 𝑏𝑘, ℎ𝑘, 𝑘 = 1, 𝑛 and 𝜉, the functions 𝜌(𝜉)
and 𝜙(𝜉) are well-defined. Thus, the general solution of equation (2.1) is defined by the formulâ︀𝑢(𝜉, 𝑡) =𝐶1(𝜉)𝑒

𝑖𝑡𝜌(𝜉)[cos𝜙(𝜉)+𝑖 sin𝜙(𝜉)] + 𝐶2(𝜉)𝑒
−𝑖𝑡𝜌(𝜉)[cos𝜙(𝜉)+𝑖 sin𝜙(𝜉)]

=𝐶1(𝜉)𝑒
−𝑡𝜌(𝜉)[sin𝜙(𝜉)−𝑖 cos𝜙(𝜉)] + 𝐶2(𝜉)𝑒

𝑡𝜌(𝜉)[sin𝜙(𝜉)−𝑖 cos𝜙(𝜉)],

where 𝐶1(𝜉), 𝐶2(𝜉) are arbitrary constants depending on the parameter 𝜉. Letting 𝐶1(𝜉) = 1,
𝐶2(𝜉) = 0, by the latter identity we have:̂︀𝑢(𝜉, 𝑡) = 𝑒−𝑡𝐺1(𝜉)𝑒𝑖𝑡𝐺2(𝜉), (2.4)
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where we have introduced the notations

𝐺1(𝜉) := 𝜌(𝜉) sin𝜙(𝜉), 𝐺2(𝜉) := 𝜌(𝜉) cos𝜙(𝜉). (2.5)

We apply the inverse Fourier transform 𝐹−1
𝜉 to identity (2.4) and we obtain

𝑢(𝑥, 𝑡) =
1

2𝜋

+∞∫︁
−∞

𝑒−𝑡𝐺1(𝜉)𝑒𝑖𝑡𝐺2(𝜉)𝑒−𝑖𝑥𝜉𝑑𝜉 =
1

2𝜋

+∞∫︁
−∞

𝑒−𝑡𝐺1(𝜉)𝑒𝑖(𝑡𝐺2(𝜉)−𝑥𝜉)𝑑𝜉

=
1

2𝜋

+∞∫︁
−∞

𝑒−𝑡𝐺1(𝜉) cos (𝑡𝐺2(𝜉)− 𝑥𝜉)𝑑𝜉 +
𝑖

2𝜋

+∞∫︁
−∞

𝑒−𝑡𝐺1(𝜉) sin (𝑡𝐺2(𝜉)− 𝑥𝜉)𝑑𝜉.

(2.6)

It should be noted that while applying formally the direct Fourier transform 𝐹𝑥 and the
inverse Fourier transform 𝐹−1

𝜉 , we do not care about the convergence of the integrals in (2.6) in
accordance with the scheme in [20, Sect. 10], in which the solutions are treated in the sense of
generalized functions. On the base of (2.6) and arguing as in [14], [15], we prove the following
statement.

Theorem 2.1. Under condition (1.2), the functions

𝐹 (𝑥, 𝑡; 𝜉) := 𝑒−𝑡𝐺1(𝜉) cos (𝑡𝐺2(𝜉)− 𝑥𝜉), (2.7)

𝐻(𝑥, 𝑡; 𝜉) := 𝑒−𝑡𝐺1(𝜉) sin (𝑡𝐺2(𝜉)− 𝑥𝜉), (2.8)

where 𝐺1(𝜉) and 𝐺2(𝜉) are defined by identities (2.5), satisfy equation (1.1) in the classical
sense.

Proof. We first substitute function (2.7) into equation (1.1). In order to do this, we find:

𝐹𝑥(𝑥, 𝑡; 𝜉) = 𝜉𝑒−𝑡𝐺1(𝜉) sin (𝑡𝐺2(𝜉)− 𝑥𝜉),

𝐹𝑥𝑥(𝑥, 𝑡; 𝜉) = −𝜉2𝑒−𝑡𝐺1(𝜉) cos (𝑡𝐺2(𝜉)− 𝑥𝜉),

𝐹𝑡(𝑥, 𝑡; 𝜉) = −𝐺1(𝜉)𝑒
−𝑡𝐺1(𝜉) cos (𝑡𝐺2(𝜉)− 𝑥𝜉)−𝐺2(𝜉)𝑒

−𝑡𝐺1(𝜉) sin (𝑡𝐺2(𝜉)− 𝑥𝜉),

𝐹𝑡𝑡(𝑥, 𝑡; 𝜉) =
(︀
𝐺2

1(𝜉)−𝐺2
2(𝜉)

)︀
𝑒−𝑡𝐺1(𝜉) cos (𝑡𝐺2(𝜉)− 𝑥𝜉)

+ 2𝐺1(𝜉)𝐺2(𝜉)𝑒
−𝑡𝐺1(𝜉) sin (𝑡𝐺2(𝜉)− 𝑥𝜉).

(2.9)

In view of (2.5) we have

2𝐺1(𝜉)𝐺2(𝜉) = 𝜌2(𝜉) sin 2𝜙(𝜉).

Since the variable 𝜙(𝜉) is defined by expression (2.3), then the inequality |2𝜙(𝜉)| < 𝜋
2
holds and

therefore, cos 2𝜙(𝜉) > 0. Then the identities√︀
cos2 2𝜙(𝜉) = | cos 2𝜙(𝜉)| = cos 2𝜙(𝜉)

hold and the following relation

sin 2𝜙(𝜉) =
tan 2𝜙(𝜉)√︀

1 + tan2 2𝜙(𝜉)

=tan

⎛⎜⎜⎝arctan

𝑛∑︀
𝑘=1

𝑏𝑘 sin (ℎ𝑘𝜉)

𝑎2𝜉2 +
𝑛∑︀

𝑘=1

𝑏𝑘 cos (ℎ𝑘𝜉)

⎞⎟⎟⎠
⎛⎜⎜⎝1 + tan2

⎛⎜⎜⎝arctan

𝑛∑︀
𝑘=1

𝑏𝑘 sin (ℎ𝑘𝜉)

𝑎2𝜉2 +
𝑛∑︀

𝑘=1

𝑏𝑘 cos (ℎ𝑘𝜉)

⎞⎟⎟⎠
⎞⎟⎟⎠

− 1
2
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=

𝑛∑︀
𝑘=1

𝑏𝑘 sin (ℎ𝑘𝜉)

𝑎2𝜉2 +
𝑛∑︀

𝑘=1

𝑏𝑘 cos (ℎ𝑘𝜉)

⎛⎜⎜⎜⎝1 +

(︂
𝑛∑︀

𝑘=1

𝑏𝑘 sin (ℎ𝑘𝜉)

)︂2

(︂
𝑎2𝜉2 +

𝑛∑︀
𝑘=1

𝑏𝑘 cos (ℎ𝑘𝜉)

)︂2

⎞⎟⎟⎟⎠
− 1

2

=

𝑛∑︀
𝑘=1

𝑏𝑘 sin (ℎ𝑘𝜉)

𝑎2𝜉2 +
𝑛∑︀

𝑘=1

𝑏𝑘 cos (ℎ𝑘𝜉)

⎛⎜⎜⎜⎝
(︂
𝑎2𝜉2 +

𝑛∑︀
𝑘=1

𝑏𝑘 cos (ℎ𝑘𝜉)

)︂2

(︂
𝑎2𝜉2 +

𝑛∑︀
𝑘=1

𝑏𝑘 cos (ℎ𝑘𝜉)

)︂2

+

(︂
𝑛∑︀

𝑘=1

𝑏𝑘 sin (ℎ𝑘𝜉)

)︂2

⎞⎟⎟⎟⎠
1
2

is true. By condition (1.2) and formula (2.2) the latter identity yields

sin 2𝜙(𝜉) =
1

𝜌2(𝜉)

𝑛∑︁
𝑘=1

𝑏𝑘 sin (ℎ𝑘𝜉),

and this implies that

2𝐺1(𝜉)𝐺2(𝜉) =
𝑛∑︁

𝑘=1

𝑏𝑘 sin (ℎ𝑘𝜉).

Under the established inequality cos 2𝜙(𝜉) > 0 and condition (1.2) we find:

𝐺2
1(𝜉)−𝐺2

2(𝜉) =𝜌2(𝜉)
(︀
sin2 𝜙(𝜉)− cos2 𝜙(𝜉)

)︀
=− 𝜌2(𝜉) cos 2𝜙(𝜉) = − 𝜌2(𝜉)√︀

1 + tan2 2𝜙(𝜉)

=− 𝜌2(𝜉)

⎛⎜⎜⎜⎝
(︂
𝑎2𝜉2 +

𝑛∑︀
𝑘=1

𝑏𝑘 cos (ℎ𝑘𝜉)

)︂2

(︂
𝑎2𝜉2 +

𝑛∑︀
𝑘=1

𝑏𝑘 cos (ℎ𝑘𝜉)

)︂2

+

(︂
𝑛∑︀

𝑘=1

𝑏𝑘 sin (ℎ𝑘𝜉)

)︂2

⎞⎟⎟⎟⎠
1
2

=− 𝑎2𝜉2 −
𝑛∑︁

𝑘=1

𝑏𝑘 cos (ℎ𝑘𝜉).

In view of the found expressions 𝐺2
1(𝜉)−𝐺2

2(𝜉) and 2𝐺1(𝜉)𝐺2(𝜉), by identity (2.9) we get:

𝐹𝑡𝑡(𝑥, 𝑡; 𝜉) =−

(︃
𝑎2𝜉2 +

𝑛∑︁
𝑘=1

𝑏𝑘 cos (ℎ𝑘𝜉)

)︃
𝑒−𝑡𝐺1(𝜉) cos (𝑡𝐺2(𝜉)− 𝑥𝜉)

+
𝑛∑︁

𝑘=1

𝑏𝑘 sin (ℎ𝑘𝜉) · 𝑒−𝑡𝐺1(𝜉) sin (𝑡𝐺2(𝜉)− 𝑥𝜉).

Substituting the found derivatives 𝐹𝑡𝑡 and 𝐹𝑥𝑥 into equation (1.1), we find:

𝐹𝑡𝑡(𝑥, 𝑡; 𝜉)−𝑎2𝐹𝑥𝑥(𝑥, 𝑡; 𝜉)

=− 𝑒−𝑡𝐺1(𝜉)

(︃
cos (𝑡𝐺2(𝜉)− 𝑥𝜉) ·

𝑛∑︁
𝑘=1

𝑏𝑘 cos (ℎ𝑘𝜉)− sin (𝑡𝐺2(𝜉)− 𝑥𝜉) ·
𝑛∑︁

𝑘=1

𝑏𝑘 sin (ℎ𝑘𝜉)

)︃

=− 𝑒−𝑡𝐺1(𝜉)

𝑛∑︁
𝑘=1

𝑏𝑘 (cos (𝑡𝐺2(𝜉)− 𝑥𝜉) · cos (ℎ𝑘𝜉)− sin (𝑡𝐺2(𝜉)− 𝑥𝜉) · sin (ℎ𝑘𝜉))

=− 𝑒−𝑡𝐺1(𝜉)

𝑛∑︁
𝑘=1

𝑏𝑘 cos (𝑡𝐺2(𝜉)− 𝑥𝜉 + ℎ𝑘𝜉) = −
𝑛∑︁

𝑘=1

𝑏𝑘𝐹 (𝑥− ℎ𝑘, 𝑡; 𝜉)
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and this proves the theorem for the family of functions 𝐹 (𝑥, 𝑡; 𝜉) for each real value of the
parameter 𝜉.
Similarly, we are going to check that function (2.8) satisfies equation (1.1) at each point in

the half-plane (𝑥, 𝑡) ∈ R1 × (0,+∞). We calculate:

𝐻𝑥(𝑥, 𝑡; 𝜉) = −𝜉𝑒−𝑡𝐺1(𝜉) cos (𝑡𝐺2(𝜉)− 𝑥𝜉),

𝐻𝑥𝑥(𝑥, 𝑡; 𝜉) = −𝜉2𝑒−𝑡𝐺1(𝜉) sin (𝑡𝐺2(𝜉)− 𝑥𝜉),

𝐻𝑡(𝑥, 𝑡; 𝜉) = −𝐺1(𝜉)𝑒
−𝑡𝐺1(𝜉) sin (𝑡𝐺2(𝜉)− 𝑥𝜉) +𝐺2(𝜉)𝑒

−𝑡𝐺1(𝜉) cos (𝑡𝐺2(𝜉)− 𝑥𝜉),

𝐻𝑡𝑡(𝑥, 𝑡; 𝜉) =
(︀
𝐺2

1(𝜉)−𝐺2
2(𝜉)

)︀
𝑒−𝑡𝐺1(𝜉) sin (𝑡𝐺2(𝜉)− 𝑥𝜉)

− 2𝐺1(𝜉)𝐺2(𝜉)𝑒
−𝑡𝐺1(𝜉) cos (𝑡𝐺2(𝜉)− 𝑥𝜉)

= −

(︃
𝑎2𝜉2 +

𝑛∑︁
𝑘=1

𝑏𝑘 cos (ℎ𝑘𝜉)

)︃
𝑒−𝑡𝐺1(𝜉) sin (𝑡𝐺2(𝜉)− 𝑥𝜉)

−
𝑛∑︁

𝑘=1

𝑏𝑘 sin (ℎ𝑘𝜉) · 𝑒−𝑡𝐺1(𝜉) cos (𝑡𝐺2(𝜉)− 𝑥𝜉).

Substituting the derivatives 𝐻𝑡𝑡 and 𝐻𝑥𝑥 into equation (1.1), we obtain

𝐻𝑡𝑡(𝑥, 𝑡; 𝜉)− 𝑎2𝐻𝑥𝑥(𝑥, 𝑡; 𝜉) =− 𝑒−𝑡𝐺1(𝜉)

(︂
sin (𝑡𝐺2(𝜉)− 𝑥𝜉) ·

𝑛∑︁
𝑘=1

𝑏𝑘 cos (ℎ𝑘𝜉)

+ cos (𝑡𝐺2(𝜉)− 𝑥𝜉) ·
𝑛∑︁

𝑘=1

𝑏𝑘 sin (ℎ𝑘𝜉)

)︂

=− 𝑒−𝑡𝐺1(𝜉)

𝑛∑︁
𝑘=1

𝑏𝑘

(︂
sin (𝑡𝐺2(𝜉)− 𝑥𝜉) · cos (ℎ𝑘𝜉)

+ cos (𝑡𝐺2(𝜉)− 𝑥𝜉) · sin (ℎ𝑘𝜉)

)︂
=− 𝑒−𝑡𝐺1(𝜉)

𝑛∑︁
𝑘=1

𝑏𝑘 sin (𝑡𝐺2(𝜉)− 𝑥𝜉 + ℎ𝑘𝜉)

=−
𝑛∑︁

𝑘=1

𝑏𝑘𝐻(𝑥− ℎ𝑘, 𝑡; 𝜉).

Corollary 2.1. Under condition (1.2), the family of functions

𝐺(𝑥, 𝑡;𝛼, 𝛽, 𝜉) := 𝛼 𝑒−𝑡𝐺1(𝜉) cos (𝑡𝐺2(𝜉)− 𝑥𝜉) + 𝛽 𝑒−𝑡𝐺1(𝜉) sin (𝑡𝐺2(𝜉)− 𝑥𝜉),

where 𝐺1(𝜉) and 𝐺2(𝜉) are defined by identities (2.5), satisfies equation (1.1) in the classical
sense for all real values of the parameters 𝛼, 𝛽 and 𝜉.

3. Classes of equations satisfying the assumptions of theorem

Let us find out what relations should be satisfied by the coefficients 𝑎, 𝑏𝑘 and the shifts ℎ𝑘,
𝑘 = 1, 𝑛 to ensure condition (1.2) for each real 𝜉. Letting 𝜉 = 0 in (1.2) we obviously obtain
an inequality

𝑛∑︁
𝑘=1

𝑏𝑘 > 0. (3.1)
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We consider a function 𝑎2𝜉2+
𝑛∑︀

𝑘=1

𝑏𝑘 cos (ℎ𝑘𝜉) as 𝜉 ∈ (0,+∞). The derivative of this function

is equal to

2𝑎2𝜉 −
𝑛∑︁

𝑘=1

𝑏𝑘ℎ𝑘 sin (ℎ𝑘𝜉) = 2𝑎2𝜉

(︃
1−

𝑛∑︁
𝑘=1

𝑏𝑘ℎ
2
𝑘

2𝑎2
sin (ℎ𝑘𝜉)

ℎ𝑘𝜉

)︃
.

Since
sin (ℎ𝜉)

ℎ𝜉
< 1 for each 𝜉 ∈ (0,+∞),

the inequality holds:

1−
𝑛∑︁

𝑘=1

𝑏𝑘ℎ
2
𝑘

2𝑎2
sin (ℎ𝑘𝜉)

ℎ𝑘𝜉
> 1−

𝑛∑︁
𝑘=1

𝑏𝑘ℎ
2
𝑘

2𝑎2
,

and this implies that the derivative is positive on the segment 𝜉 ∈ (0,+∞) under the condition:

2𝑎2 >
𝑛∑︁

𝑘=1

𝑏𝑘ℎ
2
𝑘. (3.2)

Then the function 𝑎2𝜉2 +
𝑛∑︀

𝑘=1

𝑏𝑘 cos (ℎ𝑘𝜉) increases as 𝜉 ∈ (0,+∞), while for 𝜉 ∈ [0,+∞) it

attains its smallest value, which is equal to
𝑛∑︀

𝑘=1

𝑏𝑘 > 0. By the evenness of the function, this

value is the smallest for all real 𝜉 ∈ (−∞,+∞). Thus, we have shown that condition (1.2),
under which the theorem holds, is satisfied if the coefficients 𝑎, 𝑏𝑘 and the shift ℎ𝑘, 𝑘 = 1, 𝑛,
obey relations (3.1) and (3.2).
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