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INVARIANT SUBSPACES IN HALF-PLANE

A.S. KRIVOSHEEV, O.A. KRIVOSHEEVA, A.I. RAFIKOV

Abstract. In this work we consider sequences of specified order 𝜌(𝑟). We find necessary and
sufficient conditions guaranteeing that a sequence Λ2 ⊇ Λ1 consists a regularly distributed
set Λ with a prescribed angular density containing Λ1. These results cover a most part of
knonw results on constructions of regularly distributed sets.

We consider various applications of the results. On the base of them, we prove theorems
on splitting of entire functions of a specified order 𝜌(𝑟). Moreover, we find an asymptotic
representation of an entire function with a measurable sequence of zeroes. This generalizes
a classical representation by B.Ya. Levin with a regularly distributed zero set to the case
of a function with a measurable zero set. This representation is based on the obtained
representation for a function, the zero set of which has a zero density. Its implication is the
strengthening of a known result by M.L. Cartwright on the type of a function with a zero
set having a zero density. Another corollary is the way for constructing entire functions of
exponential type with a prescribed indicator and the minimal possible zero density.

Keywords: sequence, specified order, angular density, splitting of functions, entire func-
tion, indicator.
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1. Introduction

In this work we study conditions ensuring the existence of a regularly distributed set [1,
Ch. II, Sect. 1], which is a part of a given sequence of complex numbers and contains a given
subsequence of this sequence.

On this base, we study problems on splitting entire functions and their asymptotic behavior.
The obtained results are apply to problems on completeness of systems of exponential mono-
mials in convex domains, representations of functions analytic on convex compact sets, and to
the problem of the fundamental principle for invariant subspaces of functions.

The problems on constructing regularly distributed sets (sets with angular density and regular
sets) were considered by many authors. We mention monographs [1, Ch. II, Sect. 4] and [2,
Ch. I, Sect. 1, Subset. 1, 2, 4], as well as works [3]–[8]. The obtained results were used for
constructing entire functions with a prescribed indicator, for studyig their asymptotic behavior,
the possibility of their splitting, the completeness of systems of exponentials, the representations
of functions by exponential series, see, for instance, [8], [9], etc.

The most general results related with constructing properly distributed sets of order one
were obtained in [8]. In the present work these results are extended to complex sequences of
an arbitrary refined order 𝜌(𝑟).

In the second section we obtain a criterion ensuring that a sequence Λ2 contains a measurable
set Λ with prescribed angular density ar order 𝜌(𝑟) containing a given subsequence Λ1 of the
sequence Λ2 (Theorem 2.1). In Theorem 2.2 we provide conditions, under which a sequence
Λ2 ⊇ Λ1 contains a regularly distributed set Λ with a given angular density at order 𝜌(𝑟),
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which contains Λ1. These results involve the most part of the aforementioned results related
with construction of a regularly distributed set.

In Section 3 the obtained results are applied to the problem of splitting entire functions of
order 𝜌(𝑟) (Theorems 3.1, 3.2, 3.3).

In the final section we study the asymptotic behavior of entire functions of order 𝜌(𝑟) having
a zero set of zero density (Lemma 4.1). An implication of Lemma 4.1 is a strengthening of
a known results by M. Cartwright [10], [2, Ch. I, Sect. 1, Thm. 1.1.8] on a type of the
function having a zero density (Corollaries 4.1 and 4.2). Another implication of Lemma 4.1
is a way of constructing of entire functions 𝜌(𝑟) with a prescribed indicator and the minimal
possible density, which is the zero densirty (Corollary 4.3). Finally, in Theorem 4.1, we obtain
an asymptotic representation of an entire function of order 𝜌(𝑟) with a measurable sequence of
zeroes. It generalizes the classical representation by B.Ya. Levin of functions with a regularly
distributed zero set for the case of functions with a measurable zero set.

2. Construction of regularly distributed sets

Let Λ = {𝜆𝑘, 𝑛𝑘}∞𝑘=1 be a sequence of different complex numbers 𝜆𝑘 and of their multiplicities
𝑛𝑘. We assume that |𝜆𝑘| is non-decreasing and |𝜆𝑘| → ∞, 𝑘 → ∞. We shall consider sequences
of refined order 𝜌(𝑟) [1, Ch. I, Sect. 12]. We recall the main properties of 𝜌(𝑟). A function
𝜌(𝑟), 𝑟 > 0, obeying the conditions

lim
𝑟→∞

𝜌(𝑟) = 𝜌 > 0, lim
𝑟→∞

𝑟𝜌′(𝑟) ln 𝑟 = 0, (2.1)

is called a refined order. We have:

(𝑟𝜌(𝑟))′ = 𝑟𝜌(𝑟)(𝜌′(𝑟) ln 𝑟 +
𝜌(𝑟)

𝑟
) = 𝑟𝜌(𝑟)−1(𝑟𝜌′(𝑟) ln 𝑟 + 𝜌(𝑟)).

Thus, by (2.1), the function 𝑟𝜌(𝑟) increases on sufficiently large 𝑟. We let 𝐿(𝑟) = 𝑟𝜌(𝑟)−𝜌. The
function 𝐿(𝑟) is slowly growing [1, Ch. I, Sect. 12, Lm. 5], that is,

lim
𝑟→∞

𝐿(𝑐𝑟)

𝐿(𝑟)
= 1 (2.2)

uniformly on each segment 0 < 𝑎 6 𝑐 6 𝑏 < ∞. It follows from (2.2) that for each 𝜀 > 0 and
all 𝑐 ∈ [𝑎, 𝑏] the inequality holds:

(1 − 𝜀)𝑐𝜌𝑟𝜌(𝑟) 6 (𝑐𝑟)𝜌(𝑐𝑟) 6 (1 + 𝜀)𝑐𝜌𝑟𝜌(𝑟), 𝑟 > 𝑅(𝜀). (2.3)

An upper density of a sequence Λ (at order 𝜌(𝑟)) is the quantity

𝑛̄(Λ, 𝜌(𝑟)) = lim
𝑟→∞

𝑛(𝑟,Λ)

𝑟𝜌(𝑟)
<∞,

where 𝑛(𝑟,Λ) is the number of points 𝜆𝑘 (taken counting their multiplicities 𝑛𝑘) in the circle
𝐵(0, 𝑟) (of radius 𝑟 centered at zero). We say that a sequence Λ has a density 𝑛(Λ, 𝜌(𝑟))
(measurable) if there exists a limit

lim
𝑟→∞

𝑛(𝑟,Λ)

𝜏 𝜌(𝑟)
= 𝑛(Λ, 𝜌(𝑟)) <∞.

Let a sequence Λ1 = {𝜉𝑝}∞𝑝=1, |𝜉1| 6 |𝜉2| 6 · · · , consists of points 𝜆𝑘, 𝑘 > 1, and each 𝜆𝑘 is
contained in Λ1 exactly 𝑛𝑘 times. Then for each 𝜏 > 1 by (2.3) we have:

lim
𝑝→∞

𝑝

|𝜉𝑝|𝜌(|𝜉𝑝|)
6 lim

𝑝→∞

𝑛(𝜏 |𝜉𝑝|,Λ1)

|𝜉𝑝|𝜌(|𝜉𝑝|)
= 𝑛̄(Λ, 𝜌(𝑟)) lim

𝑝→∞

(𝜏 |𝜉𝑝|)𝜌(𝜏 |𝜉𝑝|)

|𝜉𝑝|𝜌(|𝜉𝑝|)
6 𝜌𝜌𝑛̄(Λ, 𝜌(𝑟)).

Let 𝑟 > 0. We choose a number 𝑝(𝑟) such that |𝜉𝑝(𝑟)| 6 𝑟 < |𝜉𝑝(𝑟)+1|. Then

lim
𝑟→∞

𝑛(𝑟,Λ)

𝑟𝜌(𝑟)
6 lim

𝑟→∞

(𝑝(𝑟) + 1)

|𝜉𝑝(𝑟)|𝜌(𝑟)
6 lim

𝑝→∞

𝑝

|𝜉𝑝|𝜌(|𝜉𝑝|)
.
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Thus,

𝑛̄(Λ, 𝜌(𝑟)) = lim
𝑝→∞

𝑝

|𝜉𝑝|𝜌(|𝜉𝑝|)
. (2.4)

If Λ has a density, in the same way we obtain:

𝑛(Λ, 𝜌(𝑟)) = lim
𝑝→∞

𝑝

|𝜉𝑝|𝜌(|𝜉𝑝|)
. (2.5)

We let

𝑛̄0(Λ, 𝜏, 𝜌(𝑟)) = lim
𝑟→∞

𝑛(𝑟,Λ) − 𝑛(𝜏𝑟,Λ)

(1 − 𝜏 𝜌)𝑟𝜌(𝑟)
, 𝑛0(Λ, 𝜏, 𝜌(𝑟)) = lim

𝑟→∞

𝑛(𝑟,Λ) − 𝑛(𝜏𝑟,Λ)

(1 − 𝜏 𝜌)𝑟𝜌(𝑟)
.

A maximal and minimal densities Λ are respectively the quantities

𝑛̄0(Λ, 𝜌(𝑟)) = lim
𝜏→1

𝑛̄0(Λ, 𝜏, 𝜌(𝑟)), 𝑛0(Λ, 𝜌(𝑟)) = lim
𝜏→1

𝑛0(Λ, 𝜏, 𝜌(𝑟)).

Let Λ = {𝜆𝑘, 𝑛𝑘}, 𝜆𝑘 = 𝑟𝑘𝑒
𝑖𝜙𝑘 and 𝜌(𝑟) be a refined order. We let

Λ𝜗 = {𝜂𝑘, 𝑛𝑘}, 𝜂𝑘 = (𝑟𝑘)
𝜌(𝑟𝑘)𝑒𝑖𝜙𝑘 , 𝑘 > 1.

Let us find various densities of a sequence Λ𝜗 at refined order ̃︀𝜌(𝑟) ≡ 1. By (2.4), (2.5) and
the definition of Λ𝜗 the identities hold:

𝑛̄(Λ𝜗, 1) = 𝑛̄(Λ, 𝜌(𝑟)), 𝑛(Λ𝜗, 1) = 𝑛(Λ, 𝜌(𝑟)). (2.6)

For all 𝜏 , 𝛼 ∈ (0, 1) we have:

lim
𝑟→∞

𝑛(𝑟,Λ) − 𝑛(𝜏𝑟,Λ)

(1 − 𝜏 𝜌)𝑟𝜌(𝑟)
= lim

𝑟→∞

𝑛(𝑟𝜌(𝑟),Λ𝜗) − 𝑛((𝜏𝑟)𝜌(𝑟),Λ𝜗)

(1 − 𝜏 𝜌)𝑟𝜌(𝑟)

6 lim
𝑟→∞

𝑛(𝑟𝜌(𝑟),Λ𝜗) − 𝑛(𝛼𝜏 𝜌𝑟𝜌(𝑟),Λ𝜗)

(1 − 𝜏 𝜌)𝑟𝜌(𝑟)

=
1 − 𝛼𝜏 𝜌

1 − 𝜏 𝜌
lim
𝑡→∞

𝑛(𝑡,Λ𝜗) − 𝑛(𝛼𝜏 𝜌𝑡,Λ𝜗)

(1 − 𝛼𝜏 𝜌)𝑡

=
1 − 𝛼𝜏 𝜌

1 − 𝜏 𝜌
𝑛̄0(Λ, 𝛼𝜏

𝜌, 1).

This implies that 𝑛̄0(Λ, 𝜌(𝑟)) 6 𝑛̄0(Λ
𝜗, 1). On the other hand,

lim
𝑟→∞

𝑛(𝑟,Λ) − 𝑛(𝜏𝑟,Λ)

(1 − 𝜏 𝜌)𝑟𝜌(𝑟)
> lim

𝑟→∞

𝑛(𝑟𝜌(𝑟),Λ𝜗) − 𝑛(𝛼−1𝜏 𝜌𝑟𝜌(𝑟),Λ𝜗)

(1 − 𝜏 𝜌)𝑟𝜌(𝑟)
=

1 − 𝛼−1𝜏 𝜌

1 − 𝜏 𝜌
𝑛̄0(Λ, 𝛼

−1𝜏 𝜌, 1).

Therefore, 𝑛̄0(Λ, 𝜌(𝑟)) > 𝑛̄0(Λ
𝜗, 1). Hence,

𝑛̄0(Λ
𝜗, 1) = 𝑛̄0(Λ, 𝜌(𝑟)). (2.7)

In the same way we obtain:

𝑛0(Λ
𝜗, 1) = 𝑛0(Λ, 𝜌(𝑟)). (2.8)

If Λ is measurable, then by (2.6)–(2.8) and Lemma 2.1 in work [8] we have:

𝑛0(Λ, 𝜌(𝑟)) = 𝑛̄0(Λ, 𝜌(𝑟)) = 𝑛(Λ, 𝜌(𝑟)). (2.9)

We proceed to finer characteristics of the sequence Λ = {𝜆𝑘, 𝑛𝑘}. Let 𝜙, 𝜓 ∈ [−2𝜋, 2𝜋),
𝜓 − 𝜙 ∈ (0, 2𝜋]. We shall call such values of 𝜙, 𝜓 admissible. We let

Γ(𝜙, 𝜓) = {𝜆 = 𝑡𝑒𝑖𝜃 : 𝜃 ∈ (𝜙, 𝜓), 𝑡 > 0}.

By the symbol Λ(𝜙, 𝜓) we denote a sequence formed by the pairs {𝜆𝑘, 𝑛𝑘} such that 𝜆𝑘 ∈
Γ(𝜙, 𝜓). A sequence Λ possesses an angular density [1, Ch. II, Sect. 1] if for all admissible 𝜙, 𝜓,
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except for an at most countable set ΦΛ,𝜌(𝑟), the sequence Λ(𝜙, 𝜓) has a density 𝑛(Λ(𝜙, 𝜓), 𝜌(𝑟)).
The number 𝜙 satisfies 𝜙 ∈ ΦΛ,𝜌(𝑟) ∖ {−2𝜋} if and only if

inf
𝛽>0

𝑛̄(Λ(𝜙− 𝛽, 𝜙+ 𝛽), 𝜌(𝑟)) > 0.

The number −2𝜋 belongs or does not belong to ΦΛ,𝜌(𝑟) simultaneously with 𝜙 = 0. It is easy
to see that a sequence possessing an angular density is measurable.

By the symbol Σ we denote a class of non-decreasing on [−2𝜋, 2𝜋] functions 𝜔(𝜙) with the
following properties: 𝜔(0) = 0, the function 𝜔 is left-continuous, 𝜔(𝜙) = 𝜔(𝜙− 2𝜋) − 𝜔(−2𝜋),
𝜙 ∈ [0, 2𝜋). At most countable set of the discontinuity points of a monotone function 𝜔 is
denoted by Φ(𝜔).

Let Λ possesses an angular density. It defines uniquely a function 𝜔Λ,𝜌(𝑟) ∈ Σ by the law: for
𝜙1, 𝜙2 ∈ (−2𝜋, 0) ∖ ΦΛ,𝜌(𝑟), 𝜙 ∈ (𝜙1, 𝜙1 + 2𝜋) ∖ ΦΛ,𝜌(𝑟)

𝜔Λ,𝜌(𝑟)(𝜙1) = − lim
𝜙2→0

𝑛(Λ(𝜙1, 𝜙2), 𝜌(𝑟)), 𝜔Λ,𝜌(𝑟)(𝜙) = 𝑛(Λ(𝜙1, 𝜙), 𝜌(𝑟)) + 𝜔Λ,𝜌(𝑟)(𝜙1).

More precisely, 𝜔Λ,𝜌(𝑟) is uniquely continued to a function in the class Σ, and the continuation is
independent on 𝜙1. It is easy to see that the sets ΦΛ,𝜌(𝑟) and Φ(𝜔Λ,𝜌(𝑟)) coincide. The definition
of 𝜔Λ,𝜌(𝑟) implies identity

𝑛(Λ(𝜙, 𝜓), 𝜌(𝑟)) = 𝜔Λ,𝜌(𝑟)(𝜓) − 𝜔Λ,𝜌(𝑟)(𝜙) (2.10)

for all admissible 𝜙, 𝜓 ∈ Φ(𝜔Λ,𝜌(𝑟)). At that,

𝑛(Λ, 𝜌(𝑟)) = 𝜔Λ,𝜌(𝑟)(𝜙+ 2𝜋) − 𝜔Λ,𝜌(𝑟)(𝜙), 𝜙 ∈ [−2𝜋, 0).

We shall say that a sequence Λ possesses an angular density 𝜔 ∈ Σ if it possesses an angular
density and 𝜔Λ,𝜌(𝑟) = 𝜔.

Let Λ1 = {𝜆1𝑘, 𝑛𝑘}∞𝑘=1 and Λ2 = {𝜆2𝑗 ,𝑚𝑗}∞𝑗=1. We shall say that Λ1 is a subsequence Λ2 and

denote this as Λ1 ⊆ Λ2 if there exists a set of indices 𝑗(𝑘), 𝑘 > 1, such that 𝜆1𝑘 = 𝜆2𝑗(𝑘) and
𝑛𝑘 6 𝑚𝑗(𝑘), 𝑘 > 1.

Theorem 2.1. Let Λ1 ⊆ Λ2, 𝜌(𝑟) be a refined order and 𝜔 ∈ Σ. The following statements
are equivalent:

1. For all admissible 𝜙, 𝜓 ∈ Φ(𝜔), the relations hold:

𝑛0(Λ2(𝜙, 𝜓), 𝜌(𝑟)) > 𝜔(𝜓) − 𝜔(𝜙), 𝑛̄0(Λ1(𝜙, 𝜓), 𝜌(𝑟)) 6 𝜔(𝜓) − 𝜔(𝜙).

2. There exists Λ with an angular density 𝜔 such that Λ1 ⊆ Λ ⊆ Λ2.

Proof. We consider sequences (Λ1)
𝜗 and (Λ2)

𝜗. We have: (Λ1)
𝜗 ⊆ (Λ2)

𝜗. By (2.7) and (2.8),
for all admissible 𝜙, 𝜓 ∈ Φ(𝜔) we have:

𝑛̄0((Λ1)
𝜗(𝜙, 𝜓), 1) = 𝑛̄0(Λ1(𝜙, 𝜓), 𝜌(𝑟)), 𝑛0((Λ2)

𝜗(𝜙, 𝜓), 1) = 𝑛0((Λ2)
𝜗(𝜙, 𝜓), 𝜌(𝑟)).

By Theorem 2.4 in work [8], the following statements are equivalent:
a) for all admissible 𝜙, 𝜓 ∈ Φ(𝜔) we have:

𝑛0((Λ2)
𝜗(𝜙, 𝜓), 1) > 𝜔(𝜓) − 𝜔(𝜙), 𝑛̄0((Λ1)

𝜗(𝜙, 𝜓), 1) 6 𝜔(𝜓) − 𝜔(𝜙);

b) there exists Λ0 with an angular density 𝜔 such that (Λ1)
𝜗 ⊆ Λ0 ⊆ (Λ2)

𝜗.
Let Λ be a subsequence of Λ2 such that Λ𝜗 = Λ0. By (2.6) for all admissible 𝜙, 𝜓 ∈ Φ(𝜔) the

identity holds: 𝑛(Λ(𝜙, 𝜓), 𝜌(𝑟)) = 𝑛(Λ0(𝜙, 𝜓), 1). Thus, the equivalence of statements a) and
b) completes the proof.

Remark 2.1. In Theorem 2.4 in work [8] there was considered the case 𝜌(𝑟) ≡ 1. Theo-
rem 2.1 extends the result of this theorem to the case of an arbitrary refined order 𝜌(𝑟). Par-
ticular cases of Theore 2.1 are Theorem 3 from work [4] and Pólya theorem on an measurable
kernel and a measurable span [3].
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We recall that a sequence Λ = {𝜆𝑘, 𝑛𝑘} is called a regularly distributed set [3, Ch. II, Sect.
1] at order 𝜌(𝑟) → 𝜌 if it possesses an angular density and in addition, for an integer 𝜌, the
Lindelöf condition is satisfied, that is, for some number 𝑐 ∈ C, there exists the limit

lim
𝑟→∞

𝑟𝜌−𝜌(𝑟)
(︂
𝑐+

1

𝜌
𝑁(𝑟,Λ, 𝜌)

)︂
, 𝑁(𝑟,Λ, 𝜌) =

∑︁
|𝜆𝑘|<𝑟

𝑛𝑘
(𝜆𝑘)𝜌

.

If |𝜆𝑘| > 𝑟, 𝑘 > 1, then 𝑁(𝑟,Λ, 𝜌) = 0.
Our next statement answers a question how to turn a given sequence with an angular sequence

into a regularly distributed set for an integer 𝜌.

Lemma 2.1. Let 𝜌(𝑟) be a refined order, Λ = {𝜆𝑘, 𝑛𝑘} possesses a density 𝑛(Λ, 𝜌(𝑟)) = 𝜏 > 0
and 𝑎 > 1. Then the representation holds:

(𝑟1)
𝜌−𝜌(𝑟1)

∑︁
𝑟16|𝜆𝑘|<𝑟2

𝑛𝑘
|𝜆𝑘|𝜌

= 𝜏 ln
(𝑟2)

𝜌(𝑟2)

(𝑟1)𝜌(𝑟1)
+ 𝜀(𝑟1, 𝑟2), (2.11)

where 𝑎𝑟1 > 𝑟2 > 𝑟1 > 0 and 𝜀(𝑟1, 𝑟2) → 0, 𝑟1 → ∞, uniformly in 𝑟2.

Remark 2.2. If the annulus 𝑟1 6 |𝜆| < 𝑟2 contains no points 𝜆𝑘, then we assume that the
left hand side in this identity vanishes.

Proof. We consider a sequence Λ1 = {𝜉𝑝}, |𝜉1| 6 |𝜉2| 6 · · · , consisting of the points 𝜆𝑘, 𝑘 > 1,
and each 𝜆𝑘 appears Λ1 exactly 𝑛𝑘 times. We suppose that 𝑛(𝑟,Λ1) → +∞, 𝑟 → ∞; otherwise
the statement of lemma becomes trivial. By our assumptions, Λ1 has a density 𝜏 , that is, by
its definition and (2.5) the identities hold:

𝑝

|𝜉𝑝|𝜌(|𝜉𝑝|)
= 𝜏 + 𝛿(𝑝), 𝛿(𝑝) → 0, 𝑝→ ∞,

𝑛(𝑟,Λ1)

𝑟𝜌(𝑟)
= 𝜏 + 𝛽(𝑟), 𝛽(𝑟) → 0, 𝑟 → ∞.

(2.12)

Let 𝜏 = 0. Then in view of (2.3) for all 𝑟2 > 𝑟1 > 0, 𝑟2/𝑟1 6 𝑎, we obtain:

∑︁
𝑟16|𝜆𝑘|<𝑟2

𝑛𝑘
|𝜆𝑘|𝜌(|𝜆𝑘|

6
1

(𝑟1)𝜌(𝑟1)

∑︁
𝑟16|𝜆𝑘|<𝑎𝑟1

𝑛𝑘 =
1

(𝑟1)𝜌(𝑟1)
(𝑛(𝑎𝑟1,Λ) − 𝑛(𝑟1,Λ)) → 0, 𝑟1 → ∞.

Let 𝜏 > 0. According Euler representation we have:

𝑛∑︁
𝑝=1

1

𝑝
= ln𝑛+ 𝛾 + 𝛾(𝑛), 𝛾(𝑛) → 0, 𝑛→ ∞, (2.13)
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where 𝛾 is the Euler constant. In view of (2.12) this gives:∑︁
𝑟16|𝜆𝑘|<𝑟2

𝑛𝑘
|𝜆𝑘|𝜌(|𝜆𝑘|)

=
∑︁

𝑟16|𝜉𝑝|<𝑟2

1

|𝜉𝑝|𝜌(|𝜉𝑝|)
=

∑︁
𝑟16|𝜉𝑝|<𝑟2

𝜏 + 𝛿(𝑝)

𝑝

=𝜏

𝑛(𝑟2,Λ1)∑︁
𝑝=𝑛(𝑟1,Λ1)+1

1

𝑝
+

𝑛(𝑟2,Λ1)∑︁
𝑝=𝑛(𝑟1,Λ1)+1

𝛿(𝑝)

𝑝

=𝜏 ln
𝑛(𝑟2,Λ1)

𝑛(𝑟1,Λ1)
+ 𝜏(𝛾(𝑛(𝑟2,Λ1)) − 𝛾(𝑛(𝑟1,Λ1))) +

𝑛(𝑟2,Λ1)∑︁
𝑝=𝑛(𝑟1,Λ1)+1

𝛿(𝑝)

𝑝

=𝜏 ln
(𝑟2)

𝜌(𝑟2)

(𝑟1)𝜌(𝑟1)
+ 𝜏

(︂
ln
𝜏 + 𝛽(𝑟2)

𝜏 + 𝛽(𝑟1)
+ 𝛾(𝑛(𝑟2,Λ1)) − 𝛾(𝑛(𝑟1,Λ1))

)︂
+

𝑛(𝑟2,Λ1)∑︁
𝑝=𝑛(𝑟1,Λ1)+1

𝛿(𝑝)

𝑝
= 𝜏 ln

(𝑟2)
𝜌(𝑟2)

(𝑟1)𝜌(𝑟1)
+ 𝜀0(𝑟1, 𝑟2).

(2.14)

We fix 𝜀 > 0. According (2.12) and (2.13) we choose an index 𝑝0 such that |𝛿(𝑝)| 6 𝜀,
|𝛾(𝑛)| 6 𝜀, 𝑝, 𝑛 > 𝑝0. According (2.12), we also choose 𝑟(𝜀) > 0 such that⃒⃒⃒⃒

ln
𝜏 + 𝛽(𝑟2)

𝜏 + 𝛽(𝑟1)

⃒⃒⃒⃒
6 𝜀, 𝑛(𝑟1,Λ1) > 𝑝0, 𝑟2 > 𝑟1 > 𝑟(𝜀).

Then

|𝜀0(𝑟1, 𝑟2)| 6 3𝜀𝜏 + 𝜀

𝑛(𝑎𝑟1,Λ1)∑︁
𝑝=𝑛(𝑟1,Λ1)+1

1

𝑝
6 3𝜀𝜏 + 𝜀 ln

(𝑎𝑟1)
𝜌(𝑎𝑟1)

(𝑟1)𝜌(𝑟1)
, 𝑎𝑟1 > 𝑟2 > 𝑟1 > 0.

By (2.3) this yields that 𝜀0(𝑟1, 𝑟2) → 0, 𝑟1 → ∞, uniformly in 𝑟2:

𝑎𝑟1 > 𝑟2 > 𝑟1 > 0.

By (2.14) we find:

𝑏(𝑟1)
∑︁

𝑟16|𝜆𝑘|<𝑟2

𝑛𝑘
|𝜆𝑘|𝜌

6 𝜏 ln
(𝑟2)

𝜌(𝑟2)

(𝑟1)𝜌(𝑟1)
+ 𝜀0(𝑟1, 𝑟2) 6 𝑐(𝑟1)

∑︁
𝑟16|𝜆𝑘|<𝑟2

𝑛𝑘
|𝜆𝑘|𝜌

, (2.15)

where

𝑏(𝑟1) = min
𝑟16𝑟6𝑟2

𝑟𝜌−𝜌(𝑟), 𝑐(𝑟1) = max
𝑟16𝑟6𝑟2

𝑟𝜌−𝜌(𝑟).

It follows from (2.2) that

(1 − 𝜀0(𝑟1))(𝑟1)
𝜌−𝜌(𝑟1) 6 𝑏(𝑟1) 6 𝑐(𝑟1) 6 (1 + 𝜀0(𝑟1))(𝑟1)

𝜌−𝜌(𝑟1), (2.16)

where 𝜀0(𝑟1) → 0, 𝑟1 → ∞. According (2.3), the central part in inequalities (2.14) is bounded
as 𝑟1 → ∞. Thus, by (2.14)–(2.16) we obtain (2.11). The proof is complete.

Let Λ = {𝜆𝑘, 𝑛𝑘}, Λ1 = {𝜉𝑝,𝑚𝑝} and Λ2 = {𝜍𝑗, 𝑙𝑗}. We shall write Λ = Λ1 ∪ Λ2 if for each
𝑘 > 1 there exists 𝑝 > 1 such that 𝜆𝑘 = 𝜉𝑝 or there exists 𝑗 > 1 such that 𝜆𝑘 = 𝜍𝑗. At that
– if there exists 𝑝 > 1 such that 𝜆𝑘 = 𝜉𝑝 and 𝜆𝑘 ̸= 𝜍𝑗 for each 𝑗 > 1, then 𝑛𝑘 = 𝑚𝑝;
– if there exists 𝑗 > 1 such that 𝜆𝑘 = 𝜍𝑗 and 𝜆𝑘 ̸= 𝜉𝑝 for each 𝑝 > 1, then 𝑛𝑘 = 𝑙𝑗;
– if there exist 𝑝, 𝑗 > 1 such that 𝜆𝑘 = 𝜉𝑝 = 𝜍𝑗, then 𝑛𝑘 = 𝑚𝑝 + 𝑙𝑗.
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Lemma 2.2. Let 𝜌(𝑟) be a refined order, 𝜌(𝑟) → 𝜌 be an integer number, Λ = {𝜆𝑘, 𝑛𝑘}
possess an angular density 𝑛(Λ(𝜙, 𝜓), 𝜌(𝑟)) and

2𝜋∫︁
0

𝑒𝑖𝜌𝜙𝑑𝜔𝜔Λ,𝜌(𝑟)
(𝜙) = 𝜇 = |𝜇|𝑒𝑖𝜓.

Then for each 𝑎 > 1 and 𝑎𝑟1 > 𝑟2 > 𝑟1 > 0 the representation

(𝑟1)
𝜌−𝜌(𝑟1)(𝑁(𝑟2,Λ, 𝜌) −𝑁(𝑟1,Λ, 𝜌)) = 𝜇 ln

(𝑟2)
𝜌(𝑟2)

(𝑟1)𝜌(𝑟1)
+ 𝜀(𝑟1, 𝑟2), 𝜀(𝑟1, 𝑟2) → 0, 𝑟1 → ∞,

holds, where 𝜇 denotes the complex conjugation.

Proof. First we consider the case 𝜇 = 0. We fix 𝜀 > 0 and choose 𝛿 > 0 such that

|𝑒𝑖𝜌𝜙 − 𝑒𝑖𝜌𝜃| 6 𝜀

𝑛(Λ, 𝜌(𝑟))𝜌 ln 𝑎
, ∀𝜙, 𝜃 : |𝜙− 𝜃| < 𝛿. (2.17)

We choose numbers

𝜙𝑠 ∈ Φ(𝜔Λ,𝜌(𝑟)), 𝑠 = 1, 𝑝, 𝜙1 ∈ (−2𝜋, 0), 𝜙1 < · · · < 𝜙𝑝 < 𝜙1 + 2𝜋 = 𝜙𝑝+1,

such that

𝜙𝑠+1 − 𝜙𝑠 < 𝛿, 𝑠 = 1, 𝑝. (2.18)

By (2.3) and in view of the definition of the integral we can assume that for all 𝑎𝑟1 > 𝑟2 > 𝑟1 >
𝑟(𝜀) the inequality holds:

ln
(𝑟2)

𝜌(𝑟2)

(𝑟1)𝜌(𝑟1)

⃒⃒⃒⃒
⃒⃒ 𝑝∑︁
𝑠=1

𝑒−𝑖𝜌𝜙𝑠(𝜔Λ,𝜌(𝑟)(𝜙𝑠+1) − 𝜔Λ,𝜌(𝑟)(𝜙𝑠)) −
2𝜋∫︁
0

𝑒−𝑖𝜌𝜙𝑑𝜔𝜔Λ,𝜌(𝑟)
(𝜙)

⃒⃒⃒⃒
⃒⃒ < 𝜀. (2.19)

Let 𝜆𝑘 = |𝜆𝑘|𝑒𝑖𝜓𝑘 , 𝜓𝑘 ∈ (𝜙1, 𝜙1 + 2𝜋], 𝑘 > 1. Then by (2.18) and (2.17) we have:⃒⃒⃒⃒
⃒⃒ ∑︁
(𝜓𝑘∈(𝜙𝑠,𝜙𝑠+1],𝑟16|𝜆𝑘|<𝑟2

(︂
𝑛𝑘

(𝜆𝑘)𝜌
− 𝑛𝑘

|𝜆𝑘|𝜌𝑒𝑖𝜌𝜙𝑠

)︂⃒⃒⃒⃒⃒⃒ 6 𝜀

4𝑛(Λ, 𝜌(𝑟))𝜌 ln 𝑎

∑︁
(𝜓𝑘∈(𝜙𝑠,𝜙𝑠+1],𝑟16|𝜆𝑘|<𝑟2

𝑛𝑘
|𝜆𝑘|𝜌

.

By (2.3), for all 𝑟2 ∈ (𝑟1, 𝑎𝑟1] we have:

lim
𝑟1→∞

(𝑟2)
𝜌(𝑟2)

(𝑟1)𝜌(𝑟1)
6 lim

𝑟1→∞

(𝑎𝑟1)
𝜌(𝑎𝑟1)

(𝑟1)𝜌(𝑟1)
= 𝑎𝜌.

This is why by (2.11) and (2.9) we obtain:

(𝑟1)
𝜌−𝜌(𝑟1)

𝑝∑︁
𝑠=1

⃒⃒⃒⃒
⃒⃒ ∑︁
(𝜓𝑘∈(𝜙𝑠,𝜙𝑠+1],𝑟16|𝜆𝑘|<𝑟2

(︂
𝑛𝑘

(𝜆𝑘)𝜌
− 𝑛𝑘

|𝜆𝑘|𝜌𝑒𝑖𝜌𝜙𝑠

)︂⃒⃒⃒⃒⃒⃒
6 𝜀

(𝑟1)
𝜌−𝜌(𝑟1)

𝑛(Λ, 𝜌(𝑟))𝜌 ln 𝑎

𝑝∑︁
𝑠=1

∑︁
(𝜓𝑘∈(𝜙𝑠,𝜙𝑠+1],𝑟16|𝜆𝑘|<𝑟2

𝑛𝑘
|𝜆𝑘|𝜌

= 𝜀
(𝑟1)

𝜌−𝜌(𝑟1)

4𝑛(Λ, 𝜌(𝑟))𝜌 ln 𝑎

∑︁
𝑟16|𝜆𝑘|<𝑟2

𝑛𝑘
|𝜆𝑘|𝜌

= 𝜀+ 𝜀0(𝑟1, 𝑟2),

(2.20)
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where 𝑎𝑟1 > 𝑟2 > 𝑟1 > 0, 𝜀0(𝑟1, 𝑟2) → 0, 𝑟1 → ∞. Now it follows from (2.11) and (2.9) that⃒⃒⃒⃒
⃒⃒ 𝑝∑︁
𝑠=1

⎛⎝ ∑︁
(𝜓𝑘∈(𝜙𝑠,𝜙𝑠+1],𝑟16|𝜆𝑘|<𝑟2

𝑛𝑘(𝑟1)
𝜌−𝜌(𝑟1)

|𝜆𝑘|𝜌𝑒𝑖𝜌𝜙𝑠
− 𝑒−𝑖𝜌𝜙𝑠 ln

(𝑟2)
𝜌(𝑟2)

(𝑟1)𝜌(𝑟1)
(𝜔Λ,𝜌(𝑟)(𝜙𝑠+1) − 𝜔Λ,𝜌(𝑟)(𝜙𝑠))

⎞⎠⃒⃒⃒⃒⃒⃒
6

𝑝∑︁
𝑠=1

⃒⃒⃒⃒
⃒⃒ ∑︁
(𝜓𝑘∈(𝜙𝑠,𝜙𝑠+1],𝑟16|𝜆𝑘|<𝑟2

𝑛𝑘(𝑟1)
𝜌−𝜌(𝑟1)

|𝜆𝑘|𝜌
− ln

(𝑟2)
𝜌(𝑟2)

(𝑟1)𝜌(𝑟1)
(𝜔Λ,𝜌(𝑟)(𝜙𝑠+1) − 𝜔Λ,𝜌(𝑟)(𝜙𝑠))

⃒⃒⃒⃒
⃒⃒

=

𝑝∑︁
𝑠=1

|𝜀𝑠(𝑟1, 𝑟2)| → 0, 𝑎𝑟1 > 𝑟2 > 𝑟1 → ∞.

Since 𝜇 = 0, by (2.19) and (2.20) we hence get:

(𝑟1)
𝜌−𝜌(𝑟1)|𝑁(𝑟2,Λ, 𝜌) −𝑁(𝑟1,Λ, 𝜌)| 6 4𝜀, 𝑎𝑟1 > 𝑟2 > 𝑟1 > 𝑟0(𝜀).

This completes the proof in the case 𝜇 = 0.

Assume now that 𝜇 ̸= 0. We let Λ1 = {𝑏𝑛𝑒𝑖(𝜓+𝜋)/𝜌, 1}∞𝑛=1, where 𝑏𝑛 > 0, 𝑏
𝜌(𝑏𝑛)
𝑛 = 𝑛/|𝜇| and

Λ2 = Λ1 ∪Λ. The sequence Λ1 is located on the ray {𝜆 = 𝑡𝑒𝑖(𝜓+𝜋)/𝜌, 𝑡 > 0} and has the density
𝑛(Λ1, 𝜌(𝑟)) = |𝜇|, while Λ2 possesses an angular density 𝜔Λ2,𝜌(𝑟) = 𝜔Λ,𝜌(𝑟) + 𝜔Λ1,𝜌(𝑟). It is easy
to see that

2𝜋∫︁
0

𝑒𝑖𝜌𝜙𝑑𝜔Λ2,𝜌(𝑟)(𝜙) =

2𝜋∫︁
0

𝑒𝑖𝜌𝜙𝑑𝜔Λ,𝜌(𝑟)(𝜙) +

2𝜋∫︁
0

𝑒𝑖𝜌𝜙𝑑𝜔Λ1,𝜌(𝑟)(𝜙) = 𝜇+ |𝜇|𝑒𝑖(𝜓+𝜋) = 0.

According to the above proven facts,

(𝑟1)
𝜌−𝜌(𝑟1)(𝑁(𝑟2,Λ2, 𝜌) −𝑁(𝑟1,Λ2, 𝜌)) = 𝛽(𝑟1, 𝑟2) → 0, 𝑎𝑟1 > 𝑟2 > 𝑟1 → ∞.

By (2.11)

(𝑟1)
𝜌−𝜌(𝑟1)(𝑁(𝑟2,Λ1, 𝜌) −𝑁(𝑟1,Λ1, 𝜌)) =(𝑟1)

𝜌−𝜌(𝑟1)
∑︁

𝑟16|𝜆𝑘|<𝑟2

1

(𝑏𝑛𝑒𝑖(𝜓+𝜋)/𝜌)𝜌

= −𝑒−𝑖𝜓(𝑟1)
𝜌−𝜌(𝑟1)

∑︁
𝑟16|𝜆𝑘|<𝑟2

1

(𝑏𝑛)𝜌
= − 𝑒−𝑖𝜓|𝜇| ln (𝑟2)

𝜌(𝑟2)

(𝑟1)𝜌(𝑟1)
+ 𝛽1(𝑟1, 𝑟2),

where 𝛽1(𝑟1, 𝑟2) → 0, 𝑎𝑟1 > 𝑟2 > 𝑟1 → ∞. Tnus, in view of the definition Λ2, we get the desired
identity. The proof is complete.

We shall say that Λ is a sequence of general form with respect to 𝜌 if there exist −𝜋 6 𝜙1 <
𝜙2 < 𝜙3 < 𝜋 such that the angles between the vectors 𝑒𝑖𝜌𝜙1 and 𝑒𝑖𝜌𝜙2 , 𝑒𝑖𝜌𝜙2 and 𝑒𝑖𝜌𝜙3 , 𝑒𝑖𝜌𝜙3 and
𝑒𝑖𝜌𝜙1 are strictly less than 𝜋 and at that,

𝑛0(Λ(𝜙𝜇 − 𝜙, 𝜙𝜇 + 𝜙), 𝜌(𝑟)) > 0, 𝜇 = 1, 2, 3, 𝜙 ∈ (0, 𝜋/2). (2.21)

We observe that the function, depending on 𝜙, in the left hand side of this inequality is non-
decreasing. This is why it is sufficient to ensure the inequality on some sequence 𝜙 = 𝜓𝜇,𝑝 → 0.

Lemma 2.3. Let 𝜌(𝑟) be a refined order, 𝜌(𝑟) → 𝜌 be an integer number, 𝑎 > 1, Λ = {𝜆𝑘, 𝑛𝑘}
and 𝛾𝑚 be complex numbers such that

(𝑎𝑚)𝜌−𝜌(𝑎
𝑚)𝛾𝑚 → 0, 𝑚→ ∞. (2.22)

Let Λ = {𝜆𝑘, 𝑛𝑘} be a sequence of general form with respect to 𝜌. Then there exist 𝐴 ∈ C and
a sequence Λ0 ⊆ Λ such that 𝑛(Λ0, 𝜌(𝑟)) = 0 and

(𝑎𝑙)𝜌−𝜌(𝑎
𝑙)(𝐴+

𝑙∑︁
𝑚=1

𝛾𝑚 −𝑁(𝑎𝑙+1,Λ0, 𝜌)) → 0, 𝑙 → ∞. (2.23)
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If, in addition, 𝜌(𝑟) ≡ 𝜌, then there exists Λ0 ⊆ Λ such that 𝑛(Λ0, 𝜌(𝑟)) = 0 and

𝑙∑︁
𝑚=1

𝛾𝑚 −𝑁(𝑎𝑙+1,Λ0, 𝜌) → 0, 𝑙 → ∞. (2.24)

Proof. As in the proof of Lemma 2.1, we consider a sequence Λ1 = {𝜉𝑝} constructed by Λ.
Let 𝜙1, 𝜙2, 𝜙3 be the numbers involved in the definition of the sequence of general form and
−𝜋 6 𝜓1 < 𝜓2 < 𝜓3 < 𝜋 be such that the vectors 𝑒𝑖𝜌𝜙1 , 𝑒𝑖𝜌𝜙2 , 𝑒𝑖𝜌𝜙3 coincide with the vectors
𝑒𝑖𝜌𝜓1 , 𝑒𝑖𝜌𝜓2 , 𝑒𝑖𝜌𝜓3 , possibly in another order. We let

𝜓0 = 4−1 min{𝜋 − (𝜓2 − 𝜓1);𝜋 − (𝜓3 − 𝜓2); 𝜋 − (𝜓1 + 2𝜋 − 𝜓3)}.
We have: 𝜓0 ∈ (0, 𝜋/4). We mention an important property of the numbers 𝜓0, 𝜓1, 𝜓2, 𝜓3.
For each straight line passing through the origin and for each of two half-planes created by this
straight line, there exists 𝜇 = 1, 2, 3 such that the angle Γ𝜇 = Γ(𝜓𝜇 − 2𝜓0, 𝜓𝜇 + 2𝜓0) is located
in this half-plane.

Let Λ1,𝑚 = {𝜉𝑝}𝑝(𝑚+1)−1
𝑝=𝑝(𝑚) be the set of all elements of Λ1 in the annulus

𝒦(𝑚) = {𝜉 : 𝑎𝑚 < |𝜉| 6 𝑎𝑚+1}, 𝑚 > 1.

Some of these sets can be empty. We consider a sunsequence Λ2 = {𝜉𝑝(𝑚,𝑗)}𝑗(𝑚),∞
𝑗=1,𝑚=1 of sequence

Λ1 such that 𝜉𝑝(𝑚,𝑗) ∈ Λ1,𝑚, 𝑗 = 1, 𝑗(𝑚), 𝑚 > 1. For some indices 𝑚 the set {𝜉𝑝(𝑚,𝑗)}𝑗(𝑚)
𝑗=1 can

turn out to be empty; in such case we 𝑗(𝑚) = 0.
We let 𝛽𝑚 ∈ C, 𝑚 > 1 and

𝑗(0) = 0, 𝛾0(0) = 0, 𝛾𝑚(0) = (𝑎𝑚)𝜌−𝜌(𝑎
𝑚)

(︂
𝛾𝑚−1(𝑗(𝑚− 1))

(𝑎𝑚−1)𝜌−𝜌(𝑎𝑚−1)
+ 𝛽𝑚

)︂
, 𝑚 > 1,

𝛾𝑚(𝑗) = 𝛾𝑚(0) −
𝑗∑︁
𝑠=1

(𝑎𝑚)𝜌−𝜌(𝑎
𝑚)

(𝜉𝑝(𝑚,𝑠))𝜌
, 𝑗 = 1, 𝑗(𝑚).

(2.25)

Let Γ𝜇,0 = Γ(𝜓𝜇 − 𝜓0, 𝜓𝜇 + 𝜓0), 𝜇 = 1, 2, 3, Π(𝜙) = {𝜉 ∈ C : Re(𝜉𝑒𝑖𝜙)} > 0, 𝜙(𝑚, 𝑗) be the
argument of the number 𝛾𝑚(𝑗) and 𝜇(𝑚, 𝑗) be an index such that Γ𝜇(𝑚,𝑗) ⊂ Π(𝜙(𝑚, 𝑗)).

For each 𝑚 > 1 we choose a set {𝜉𝑝(𝑚,𝑗)}𝑗(𝑚)
𝑗=1 such that

1) For each 𝑗 = 1, 𝑗(𝑚) the number 𝜉𝑝(𝑚,𝑗) is an arbitrary element in the set Λ1,𝑚∖{𝜉𝑝(𝑚,𝑠)}𝑗−1
𝑠=1

such that (𝜉𝑝(𝑚,𝑗))
𝜌 ∈ Γ𝜇(𝑚,𝑗),0.

2) 𝑗(𝑚) is a minimal non-negative integer number for which either

|𝛾𝑚(𝑗(𝑚))| 6 1

(𝑎𝑚)𝜌(𝑎𝑚) sin𝜓0

, (2.26)

or the set Λ1,𝑚 ∖ {𝜉𝑝(𝑚,𝑗)}𝑗(𝑚)
𝑗=1 contains no elements 𝜉𝑝 such that (𝜉𝑝)

𝜌 ∈ Γ𝜇(𝑚,𝑗(𝑚)),0.
Thus, the subsequence Λ2 is well-defined. We are going to find an upper bound for the indices

𝑗(𝑚) > 0.
First of all let us prove the inequality

|𝛾𝑚(𝑗)| 6 |𝛾𝑚(𝑗 − 1)| − sin𝜓0

2(𝑎𝑚)𝜌(𝑎𝑚)𝑎𝜌
, 𝑗 = 1, 𝑗(𝑚). (2.27)

According to (2.25) we have

𝛾𝑚(𝑗) = 𝛾𝑚(𝑗 − 1) − (𝑎𝑚)𝜌−𝜌(𝑎
𝑚)

(𝜉𝑝(𝑚,𝑗))𝜌
.

Then by the cosine theorem

|𝛾𝑚(𝑗)|2 = |𝛾𝑚(𝑗 − 1)|2 +
(𝑎𝑚)2𝜌−2𝜌(𝑎𝑚)

|𝜉𝑝(𝑚,𝑗)|2𝜌
− 2|𝛾𝑚(𝑗 − 1)|(𝑎

𝑚)𝜌−𝜌(𝑎
𝑚)

|𝜉𝑝(𝑚,𝑗)|𝜌
cos𝛼,
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where 𝛼 is one of two angles between the vectors 𝛾𝑚(𝑗 − 1) and (𝜉𝑝(𝑚,𝑗))
−𝜌, which does not

exceed 𝜋/2 − 𝜓0; it exists because (𝜉𝑝(𝑚,𝑗))
𝜌 ∈ Γ𝜇(𝑚,𝑗),0). Since

cos𝛼 > cos(𝜋/2 − 𝜓0) = sin𝜓0,

𝜉𝑝(𝑚,𝑗) ∈ 𝒦(𝑚) and by 2) and (2.26)

|𝛾𝑚(𝑗(𝑚− 1))| > 1

(𝑎𝑚)𝜌(𝑎𝑚) sin𝜓0

,

we thus have:

|𝛾𝑚(𝑗 − 1)|2 − |𝛾𝑚(𝑗)|2 > 2|𝛾𝑚(𝑗 − 1)|(𝑎
𝑚)𝜌−𝜌(𝑎

𝑚)

|𝜉𝑝(𝑚,𝑗)|𝜌
sin𝜓0 −

(𝑎𝑚)2𝜌−2𝜌(𝑎𝑚)

|𝜉𝑝(𝑚,𝑗)|2𝜌

= |𝛾𝑚(𝑗 − 1)|(𝑎
𝑚)𝜌−𝜌(𝑎

𝑚)

|𝜉𝑝(𝑚,𝑗)|𝜌

(︂
2 sin𝜓0 −

(𝑎𝑚)𝜌−𝜌(𝑎
𝑚)

|𝜉𝑝(𝑚,𝑗)|𝜌|𝛾𝑚(𝑗 − 1)|

)︂
> |𝛾𝑚(𝑗 − 1)|(𝑎

𝑚)𝜌−𝜌(𝑎
𝑚)

|𝜉𝑝(𝑚,𝑗)|𝜌
(2 sin𝜓0 − sin𝜓0) > |𝛾𝑚(𝑗 − 1)| sin𝜓0

(𝑎𝑚)𝜌(𝑎𝑚)𝑎𝜌
.

In particular, |𝛾𝑚(𝑗 − 1)| > |𝛾𝑚(𝑗)|. Therefore,

2|𝛾𝑚(𝑗 − 1)|(|𝛾𝑚(𝑗 − 1)| − |𝛾𝑚(𝑗)|) >(|𝛾𝑚(𝑗 − 1)| + |𝛾𝑚(𝑗)|)(|𝛾𝑚(𝑗 − 1)| − |𝛾𝑚(𝑗)|)

>|𝛾𝑚(𝑗 − 1)| sin𝜓0

(𝑎𝑚)𝜌(𝑎𝑚)𝑎𝜌
.

This yields inequality (2.27). Applying it 𝑗(𝑚) times, we find:

0 6 |𝛾𝑚(𝑗(𝑚))| 6 |𝛾𝑚(0)| − 𝑗(𝑚) sin𝜓0

2(𝑎𝑚)𝜌(𝑎𝑚)𝑎𝜌
, 𝑚 > 1. (2.28)

For 𝑗(𝑚) = 0 the inequality is trivial. This is why

𝑗(𝑚) 6
2(𝑎𝑚)𝜌(𝑎

𝑚)𝑎𝜌

sin𝜓0

|𝛾𝑚(0)|, 𝑚 > 1. (2.29)

Let Λ0 be a subsequence of Λ, which corresponds to the subsequence Λ2 ⊆ Λ1. Then

𝑁(𝑎,Λ0, 𝜌) = 0,

𝑗(𝑚)∑︁
𝑠=1

1

(𝜉𝑝(𝑚,𝑠))𝜌
= 𝑁(𝑎𝑚+1,Λ0, 𝜌) −𝑁(𝑎𝑚,Λ0, 𝜌), 𝑚 > 1.

Let us prove (2.23). By (2.25) we have:

𝛾𝑙(𝑗(𝑙)) =(𝑎𝑙)𝜌−𝜌(𝑎
𝑙)

(︂
𝛾𝑙−1(𝑗(𝑙 − 1))

(𝑎𝑙−1)𝜌−𝜌(𝑎𝑙−1)
+ 𝛽𝑙 +𝑁(𝑎𝑙+1,Λ0, 𝜌) −𝑁(𝑎𝑙,Λ0, 𝜌)

)︂
=(𝑎𝑙)𝜌−𝜌(𝑎

𝑙)

(︂
𝛾𝑙−2(𝑗(𝑙 − 2))

(𝑎𝑙−2)𝜌−𝜌(𝑎𝑙−2)
+ 𝛽𝑙−1 + 𝛽𝑙 +𝑁(𝑎𝑙+1,Λ0, 𝜌) −𝑁(𝑎𝑙−1,Λ0, 𝜌)

)︂
= · · · = (𝑎𝑙)𝜌−𝜌(𝑎

𝑙)

(︃
𝑙∑︁

𝑚=1

𝛽𝑚 −𝑁(𝑎𝑙+1,Λ0, 𝜌)

)︃
.

(2.30)

Let 𝛾 ∈ (1, 𝑎) and 𝜙0 = 𝜓0/𝜌. According to (2.21), there exists 𝛽 > 0 such that

𝑛0(Λ(𝜙𝜇 − 𝜙0, 𝜙𝜇 + 𝜙0)) > 3𝛽𝑐, 𝑐 = 𝑎𝜌
(︂
𝑎𝜌

𝛾
− 1

)︂−1

, 𝜇 = 1, 2, 3.

Then by (2.8)
𝑛0(Λ

𝜗(𝜙𝜇 − 𝜙0, 𝜙𝜇 + 𝜙0), 1) > 3𝛽𝑐, 𝜇 = 1, 2, 3.

By Lemma 2.1 in work [8],

𝑛0(Λ
𝜗(𝜙𝜇 − 𝜙0, 𝜙𝜇 + 𝜙0), 𝜏, 1) > 𝑛0(Λ

𝜗(𝜙𝜇 − 𝜙0, 𝜙𝜇 + 𝜙0), 1), 𝜏 ∈ (0, 1).
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Therefore,
𝑛0(Λ

𝜗(𝜙𝜇 − 𝜙0, 𝜙𝜇 + 𝜙0), 𝜏, 1) > 3𝛽𝑐, 𝜏 ∈ (0, 1), 𝜇 = 1, 2, 3.

According to the definition of the quantity 𝑛0(Λ, 𝜏, 𝜌(𝑟)), we choose 𝑟(𝜏) such that

𝑛(𝑟,Λ𝜗(𝜙𝜇 − 𝜙0, 𝜙𝜇 + 𝜙0)) − 𝑛(𝜏𝑟,Λ𝜗(𝜙𝜇 − 𝜙0, 𝜙𝜇 + 𝜙0)) > 2𝑟(1 − 𝜏)𝛽𝑐, 𝑟 > 𝑟(𝜏).

Then in view of (2.3) we get:

𝑛(𝑎𝑚+1,Λ(𝜙𝜇 − 𝜙0, 𝜙𝜇 + 𝜙0)) − 𝑛(𝑎𝑚,Λ(𝜙𝜇 − 𝜙0, 𝜙𝜇 + 𝜙0))

=𝑛((𝑎𝑚+1)𝜌(𝑎
𝑚+1),Λ𝜗(𝜙𝜇 − 𝜙0, 𝜙𝜇 + 𝜙0)) − 𝑛((𝑎𝑚)𝜌(𝑎

𝑚),Λ𝜗(𝜙𝜇 − 𝜙0, 𝜙𝜇 + 𝜙0))

>𝑛((𝑎𝑚+1)𝜌(𝑎
𝑚+1),Λ𝜗(𝜙𝜇 − 𝜙0, 𝜙𝜇 + 𝜙0)) − 𝑛(𝛾𝑎−𝜌(𝑎𝑚+1)𝜌(𝑎

𝑚+1),Λ𝜗(𝜙𝜇 − 𝜙0, 𝜙𝜇 + 𝜙0))

>2(𝑎𝑚+1)𝜌(𝑎
𝑚+1)

(︁
1 − 𝛾

𝑎𝜌

)︁
𝛽𝑐 > 2

𝑎𝜌

𝛾
(𝑎𝑚)𝜌(𝑎

𝑚)
(︁

1 − 𝛾

𝑎𝜌

)︁
𝛽𝑐 = 2𝑎𝜌𝛽(𝑎𝑚)𝜌(𝑎

𝑚), 𝑚 > 𝑚0.

In view of (2.26), (2.28) and 1), 2) we hence obtain:

|𝛾𝑚(𝑗(𝑚))| 6 max

{︂
1

(𝑎𝑚)𝜌(𝑎𝑚) sin𝜓0

, |𝛾𝑚(0)| − 𝛽 sin𝜓0

}︂
, 𝑚 > 𝑚0. (2.31)

By (2.22) we can suppose that

(𝑎𝑚)𝜌−𝜌(𝑎
𝑚)|𝛾𝑚| +

2

(𝑎𝑚−1)𝜌(𝑎𝑚−1) sin𝜓0

6
𝛽 sin𝜓0

2
, 𝑚 > 𝑚0. (2.32)

Moreover, by (2.2) we can also suppose that

(𝑎𝑚)𝜌−𝜌(𝑎
𝑚)

(𝑎𝑚−1)𝜌−𝜌(𝑎𝑚−1)
6 2, 𝑚 > 𝑚0. (2.33)

We let 𝛽𝑚 = 0, 𝑚 < 𝑚0, 𝛽𝑚 = 𝛾𝑚, 𝑚 > 𝑚0 and

𝐴 = −
𝑚0−1∑︁
𝑚=1

𝛾𝑚.

Then by construction the sets {𝜉𝑝(𝑚,𝑗)}𝑗(𝑚)
𝑗=1 , 𝑚 < 𝑚0, are empty. This is why 𝑁(𝑎𝑚0,Λ0, 𝜌) = 0.

Therefore, according to (2.30) we have:

𝛾𝑙(𝑗(𝑙)) = (𝑎𝑙)𝜌−𝜌(𝑎
𝑙)

(︃
𝐴+

𝑙∑︁
𝑚=1

𝛾𝑚 −𝑁(𝑎𝑙+1,Λ0, 𝜌)

)︃
, 𝑙 > 𝑚0. (2.34)

By (2.25)

𝛾𝑚0(0) = (𝑎𝑚0)𝜌−𝜌(𝑎
𝑚0 )𝛾𝑚0 .

By (2.32) and (2.31) we then obtain:

|𝛾𝑚0(𝑗(𝑚0))| 6
1

(𝑎𝑚0)𝜌(𝑎
𝑚0 ) sin𝜓0

.

Assume that

|𝛾𝑚(𝑗(𝑚))| 6 1

(𝑎𝑚)𝜌(𝑎𝑚) sin𝜓0

, 𝑙 − 1 > 𝑚 > 𝑚0.

In view of (2.25), (2.32) and (2.33) we find:

|𝛾𝑙(0)| 6 (𝑎𝑙)𝜌−𝜌(𝑎
𝑙)

(𝑎𝑙−1)𝜌−𝜌(𝑎𝑙−1)
|𝛾𝑙−1(𝑗(𝑙 − 1))| + (𝑎𝑙)𝜌−𝜌(𝑎

𝑙)|𝛾𝑙| 6
𝛽 sin𝜓0

2
.

Then, by (2.31),

|𝛾𝑙(𝑗(𝑙))| 6
1

(𝑎𝑙)𝜌(𝑎𝑙) sin𝜓0

.
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Together with (2.34) this leads us to (2.23).
We proceed to proving (2.24). We let 𝛽𝑚 = 𝛾𝑚, 𝑚 > 1. If 𝜌(𝑟) ≡ 𝜌, then by (2.30)

𝛾𝑙(𝑗(𝑙)) =
𝑙∑︁

𝑚=1

𝛾𝑚 −𝑁(𝑎𝑙+1,Λ0, 𝜌). (2.35)

Assume that |𝛾𝑚(𝑝(𝑚))| > ((𝑎𝑚)𝜌 sin𝜓0)
−1 for all 𝑚 > 𝑚0. Then in view (2.31), (2.25) and

(2.32) we obtain:

|𝛾𝑙(𝑗(𝑙))| 6|𝛾𝑙(0)| − 𝛽 sin𝜓0 6 |𝛾𝑙−1(𝑗(𝑙 − 1))| + |𝛾𝑙| − 𝛽 sin𝜓0

6|𝛾𝑙−1(𝑗(𝑙 − 1))| − 2−1𝛽 sin𝜓0 6 · · · 6 |𝛾𝑚0(𝑗(𝑚0))| − 2−1(𝑙 −𝑚0)𝛽 sin𝜓0.

For sufficiently large 𝑙 the right hand side becomes negative and this is a contradiction. Thus,
there exists 𝑚 > 𝑚0 such that |𝛾𝑚(𝑗(𝑚))| > ((𝑎𝑚)𝜌 sin𝜓0)

−1. Then by (2.32) we get:

|𝛾𝑚+1(0)| − 𝛽 sin𝜓0 6 |𝛾𝑚(𝑗(𝑚))| + |𝛾𝑚+1| − 𝛽 sin𝜓0 < 0.

Therefore, in view of (2.31) we have: |𝛾𝑚+1(𝑗(𝑚 + 1))| 6 ((𝑎𝑚+1)𝜌 sin𝜓0)
−1. This implies that

|𝛾𝑙(𝑗(𝑙))| 6 ((𝑎𝑙)𝜌 sin𝜓0)
−1, 𝑙 > 𝑚. Then by (2.35) we get (2.24).

It remains to show that 𝑛(Λ0, 𝜌(𝑟)) = 0. Since |𝛾𝑙(𝑗(𝑙))| → 0, 𝑙 → ∞, then according to
(2.29), (2.25), (2.33) and (2.22) we have:

𝑗(𝑚)

2(𝑎𝑚)𝜌(𝑎𝑚)
6

2𝑎𝜌|𝛾𝑚(0)|
sin𝜓0

6
(𝑎𝑚)𝜌−𝜌(𝑎

𝑚)

(𝑎𝑚−1)𝜌−𝜌(𝑎𝑚−1)

|𝛾𝑚−1(𝑗(𝑚− 1))|
sin𝜓0

+
(𝑎𝑚)𝜌−𝜌(𝑎

𝑚)|𝛾𝑚|)
sin𝜓0

→ 0,

as 𝑚 → ∞. We fix 𝜀 > 0. Then there exists an index 𝑚(𝜀) such that

𝑗(𝑚) 6 𝜀(𝑎𝑚)𝜌(𝑎
𝑚), 𝑚 > 𝑚(𝜀). We can assume that 𝑟𝜌(𝑟) increases as 𝑟 > (𝑎𝑚(𝜀))𝜌(𝑎

𝑚(𝜀))

and by (2.3) the inequality holds:

(𝑎𝑚)𝜌(𝑎
𝑚)

(𝑎𝑚+1)𝜌(𝑎𝑚+1)
6 𝑞, 𝑚 > 𝑚(𝜀), (2.36)

where 𝑞 ∈ (0, 1). Let 𝑟 > (𝑎𝑚(𝜀))𝜌(𝑎
𝑚(𝜀)) and let an index 𝑚(𝑟) be chosen so that

(𝑎𝑚(𝑟))𝜌(𝑎
𝑚(𝑟)) 6 𝑟 < (𝑎𝑚(𝑟)+1)𝜌(𝑎

𝑚(𝑟)+1).

Then in view of (2.36) we obtain:

𝑛(𝑟,Λ0)

𝑟𝜌(𝑟)
=
𝑛(𝑎𝑚(𝜀),Λ0)

𝑟𝜌(𝑟)
+
𝑛(𝑎𝑚(𝑟)+1,Λ0) − 𝑛(𝑎𝑚(𝜀),Λ0)

𝑟𝜌(𝑟)

6
𝑛(𝑎𝑚(𝜀),Λ0)

𝑟𝜌(𝑟)
+

(𝑗(𝑚(𝜀)) + · · · + 𝑗(𝑚(𝑟)))

(𝑎𝑚(𝑟))𝜌(𝑎𝑚(𝑟))

6
𝑛(𝑎𝑚(𝜀),Λ0)

𝑟𝜌(𝑟)
+ 𝜀

(𝑎𝑚(𝜀))𝜌(𝑎
𝑚(𝜀)) + · · · + (𝑎𝑚(𝑟))𝜌(𝑎

𝑚(𝑟)))

(𝑎𝑚(𝑟))𝜌(𝑎𝑚(𝑟))

6
𝑛(𝑎𝑚(𝜀),Λ0)

𝑟𝜌(𝑟)
+ 𝜀(𝑞𝑚(𝑟)−𝑚(𝜀) + 𝑞𝑚(𝑟)−𝑚(𝜀)−1 + · · · + 1).

This implies that 𝑛̄(Λ0, 𝜌(𝑟)) 6 𝜀/(1 − 𝑞). Since 𝜀 > 0 is arbitrary, this completes the proof of
the lemma.

Let Λ1 ⊆ Λ2. Then Λ2 ∖ Λ1 is a subsequence such that Λ2 = Λ1 ∪ (Λ2 ∖ Λ1).
By the symbol Σ𝜌 we denote a subclass of all functions 𝜔 ∈ Σ such that∫︁ 2𝜋

0

𝑒𝑖𝜌𝜙𝑑𝜔(𝜙) = 0.
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Theorem 2.2. Let 𝜌(𝑟) be a refined order, 𝜌(𝑟) → 𝜌 be an integer number, 𝜔 ∈ Σ𝜌 and
Λ1 ⊆ Λ2 such that for all admissible 𝜙, 𝜓 /∈ Φ(𝜔) the inequalities hold:

𝑛0(Λ2(𝜙, 𝜓), 𝜌(𝑟)) > 𝜔(𝜓) − 𝜔(𝜙), 𝑛̄0(Λ1(𝜙, 𝜓), 𝜌(𝑟)) 6 𝜔(𝜓) − 𝜔(𝜙).

Assume that for some −𝜋 6 𝜙1 < 𝜙2 < 𝜙3 < 𝜋 such that the angles between the vectors 𝑒𝑖𝜌𝜙1

and 𝑒𝑖𝜌𝜙2, 𝑒𝑖𝜌𝜙2 and 𝑒𝑖𝜌𝜙3, 𝑒𝑖𝜌𝜙3 and 𝑒𝑖𝜌𝜙1 are strictly less than 𝜋, at least one of the following
two conditions holds:

𝑛0(Λ2(𝜙𝜇 − 𝜙, 𝜙𝜇 + 𝜙), 𝜌(𝑟)) > 𝜔(𝜙𝜇 + 𝜙) − 𝜔(𝜙𝜇 − 𝜙), (2.37)

𝑛̄0(Λ1(𝜙𝜇 − 𝜙, 𝜙𝜇 + 𝜙), 𝜌(𝑟)) < 𝜔(𝜙𝜇 + 𝜙) − 𝜔(𝜙𝜇 − 𝜙), (2.38)

where 𝜙 ∈ (0, 𝜋/2) ∖Φ(𝜔), 𝜇 = 1, 2, 3. Then there exists a regularly distributed sequence Λ with
an angular density 𝜔 such that Λ1 ⊆ Λ ⊆ Λ2. If in addition 𝜌(𝑟) ≡ 𝜌, then 𝑁(𝑟,Λ, 𝜌) → 0,
𝑟 → +∞.

Proof. By Theorem 2.1 there exists a sequence Λ3 with an angular density 𝜔 such that Λ1 ⊆
Λ3 ⊆ Λ2. Assume first that (2.37) holds and Λ4 = Λ2 ∖ Λ3. Then by (2.9) and (2.10),

𝑛0(Λ4(𝜙𝜇 − 𝜙, 𝜙𝜇 + 𝜙), 𝜌(𝑟)) >𝑛0(Λ2(𝜙𝜇 − 𝜙, 𝜙𝜇 + 𝜙), 𝜌(𝑟)) − 𝑛(Λ3(𝜙𝜇 − 𝜙, 𝜙𝜇 + 𝜙), 𝜌(𝑟))

>𝜔(𝜙𝜇 + 𝜙) − 𝜔(𝜙𝜇 − 𝜙) − (𝜔(𝜙𝜇 + 𝜙) − 𝜔(𝜙𝜇 − 𝜙)) = 0,

𝜙 ∈ (0, 𝜋/22) ∖ Φ(𝜔), 𝜇 = 1, 2, 3. This implies that Λ4 be a sequence of general form with
respect to 𝜌. We let

𝛾1 = −𝑁(22,Λ3, 𝜌), 𝛾𝑚 = −(𝑁(2𝑚+1,Λ3, 𝜌) −𝑁(2𝑚,Λ3, 𝜌)), 𝑚 > 2.

Since 𝜔 ∈ Σ𝜌, then by Lemma 2.2 we have: (2𝑚)𝜌−𝜌(2
𝑚)𝛾𝑚 → 0, 𝑚 → ∞. Then by Lemma 2.3

there exists a sequence of zero density Λ0 ⊆ Λ4 such that (2.23) holds and under the additional
condition 𝜌(𝑟) ≡ 𝜌 convergence (2.24) holds. By (2.23) and the definition of 𝛾𝑚 we get:

(𝑎𝑙)𝜌−𝜌(𝑎
𝑙)(𝐴−𝑁(22,Λ3, 𝜌)−

𝑙∑︁
𝑚=2

(𝑁(2𝑚+1,Λ3, 𝜌) −𝑁(2𝑚,Λ3, 𝜌)) −𝑁(𝑎𝑙+1,Λ0, 𝜌))

=(𝑎𝑙)𝜌−𝜌(𝑎
𝑙))(𝐴−𝑁(𝑎𝑙+1,Λ, 𝜌)) → 0, 𝑙 → ∞,

where Λ = Λ0 ∪ Λ3. The sequence Λ, as Λ3, has an angular density 𝜔 ∈ Σ𝜌. At that,
the embeddings hold: Λ1 ⊆ Λ ⊆ Λ2. Let 𝑟 > 0 and an index 𝑙(𝑟) be chosen by condition
2𝑙(𝑟) 6 𝑟 < 2𝑙(𝑟)+1. Then in view of the above facts and (2.2), by Lemma 2.3 we obtain:

𝑟𝜌−𝜌(𝑟)(𝐴−𝑁(𝑟,Λ, 𝜌)) =𝑟𝜌−𝜌(𝑟)(𝐴−𝑁(𝑎𝑙+1,Λ, 𝜌))

+ 𝑟𝜌−𝜌(𝑟)(𝑁(𝑎𝑙+1,Λ, 𝜌) −𝑁(𝑟,Λ, 𝜌)) → 0, 𝑟 → +∞.

Thus, the sequence Λ is a regularly distributed set. Under the condition 𝜌(𝑟) ≡ 𝜌, by (2.24) we
also obtain:𝑁(𝑟,Λ, 𝜌) → 0, 𝑟 → +∞.

Let (2.38) hold and Λ5 = Λ3 ∖ Λ1. Then, by (2.9) and (2.10),

𝑛0(Λ5(𝜙𝜇 − 𝜙, 𝜙𝜇 + 𝜙), 𝜌(𝑟)) >𝑛(Λ3(𝜙𝜇 − 𝜙, 𝜙𝜇 + 𝜙), 𝜌(𝑟))

− 𝑛̄0(Λ1(𝜙𝜇 − 𝜙, 𝜙𝜇 + 𝜙), 𝜌(𝑟)) > 𝜔(𝜙𝜇 + 𝜙) − 𝜔(𝜙𝜇 − 𝜙)

− 𝑛̄0(Λ1(𝜙𝜇 − 𝜙, 𝜙𝜇 + 𝜙), 𝜌(𝑟)) > 0,

𝜙 ∈ (0, 𝜋/2) ∖ Φ(𝜔), 𝜇 = 1, 2, 3. Thus, Λ5 is a sequence of general form. We let

𝛾1 = 𝑁(22,Λ3), 𝛾𝑚 = 𝑁(2𝑚+1,Λ3) −𝑁(2𝑚,Λ3), 𝑚 > 2.

Then, as above, we find a sequence of zero density Λ0 ⊆ Λ5 such that Λ = Λ3 ∖Λ0 is a regularly
distributed set. At that, the embeddings Λ1 ⊆ Λ ⊆ Λ2 hold. If 𝜌(𝑟) ≡ 𝜌, then 𝑁(𝑟,Λ, 𝜌) → 0,
𝑟 → +∞. The proof is complete.
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We consider some corollaries of Theorem 2.2. Let

ΛZ,𝜌(𝑟) = {𝜆𝑛,𝑚, 1}, 𝜆𝑛,𝑚 = |𝜆𝑛,𝑚|𝑒𝑖𝜙𝑛,𝑚 , |𝜆𝑛,𝑚|𝜌(|𝜆𝑛,𝑚|)𝑒𝑖𝜙𝑛,𝑚 = 𝑛+ 𝑖𝑚, 𝑛,𝑚 ∈ Z.
In the case 𝜌(𝑟) ≡ 1 we have

ΛZ,𝜌(𝑟) = ΛZ,1 = {𝑛+ 𝑖𝑚, 1}, 𝑛,𝑚 ∈ Z.
The following statement holds [1, Ch. II, Sect. 1, Thm. 3], [2, Ch. I, Sect. 3, Subsect. 1].

Corollary 2.1. Let 𝜌(𝑟) → 𝜌 be a refined order and 𝜔 ∈ Σ𝜌. There exists a regularly
distributed set Λ ⊆ ΛZ,𝜌(𝑟) with an angular density 𝜔. If in addition 𝜌(𝑟) ≡ 𝜌 is an integer
number, then 𝑁(𝑟,Λ, 𝜌) → 0, 𝑟 → +∞.

Proof. It is easy to see that for all admissible 𝜙, 𝜓 the identity 𝑛0(ΛZ(𝜙, 𝜓), 1) = +∞ holds.
By the definition of ΛZ,𝜌(𝑟) we have: (ΛZ,𝜌(𝑟))

𝜗 = ΛZ,1. This is why, according to (2.8), we
obtain: 𝑛0(ΛZ,𝜌(𝑟))(𝜙, 𝜓), 𝜌(𝑟)) = +∞. If 𝜌 is not integer, then the needed sequence Λ ⊆ ΛZ,𝜌(𝑟)
exists owing to Theorem 2.1, in which we let Λ1 = ∅ and Λ2 = ΛZ,𝜌(𝑟)). In the case when 𝜌 is
a natural number, such sequence exists due to Theorem 2.2. The proof is complete.

We shall say that 𝜔 ∈ Σ is a function of general form with respect to 𝜌 if there exist
−𝜋 6 𝜙1 < 𝜙2 < 𝜙3 < 𝜋 such that the angles between the vectors 𝑒𝑖𝜌𝜙1 and 𝑒𝑖𝜌𝜙2 , 𝑒𝑖𝜌𝜙2 and
𝑒𝑖𝜌𝜙3 , 𝑒𝑖𝜌𝜙3 and 𝑒𝑖𝜌𝜙1 are stricly less than 𝜋 and

𝜔(𝜙𝜇 + 𝜙) − 𝜔(𝜙𝜇 − 𝜙) > 0, 𝜇 = 1, 2, 3, 𝜙 ∈ (0, 𝜋/2).

If Λ possesses an angular density 𝜔 ∈ Σ, then it is easy to see that Λ is a sequence of general
form with respect to 𝜌 if and only if 𝜔 = 𝜔Λ,𝜌(𝑟) is a function of general form with respect to 𝜌.

Theorems 2.1 and 2.2 also imply the following statement.

Corollary 2.2. Let 𝜌(𝑟) → 𝜌 be a refined order, 𝜔 ∈ Σ𝜌 be a function of general form with
respect to 𝜌 and Λ2 such that for all admissible 𝜙, 𝜓 /∈ Φ(𝜔) the identity

𝑛0(Λ2(𝜙, 𝜓), 𝜌(𝑟)) > 𝜔(𝜓) − 𝜔(𝜙)

holds. Then there exists a regularly distributed set Λ ⊆ Λ2 with an angular density 𝜔. If in
addition 𝜌(𝑟) ≡ 𝜌 is an integer number, then 𝑁(𝑟,Λ, 𝜌) → 0, 𝑟 → +∞.

The next statement covers the main result of work [5] as a particular case.

Corollary 2.3. Let 𝜌(𝑟) → 𝜌 be a refined order, 𝜔 ∈ Σ𝜌 and Λ1 be such that for all admissible
𝜙, 𝜓 /∈ Φ(𝜔) the identity

𝑛̄0(Λ1(𝜙, 𝜓), 𝜌(𝑟)) 6 𝜔(𝜓) − 𝜔(𝜙)

holds. Then there exists a regularly distributed set Λ with an angular density 𝜔 such that
Λ1 ⊆ Λ ⊆ Λ1 ∪ ΛZ,𝜌(𝑟). If in addition 𝜌(𝑟) ≡ 𝜌 is an integer number, then 𝑁(𝑟,Λ, 𝜌) → 0,
𝑟 → +∞.

Let us adduce an example showing that conditions (2.37), (2.38) in Theorem 2.2 are essential.
Let Λ2 = Λ− ∪ Λ+, where

Λ− = {− 3
√
𝑝}+∞

𝑝=3, Λ+ = {𝜆𝑘,𝜇}+∞,3
𝑘=1,𝜇=1, 𝜆𝑘,𝜇 = 𝜍𝑘,𝜇𝑒

𝑖((2𝜋(𝜇−1))/3), Re𝜍𝑘,𝜇 > 0,

(𝜍𝑘,𝜇)3 = 𝑠(𝑘, 𝜇) ln 𝑠(𝑘, 𝜇)
ln 𝑠(𝑘, 𝜇) + 𝑖(−1)𝜎(𝑘,𝜇)

1 + ln2 𝑠(𝑘, 𝜇)
, 𝑠(𝑘, 𝜇) = 3𝑘 + 𝜇− 1,

where 𝜎(𝑘, 𝜇) takes value 0 or 1, which will be determined later. We are going to show that Λ2

possesses an angular density at order 𝜌(𝑟) ≡ 3. We have:

1

(𝜆𝑘,𝜇)3
=

1

(𝜍𝑘,𝜇)3
=

ln 𝑠(𝑘, 𝜇) − 𝑖(−1)𝜎(𝑘,𝜇)

𝑠(𝑘, 𝜇) ln 𝑠(𝑘, 𝜇)
=

1

𝑠(𝑘, 𝜇)
− 𝑖

(−1)𝜎(𝑘,𝜇)

𝑠(𝑘, 𝜇) ln 𝑠(𝑘, 𝜇)
. (2.39)
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By straightforward calculations for all 𝜙 ∈ (0, 𝜋/3) we get:

𝑛(Λ−(𝜋 − 𝜙, 𝜋 − 𝜙), 3) = lim
𝑝→∞

𝑝

( 3
√
𝑝)3

= 1,

𝑛

(︂
Λ+

(︂
2𝜋(𝜇− 1)

3
− 𝜙,

2𝜋(𝜇− 1)

3
− 𝜙

)︂
, 3

)︂
= lim

𝑘→∞

𝑘

|𝜆𝑘,𝜇|3
= lim

𝑘→∞

𝑘

𝑠(𝑘, 𝜇)
=

1

3
, 𝜇 = 1, 2, 3,

𝑛
(︁

Λ+
(︁
±𝜋

3
− 𝜙,±𝜋

3
− 𝜙

)︁
, 3
)︁

= 0.

Thus, the sequence Λ2 has an angular density. The function 𝜔Λ2,3 is piece-wise constant. It
is left continuous and has jumps at the points 𝜙0 = 𝜋 and 𝜙𝜇 = (2𝜋(𝜇− 1))/3, 𝜇 = 1, 2, 3. At
the first point its jump is equal to 2, while at other three points it is equal to 1/3. This is why

2𝜋∫︁
0

𝑒𝑖3𝜙𝑑𝜔Λ2,3(𝜙) = 𝑒𝑖3𝜋 +
1

3
(𝑒𝑖0𝜋 + 𝑒𝑖2𝜋 + 𝑒𝑖4𝜋) = 0,

that is, 𝜔Λ2,3 ∈ Σ3. If 𝜔Λ2,3 would have been a function of general form with respec to 𝜌 = 3,
then according to Corollary 2.1 the sequence Λ2 had contained a regularly distributed set with
an angular density 𝜔 = 𝜔Λ2,3. However, 𝑒𝑖3𝜙0 = −1 and 𝑒𝑖3𝜙𝜇 = 1, 𝜇 = 1, 2, 3. Therefore, 𝜔Λ2,3

is not a function of general form with respect to 𝜌 = 3. We are going to show that the sequence
Λ2 does not contain a regularly distributed set with an angular density 𝜔 = 𝜔Λ2,3. According
to (2.39), we have:

𝑁(𝑟,Λ−, 3) +𝑁(𝑟,Λ+, 3) = −
∑︁
𝑝<𝑟3

1

𝑝
+

∑︁
1/|𝜉𝑘|<𝑟3

𝜉𝑘, 𝜉𝑘 =
1

𝑘
− 𝑖

(−1)𝜎(𝑘)

𝑘 ln 𝑘
, 𝑝, 𝑘 > 3.

Hence, by (2.13) we get:

|Re𝑁(𝑟,Λ2, 3)| =
∑︁

𝑟36𝑘6𝑎(𝑟)𝑟3

1

𝑘
6 ln 𝑎(𝑟) + 𝛽(𝑟) → 0, 𝑟 → +∞,

where 𝑎(𝑟) → 1, 𝑟 → +∞. We choose numbers 𝜎(𝑘) so that

lim
𝑟→+∞

|𝑁(𝑟,Λ2, 3)| 6 lim
𝑟→+∞

|Re𝑁(𝑟,Λ2, 3)| + lim
𝑟→+∞

|Im𝑁(𝑟,Λ2, 3)|

= lim
𝑟→+∞

|Im𝑁(𝑟,Λ2, 3)| < +∞.
(2.40)

First of we all we observe that by (2.13) the relations hold:

ln 2 + 𝛽0(𝑚)

(𝑚+ 1)
=

∑︁
2𝑚6𝑘<2𝑚+1

1

𝑘(𝑚+ 1)
6

∑︁
2𝑚6𝑘<2𝑚+1

1

𝑘(𝑚+ 1)

1

𝑘 ln 𝑘

6
∑︁

2𝑚6𝑘<2𝑚+1

1

𝑘(𝑚+ 1)

1

𝑘𝑚
=

ln 2 + 𝛽0(𝑚)

𝑚
,

(2.41)

where 𝛽0(𝑚) → 0, 𝑚 → ∞. This is why there exist 𝑚(𝑙), 𝑙 > 1, such that for 𝜎(𝑘) = 0,
1 < 𝑘 < 2𝑚(1), 2𝑚(2𝑙−1) 6 𝑘 < 2𝑚(2𝑙) and 𝜎(𝑘) = 1, 2𝑚(2𝑙) 6 𝑘 < 2𝑚(2𝑙+1), 𝑙 > 1, the inequalities
hold:

3 6
∑︁

2𝑚(1)6𝑘<2𝑚(2𝑙))

(−1)𝜎(𝑘)

𝑘 ln 𝑘
6 4, 0 6

∑︁
2𝑚(1)6𝑘<2𝑚(2𝑙))

(−1)𝜎(𝑘)

𝑘 ln 𝑘
6 1, 𝑙 > 1.

This implies (2.40) and ∑︁
2𝑚(1)6𝑘<2𝑚(2𝑙))

(−1)𝜎(𝑘)

𝑘 ln 𝑘
=

∑︁
2𝑚(1)6𝑘<2𝑚(2𝑙))

1

𝑘 ln 𝑘
> 2. (2.42)
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Let Λ ⊆ Λ2 be a sequence with an angular density 𝜔 = 𝜔Λ2,3. Then Λ1 = Λ2 ∖ Λ has a zero
density 𝑛(Λ1, 3). This is why for each 𝜀 > 0 there exists 𝑚0(𝜀) such that

𝑛(𝑟𝑚+1,Λ1) − 𝑛(𝑟𝑚,Λ1) 6 𝜀2𝑚, 𝑚 > 𝑚0(𝜀), 𝑟𝑚 = 3

√︁
|𝜆𝑘,𝜇|, 𝑠(𝑘, 𝜇) = 2𝑚, 𝑚 > 1.

Therefore,

|Im(𝑁(𝑟𝑚+1,Λ1, 3) −𝑁(𝑟𝑚,Λ1, 3))| 6
∑︁

2𝑚6𝑘<2𝑚+1

1

𝑘 ln 𝑘

6
1

(𝑚2𝑚
(𝑛(𝑟𝑚+1,Λ1) − 𝑛(𝑟𝑚,Λ1)) 6

𝜀

𝑚
, 𝑚 > 𝑚0(𝜀).

Since Λ = Λ2 ∖ Λ1, in view of (2.41), for a sufficiently small 𝜀 > 0 this yields:

Im(𝑁(𝑟𝑚+1,Λ, 3) −𝑁(𝑟𝑚,Λ, 3)) >
ln 2 + 𝛽0(𝑚)

(𝑚+ 1)
− 𝜀

𝑚
>

ln 2 + 𝛽0(𝑚)

2𝑚
, 𝑚 > 𝑚1(𝜀).

Then, by (2.41) and (2.42),

Im(𝑁(𝑟𝑚(2𝑙+1),Λ, 3) −𝑁(𝑟𝑚(2𝑙),Λ, 3)) > 1, 𝑚(2𝑙) > 𝑚1(𝜀).

This means that the limit lim
𝑟→∞

𝑁(𝑟,Λ, 3) does not exists. Thus, there exists no regularly

distributed set Λ ⊆ Λ2 with an angular density 𝜔 = 𝜔Λ2,3.

3. Splitting of entire functions

Regularly distributed sets are closely related with the functions of regular growth. Let
𝜌(𝑟) → 𝜌 be a refined order and 𝑓 be an entire function of order at most 𝜌(𝑟), that is, there
exist 𝐴 > 0 and 𝐵 > 0 such that

ln |𝑓(𝑧)| 6 𝐴+𝐵|𝑧|𝜌(|𝑧|), 𝜆 ∈ C.

By the symbol Λ𝑓 = {𝜆𝑘, 𝑛𝑘} we denote a sequence of all zeroes of the function 𝑓 and of their
multiplicities; this is the zero set of the function 𝑓 . A representation holds [1, Ch. I, Thm. 13]:

𝑓(𝑧) = 𝑧𝑛1𝑒𝑃 (𝑧)

∞∏︁
𝑘=2

[︂
𝐺

(︂
𝑧

𝜆𝑘
,

)︂
)

]︂𝑛𝑘

, 𝜆1 = 0, 𝑓(𝑧) = 𝑒𝑃 (𝑧)

∞∏︁
𝑘=1

[︂
𝐺

(︂
𝑧

𝜆𝑘
, 𝑝

)︂]︂𝑛𝑘

, 𝜆1 ̸= 0, (3.1)

𝐺(𝑤, 𝑝) = (1 − 𝑤) exp

(︂
𝑤 +

𝑤2

2
+ · · · +

𝑤𝑝

𝑝

)︂
, 𝐺(𝑤, 0) = (1 − 𝑤),

where 0 6 𝑝 6 𝜌 and 𝑃 is a polynomial of degree at most 𝜌. For an integer 𝜌 we have: 𝑝 = 𝜌
and

𝑃 (𝑧) = 𝑎0 + 𝑎1𝑧 + · · · + 𝑎𝜌𝑧
𝜌.

An upper indicator of 𝑓 (or simply indicator) is a function

𝐻𝑓 (𝜙) = lim
𝑟→∞

ln |𝑓(𝑟𝑒𝑖𝜙)|
𝑟𝜌(𝑟)

, 𝜙 ∈ [0, 2𝜋].

The indicator 𝐻𝑓 is trigonometrically convex function with respect to 𝜌 [1, Ch. I, Sects. 16,
18]. In particular, 𝐻𝑓 is a continuous function.

A function 𝑓 has a regular growth [1, Ch. III] if

𝐻𝑓 (𝜙) = lim
𝑡→∞,𝑡/∈𝐸

ln |𝑓(𝑟𝑒𝑖𝜙)|
𝑟𝜌(𝑟)

, 𝜙 ∈ [0, 2𝜋],

where 𝐸 is a set of a zero relative measure on the ray (0,+∞), that is, the Lebesgue measure
of each its intersection with the interval (0, 𝑟) is infinitesimal with respect to 𝑟 as 𝑟 → +∞.
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A function 𝑓 has a regular growth if and only if Λ𝑓 is a regularly distributed set [1, Ch. III,
Thm. 4], that is, in the case of a non-integer 𝜌 the sequence Λ𝑓 has an angular density, while
for an integer 𝜌, in addition, the limit

𝜈(Λ𝑓 ) = lim
𝑟→∞

𝑟𝜌−𝜌(𝑟)
(︂
𝑎𝜌 +

1

𝜌
𝑁(𝑟,Λ𝑓 , 𝜌)

)︂
exists. We note that the constant in the brackets coincides with the coefficient at the leading
power in the polynomial 𝑃 . We recall [1, Ch. II, Sect. 1] that ℛ ∈ C is called a 𝐶0-set if it can
be covered by circles 𝐵(𝑧𝑗, 𝑟𝑗), 𝑗 > 1, such that

lim
𝑟→∞

1

𝑟

∑︁
|𝑧𝑗 |<𝑟

𝑟𝑗 = 0.

The regular growth of 𝑓 is equivalent also to the representation [1, Ch. II, Thms. 1, 2], [2,
Ch. I, Thm. 1.2.5]:

ln |𝑓(𝑧)| = 𝑟𝜌(𝑟)𝐻𝑓 (𝜙) + 𝛼(𝑧), 𝑧 = 𝑟𝑒𝑖𝜙 ∈ C, lim
𝑟→∞,𝑧 /∈𝐼𝑓

𝛼(𝑧)

𝑟𝜌(𝑟)
= 0, (3.2)

where 𝐼𝑓 is some 𝐶0-set. At that, the angular density satisfies 𝜔Λ𝑓 ,𝜌(𝑟) ∈ Σ𝜌 and the identity
holds:

𝐻𝑓 (𝜙) =
𝜋

sin 𝜋𝜌

𝜙∫︁
𝜙−2𝜋

cos 𝜌(𝜙− 𝜃 − 𝜋)𝑑𝜔Λ𝑓 ,𝜌(𝑟)(𝜃), (3.3)

if 𝜌 is non-integer and

𝐻𝑓 (𝜙) = 𝑟𝑓 cos 𝜌(𝜙− 𝜙𝑓 ) −
𝜙∫︁

𝜙−2𝜋

(𝜙− 𝜃) sin 𝜌(𝜙− 𝜃)𝑑𝜔Λ𝑓 ,𝜌(𝑟)(𝜃), (3.4)

where 𝑟𝑓𝑒
−𝑖𝜙𝑓 = 𝜈(Λ𝑓 ), if 𝜌 is integer.

Theorem 3.1. Let 𝜌(𝑟) → 𝜌 be a refined order, 𝜌 is a non-integer number, 𝑔 is an entire
function of order 𝜌(𝑟) and 𝜔 ∈ Σ. Assume that for all admissible 𝜙, 𝜓 /∈ Φ(𝜔) the inequality

𝑛0(Λ𝑔(𝜙, 𝜓), 𝜌(𝑟)) > 𝜔(𝜓) − 𝜔(𝜙)

holds.
Then 𝑔 = 𝑓1𝑓2, where 𝑓1, 𝑓2 are entire functions of order 𝜌(𝑟) and the following statement

are true:
1) Λ𝑓1 has an angular density 𝜔;
2) 𝑓1 has a regular growth;
3) 𝐻𝑔 = 𝐻𝑓1 +𝐻𝑓2, and 𝐻𝑓1 is defined by formula (3.3), in which we let 𝑓 = 𝑓1.

Proof. By Theorem 2.1 there exists a regularly distributed set Λ1 ⊆ Λ𝑔 with an angular density
𝜔Λ1,𝜌(𝑟) = 𝜔. Let Λ1 = {𝜆𝑘, 𝑛𝑘} and 𝑓1 be a canonical function of the set Λ1. It is defined by
the formula (3.1), where 𝑃 (𝑧) ≡ 0 and 𝑝 = [𝜌].

By the Lindelöf theorem [1, Ch. I, Thm. 18], 𝑓1 is an entire function of order 𝜌(𝑟). Since 𝜌
is non-integer, then the function 𝑓1 has a regular growth at order 𝜌(𝑟), and its indicator 𝐻𝑓1

is defined by formula (3.3), where 𝑓 = 𝑓1. We let 𝑓2 = 𝑔/𝑓1. Then 𝑓2 is an entire function of
order 𝜌(𝑟), [1, Ch. I, Sect. 13]. Since 𝑓1 is a function of regular growth, then [1, Ch. III, Thm.
5] the identity 𝐻𝑔 = 𝐻𝑓1 +𝐻𝑓2 holds. The proof is complete.
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Theorem 3.2. Let 𝜌(𝑟) → 𝜌 be a refined order, 𝜌 be an integer number, 𝑔 be an entire
function of order 𝜌(𝑟) and 𝜔 ∈ Σ𝜌 be a function of general form with respect to 𝜌. Suppose that
for all admissible 𝜙, 𝜓 /∈ Φ(𝜔) the inequality holds:

𝑛0(Λ𝑔(𝜙, 𝜓), 𝜌(𝑟)) > 𝜔(𝜓) − 𝜔(𝜙).

Then 𝑔 = 𝑓1𝑓2, where 𝑓1, 𝑓2 are entire functions of order 𝜌(𝑟) and the following statements
hold:

1) Λ𝑓1 is a regularly distributed set with an angular density 𝜔 at otder 𝜌(𝑟); if in addition
𝜌(𝑟) ≡ 𝜌, then 𝑁(𝑟,Λ, 𝜌) → 0, 𝑟 → +∞;

2) 𝑓1 has a regular growth;
3) 𝐻𝑔 = 𝐻𝑓1 +𝐻𝑓2 and 𝐻𝑓1 is defined by formula (3.4), where we let 𝑓 = 𝑓1.

Proof. By Theorem 2.2 there exists a regularly distributed set Λ1 ⊆ Λ𝑔 with an angular density
𝜔Λ1,𝜌(𝑟) = 𝜔. If in addition 𝜌(𝑟) ≡ 𝜌, then 𝑁(𝑟,Λ, 𝜌) → 0, 𝑟 → +∞. In particular, for some
number 𝑐 ∈ C there exists the limit

lim
𝑟→∞

𝑟𝜌−𝜌(𝑟)
(︂
𝑐+

1

𝜌
𝑁(𝑟,Λ1, 𝜌)

)︂
.

Let Λ1 = {𝜆𝑘, 𝑛𝑘} and 𝑓1 be a canonical function of the set Λ1. It is defined by formula (3.1),
in which we let 𝑃 (𝑧) = 𝑒𝑐𝑧

𝜌
and 𝑝 = 𝜌. The rest of the proof reproduces that of of Theorem 3.1.

The proof is complete.

Remark 3.1. Theorem 3.2 contains a strengthening of the main result of work [6], which
concerned the case 𝜌(𝑟) ≡ 𝜌.

Lemma 3.1. Let 𝜌(𝑟) → 𝜌 be a refined order, 𝜌 be an integer number and 𝑓 be an entire
function of order 𝜌(𝑟). Assume that Λ𝑓 has an angular density 𝜔. Then 𝜔 ∈ Σ𝜌.

Proof. Assume that

𝜇 = |𝜇|𝑒𝑖𝜗 =

2𝜋∫︁
0

𝑒𝑖𝜌𝜙𝑑𝜔(𝜙) ̸= 0.

By assumption, 𝑓 is an entire function of order 𝜌(𝑟). It is represented by formula (3.1). By the
Lindelöf theorem [1, Ch. U, Thm. 18] we have:

lim
𝑚→∞

|𝜈𝑚| <∞, 𝜈𝑚 = (2𝑚)𝜌−𝜌(2
𝑚)

(︂
𝑎𝜌 +

1

𝜌
𝑁(2𝑚,Λ𝑓 , 𝜌)

)︂
. (3.5)

We let
1

1 + 𝛾𝑚
=

(2𝑚+1)𝜌−𝜌(2
𝑚+1)

(2𝑚)𝜌−𝜌(2𝑚)
= 1 + 𝛿𝑚, 𝑚 > 1.

Then

𝜈𝑚+1 − 𝜈𝑚 =(2𝑚)𝜌−𝜌(2
𝑚) 1

𝜌
(𝑁(2𝑚+1,Λ𝑓 , 𝜌) −𝑁(2𝑚,Λ𝑓 , 𝜌)) + 𝛿𝑚(1 + 𝛾𝑚)𝜈𝑚+1

=(2𝑚)𝜌−𝜌(2
𝑚) 1

𝜌
(𝑁(2𝑚+1,Λ𝑓 , 𝜌) −𝑁(2𝑚,Λ𝑓 , 𝜌)) − 𝛾𝑚𝜈𝑚+1, 𝑚 > 1.

We choose 𝜀 > 0 such that

|𝜈𝑚|𝜀 6
|𝜇|
4𝜌
, 𝑚 > 1. (3.6)

Since Λ𝑓 has an angular density then by Lemma 2.2

(2𝑚)𝜌−𝜌(2
𝑚)(𝑁(2𝑚+1,Λ𝑓 , 𝜌) −𝑁(2𝑚,Λ𝑓 , 𝜌)) = 𝜇̄ ln

(2𝑚+1)𝜌(2
𝑚+1)

(2𝑚)𝜌(2𝑚)
+ 𝜀𝑚, 𝜖𝑚 → 0, 𝑚→ ∞.
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In view of (2.3) we hence obtain:

(2𝑚)𝜌−𝜌(2
𝑚)Re(𝑒𝑖𝜗

(︀
𝑁(2𝑚+1,Λ𝑓 , 𝜌) −𝑁(2𝑚,Λ𝑓 , 𝜌))

)︀
= |𝜇| ln (2𝑚+1)𝜌(2

𝑚+1)

(2𝑚)𝜌(2𝑚)
+ Re(𝑒𝑖𝜗𝜀𝑚) >

|𝜇|
2
, 𝑚 > 𝑚0.

By (2.2) we can assume that |𝛾𝑚| 6 𝜀, 𝑚 > 𝑚0. Then in view of (3.6) we find:

Re(𝑒𝑖𝜗(𝜈𝑝 − 𝜈𝑚)) >
|𝜇|
2𝜌

(𝑝−𝑚) − |𝜇|
4𝜌

(𝑝−𝑚) =
|𝜇|
4𝜌

(𝑝−𝑚), 𝑝 > 𝑚 > 𝑚0.

This contradicts to (3.5). Thus, 𝜇 = 0 and hence, 𝜔 ∈ Σ𝜌. The proof is complete.

Theorem 3.3. Let 𝜌(𝑟) → 𝜌 be a refined order, 𝜌 be an integer number, 𝑔 be an entire
function of order 𝜌(𝑟). Assume that Λ𝑔 has an angular density 𝜔 of general form with respect
to 𝜌. Then 𝜔 ∈ Σ𝜌, 𝑔 = 𝑓1𝑓2, where 𝑓1, 𝑓2 are entire functions of order 𝜌(𝑟) and the following
conditions hold:

1) Λ𝑓1 is a regularly distributed set with an angular density 𝜔 at order 𝜌(𝑟); if in addition
𝜌(𝑟) ≡ 𝜌, then 𝑁(𝑟,Λ, 𝜌) → 0, 𝑟 → +∞;

2) 𝑓1 has a regular growth;
3) 𝐻𝑔 = 𝐻𝑓1 +𝐻𝑓2 and 𝐻𝑓1 is defined by formula (3.4), where we let 𝑓 = 𝑓1;
4) Λ𝑓2 has a zero density at order 𝜌(𝑟).

Proof. By Lemma 3.1 we have 𝜔 ∈ Σ𝜌. Since Λ𝑔 has an angular density 𝜔, then by (2.9), for
all admissible 𝜙, 𝜓 /∈ Φ(𝜔) the identities hold:

𝑛0(Λ𝑔(𝜙, 𝜓), 𝜌(𝑟)) = 𝑛(Λ𝑔(𝜙, 𝜓), 𝜌(𝑟)) = 𝜔(𝜓) − 𝜔(𝜙).

Then by Theorem 3.2 𝑔 = 𝑓1𝑓2, where 𝑓1, 𝑓2 are entire functions of order 𝜌(𝑟) and Items 1)–3)
hold true. It remains to observe that Λ𝑔 and Λ𝑓1 has the same angular density. This is why
Λ𝑓2 = Λ𝑔 ∖ Λ𝑓1 has a zero density. The proof is complete.

Remark 3.2. In Theorem 3.3, there is a condition that 𝜔 is a function of general form.
Let us adduce an example showing that without this condition the theorem is wrong. Let Λ2 =
{𝜆𝑘, 𝑛𝑘} be a sequence from the example considered in the end of the previous section. It has an
angular density 𝜔 = 𝜔Λ2,3 ∈ Σ3, which is not a function of general form with respect to 𝜌 = 3.
Let 𝑓 be a function defined by formula (3.1), where we let 𝑃 (𝑧) ≡ 0 and 𝑝 = 3. By (2.40)
and Lindelöf theorem, 𝑓 is an entire function of order 𝜌(𝑟) ≡ 3. As it was shown in the above
example, there exists no regularly distributed set Λ ⊆ Λ2 with an angular density 𝜔. Thus, in
this case Theorem 3.3 fails, that is, 𝑓 can not be represented as a product of two functions, one
having a regular growth, while the other vanishing on a set of zero density.

4. Functions with zero set of zero density

Let 𝜌(𝑟) → 𝜌 be a refined order, 𝜌 be an integer number and Λ = {𝜆𝑘, 𝑛𝑘}, 𝜆1 ̸= 0, have a
zero density at order 𝜌(𝑟). By 𝑓Λ we denote a function defined by formula (3.1), where we let
𝑃 (𝑧) ≡ 0 and 𝑝 = 𝜌. We also let

𝐹Λ(𝑧) =
∏︁

|𝜆𝑘|<|𝑧|

exp
𝑛𝑘𝑧

𝜌

𝜌(𝜆𝑘)𝜌
= exp

(︂
1

𝜌
𝑁(|𝑧|,Λ, 𝜌)𝑧𝜌

)︂
.

Lemma 4.1. Let 𝜌(𝑟) → 𝜌 be a refined order, 𝜌 be an integer number and Λ = {𝜆𝑘, 𝑛𝑘},
𝜆1 ̸= 0, have a zero density at order 𝜌(𝑟). Then there exists a 𝐶0-set ℐ(Λ) such that

ln |𝑓Λ(𝑧)| = ln |𝐹Λ(𝑧)| + 𝛼(𝑧), 𝑧 ∈ C, lim
|𝑧|→∞,𝑧 /∈ℐ(Λ)

𝛼(𝑧)

|𝑧|𝜌(𝑟)
= 0, lim

|𝑧|→∞

𝛼(𝑧)

|𝑧|𝜌(𝑟)
= 0. (4.1)
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Proof. Let

𝑓0(𝑧) =
∏︁

|𝜆𝑘|<|𝑧|

[︂
𝐺

(︂
𝑧

𝜆𝑘
, 𝜌− 1

)︂]︂𝑛𝑘 ∏︁
|𝜆𝑘|>|𝑧|

[︂
𝐺

(︂
𝑧

𝜆𝑘
, 𝜌

)︂]︂𝑛𝑘

.

We have:

ln |𝑓Λ(𝑧)| = ln |𝐹Λ(𝑧)| + ln |𝑓0(𝑧)|.
We let 𝛼(𝑧) = ln |𝑓0(𝑧)|. Since Λ has a zero density at order 𝜌(𝑟), then by Lemma 5 in [1,

Ch. II] there exists a 𝐶0-set ℐ(Λ) such that the second identity in (4.1) holds true.
Since ℐ(Λ) is a 𝐶0-set, then for each 𝑚 > 𝑚0 there exists 𝑟𝑚 such that 2𝑚 6 𝑟𝑚 < 2𝑚+1 and

the circumference |𝑧| = 𝑟𝑚 does not intersect ℐ(Λ). Let

𝑏𝑚 = sup
|𝑧|=𝑟𝑚

𝛼(𝑧), 𝑚 > 𝑚0.

We have

𝑏𝑚
(𝑟𝑚)𝜌(𝑟𝑚)

→ 0, 𝑚→ ∞, (4.2)

ln |𝑓Λ(𝑧)| − ln |𝐹Λ(𝑧)| = 𝛼(𝑧) 6 𝑏𝑚, |𝑧| = 𝑟𝑚, 𝑚 > 𝑚0. (4.3)

We let

𝐹𝑚(𝑧) = exp

(︂
1

𝜌
𝑁(𝑟𝑚,Λ, 𝜌)𝑧𝜌

)︂
, 𝑚 > 𝑚0.

Let |𝑧| = 𝑟𝑚+1. By Lemma 2.2 and (4.3),

ln |𝑓Λ(𝑧)| − ln |𝐹𝑚(𝑧)| 6 ln |𝑓Λ(𝑧)| − ln |𝐹𝑚+1(𝑧)| +
1

𝜌
(𝑟𝑚+1)

𝜌|𝑁(𝑟𝑚+1,Λ, 𝜌) −𝑁(𝑟𝑚,Λ, 𝜌)|

6𝑏𝑚+1 +
(𝑟𝑚+1)

𝜌

𝜌

∑︁
𝑟𝑚6|𝜆𝑘|<𝑟2

𝑛𝑘
|𝜆𝑘|𝜌

=𝑏𝑚+1 +
(𝑟𝑚+1)

𝜌

𝜌
𝜀𝑚(𝑟𝑚)𝜌(𝑟𝑚)−𝜌 6 𝑏𝑚+1 +

4𝜌

𝜌
𝜀𝑚(𝑟𝑚)𝜌(𝑟𝑚),

where 𝜀𝑚 → 0, 𝑚 → ∞. Let 𝑧0 ∈ (C ∖ 𝐵(0, 2𝑚0)) ∩ ℐ(Λ). We choose an index 𝑚 > 𝑚0 such
that 𝑟𝑚 < |𝑧| < 𝑟𝑚+1. The function ln |𝐹𝑚(𝑧)| is harmonic. Therefore, in view (4.3), by the
maximum principle the inequality holds:

ln |𝑓Λ(𝑧0)| − ln |𝐹𝑚(𝑧0)| 6 𝑏𝑚+1 +
4𝜌

𝜌
𝜀𝑚(𝑟𝑚)𝜌(𝑟𝑚).

Hence, applying Lemma 2.1 once again, we obtain:

ln |𝑓Λ(𝑧0)| − ln |𝐹Λ(𝑧0)| 6 ln |𝑓Λ(𝑧0)| − ln |𝐹𝑚(𝑧0)| +
|𝑧0|𝜌

𝜌
|𝑁(|𝑧0|,Λ, 𝜌) −𝑁(𝑟𝑚,Λ, 𝜌)|

6𝑏𝑚+1 +
4𝜌

𝜌
𝜀𝑚(𝑟𝑚)𝜌(𝑟𝑚) +

|𝑧0|𝜌

𝜌

∑︁
𝑟𝑚6|𝜆𝑘|<𝑟2

𝑛𝑘
|𝜆𝑘|𝜌

6𝑏𝑚+1 +
4𝜌

𝜌
𝜀𝑚(𝑟𝑚)𝜌(𝑟𝑚) +

4𝜌

𝜌
𝛿𝑚(𝑟𝑚)𝜌(𝑟𝑚),

where 𝛿𝑚 → 0, 𝑚→ ∞. In view of (4.2) this leads us to the third identity in (4.1). The proof
is complete.

Corollary 4.1. Let 𝜌(𝑟) → 𝜌 be a refined order, 𝜌 be an integer number, 𝑓 be an entire
function of order 𝜌(𝑟) and Λ𝑓 = {𝜆𝑘, 𝑛𝑘}, 𝜆1 ̸= 0, has a zero density at order 𝜌(𝑟). Then
the indicator of the function 𝑓 coincides with the indicator of the function 𝐹 (𝑧) = 𝑒𝑎𝜌𝑧

𝜌
𝐹Λ(𝑧),
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where 𝑎𝜌 is the coefficient at 𝑧𝜌 in the polynomial 𝑃 (𝑧) in expansion (3.1) of function 𝑓 , that
is,

𝐻𝑓 (𝜙) = lim
𝑟→∞

𝑟𝜌−𝜌(𝑟)Re

(︂(︂
𝑎𝜌 +

1

𝜌
𝑁(𝑟,Λ𝑓 , 𝜌)

)︂
𝑒𝑖𝜌𝜙
)︂
.

Proof. According to (3.1),

𝑓(𝑧) = 𝑒𝑃 (𝑧)𝑓Λ(𝑧), 𝑃 (𝑧) = 𝑎0 + 𝑎1𝑧 + · · · + 𝑎𝜌𝑧
𝜌.

By (4.1) we have:

𝐻𝑓 (𝜙) = lim
𝑟→∞

ln |𝑓(𝑟𝑒𝑖𝜙)|
𝑟𝜌(𝑟)

6 lim
𝑟→∞

|𝑃 (𝑟𝑒𝑖𝜙)| + ln |𝐹Λ(𝑟𝑒𝑖𝜙)|
𝑟𝜌(𝑟)

+ lim
𝑟→∞

𝛼(𝑟𝜌(𝑟))

𝑟𝜌(𝑟)

=𝐻𝐹 (𝜙) = lim
𝑟→∞

𝑟𝜌−𝜌(𝑟)Re

(︂(︂
𝑎𝜌 +

1

𝜌
𝑁(𝑟,Λ𝑓 , 𝜌)

)︂
𝑒𝑖𝜌𝜙
)︂
, 𝜙 ∈ [0, 2𝜋].

Let 𝜙 ∈ [0, 2𝜋]. We choose numbers 0 < 𝑟𝑙 → +∞ such that

lim
𝑙→∞

(𝑟𝑙)
𝜌−𝜌(𝑟𝑙)Re

(︂(︂
𝑎𝜌 +

1

𝜌
𝑁(𝑟𝑙,Λ𝑓 , 𝜌)

)︂
𝑒𝑖𝜌𝜙
)︂

= 𝐻𝐹 (𝜙).

Since Λ𝑓 has a zero density at order 𝜌(𝑟), then by Lemma 2.1 and (2.2) we get:

(𝑟𝑙)
𝜌−𝜌(𝑟𝑙)Re

(︂(︂
𝑎𝜌 +

1

𝜌
𝑁(𝑟𝑙,Λ𝑓 , 𝜌)

)︂
𝑒𝑖𝜌𝜙
)︂

6(𝑟𝑙)
𝜌−𝜌(𝑟𝑙)Re

(︂(︂
𝑎𝜌 +

1

𝜌
𝑁(𝑟,Λ𝑓 , 𝜌)

)︂
𝑒𝑖𝜌𝜙
)︂

+ 𝜀𝑙

6(𝑟)𝜌−𝜌(𝑟)Re

(︂(︂
𝑎𝜌 +

1

𝜌
𝑁(𝑟,Λ𝑓 , 𝜌)

)︂
𝑒𝑖𝜌𝜙
)︂

+ 𝛿𝑙,

𝑟 ∈ (𝑟𝑙, 2𝑟𝑙), 𝛿𝑙 → 0, 𝑙 → ∞. Since ℐ(Λ) is a 𝐶0-set, then for all 𝑙 > 𝑙0 there exists 𝑡𝑙 ∈ (𝑟𝑙, 2𝑟𝑙)
such that 𝑡𝑙𝑒

𝑖𝜙 ∈ ℐ(Λ). Thus, in view of the first identity in (4.1) we have:

𝐻𝐹 (𝜙) 6 lim
𝑙→∞

(𝑡𝑙)
𝜌−𝜌(𝑡𝑙)Re

(︂(︂
𝑎𝜌 +

1

𝜌
𝑁(𝑡𝑙,Λ𝑓 , 𝜌)

)︂
𝑒𝑖𝜌𝜙
)︂

6 lim
𝑟→∞

ln |𝑓(𝑟𝑒𝑖𝜙)|
𝑟𝜌(𝑟)

= 𝐻𝑓 (𝜙).

The proof is complete.

Let 𝑓 be an entire function of order 𝜌(𝑟). According to Theorem 29 in [1, Ch. I], the type
𝜎𝑓 of the function 𝑓 can be determined by the formula:

𝜎𝑓 = max
𝜙∈[0,2𝜋]

𝐻𝑓 (𝜙).

This is Corollary 4.1 implies the following statement.

Corollary 4.2. Let 𝜌(𝑟) → 𝜌 be a refined order, 𝜌 be an integer number, 𝑓 be an entire
function of order 𝜌(𝑟) and Λ𝑓 = {𝜆𝑘, 𝑛𝑘}, 𝜆1 ̸= 0, has a zero density at order 𝜌(𝑟). Then the
type 𝜎𝑓 of the function 𝑓 can be determined by the formula

𝜎𝑓 = lim
𝑟→∞

𝑟𝜌−𝜌(𝑟)
⃒⃒⃒⃒
𝑎𝜌 +

1

𝜌
𝑁(𝑟,Λ𝑓 , 𝜌)

⃒⃒⃒⃒
.

Remark 4.1. A particular case of Corollary 4.2 is Cartwright theorem, see [10], [2, Ch. I,
Sect. 1, Thm. 1.1.8], in which a similar result was obtained in the case 𝜌(𝑟) ≡ 1.

Corollary 4.1 allows one to construct entire functions 𝑓 of order 𝜌(𝑟) with a prescribed
indicator 𝐻𝑓 . At that, Λ𝑓 ⊆ ΛZ,𝜌(𝑟) is a regularly distributed set with a maximal possible, for
a given indicator, angular density. Corollary 4.1 also allows one to construct entire functions 𝑓
of order 𝜌(𝑟) ≡ 𝜌, where 𝜌 is an integer number, with a prescribed indicator 𝐻𝑓 . At that Λ𝑓 is
a set with a minimal possible (zero) angular density. We recall that a characteristic property
of the indicator 𝐻𝑓 is its trigonometric convexity with respect to 𝜌 [1, Ch. I, Sect. 16].
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Corollary 4.3. Let 𝜌 be a natural number, 𝜈𝑘, 𝑘 > 1, be a non-decreasing sequence of
positive numbers such that 𝜈𝑘 → ∞, 𝑘 → ∞, and

lim
𝑘→∞

𝑘

(𝜈𝑘)𝜌
= 0,

∞∑︁
𝑘=1

1

(𝜈𝑘)𝜌
= +∞.

Then for each trigonometrically convex with respect to 𝜌 function 𝐻𝜌 there exists a sequence
𝜙𝑘, 𝑘 > 1, such that 𝐻𝑓Λ = 𝐻𝜌, where Λ = {𝜈𝑘𝑒𝑖𝜙𝑘 , 1}.

Proof. We let 𝜇𝑘 = (𝜈𝑘)
𝜌, 𝑘 > 1, and 𝐻1(𝜙) = 𝜌𝐻𝜌(𝜙/𝜌). The function 𝐻1 is trigonometrically

convex with respect to one. This is why it is a support function of some convex set 𝐾. Thus, all
assumptions of Corollary 2.3 of Lemma 3.2 in work [8] are satisfied. According to this corollary,
in view of Corollary 2.1 of the same lemma there exists a sequence 𝜓𝑘, 𝑘 > 1, such that

𝐻1(𝜓) = lim
𝑟→∞

Re(𝑁(𝑟,Λ1, 1)𝑒𝑖𝜓),

where Λ1 = {𝜇𝑘𝑒𝑖𝜓𝑘 , 1}. We let 𝜙𝑘 = 𝜓𝑘/𝜌, 𝑘 > 1. Then by Corollary 4.1

𝐻𝜌(𝜙) =
1

𝜌
𝐻1(𝜌𝜙) = lim

𝑟→∞

1

𝜌
Re(𝑁(𝑟,Λ, 𝜌)𝑒𝑖𝜌𝜙) = 𝐻𝑓Λ(𝜙).

The proof is complete.

In conclusion we provide a result, which specifies Theorem 3.3.

Theorem 4.1. Let 𝜌(𝑟) → 𝜌 be a refined order, 𝜌 be an integer number, 𝑔 be an entire
function of order 𝜌(𝑟). Assume that Λ𝑔 = {𝜆𝑘, 𝑛𝑘} has an angular density 𝜔 of general form
with respect to 𝜌. Then the identity holds:

ln |𝑔(𝑧)| = 𝑟𝜌(𝑟)𝐻(𝜙) + 𝑟𝜌Re

(︂(︂
𝑎𝜌 +

1

𝜌
𝑁(𝑟,Λ𝑔, 𝜌)

)︂
𝑒𝑖𝜌𝜙
)︂

+ 𝛽(𝑧), 𝑧 = 𝑟𝑒𝑖𝜙 ∈ C, (4.4)

𝐻(𝜙) = −
𝜙∫︁

𝜙−2𝜋

(𝜙− 𝜃) sin 𝜌(𝜙− 𝜃)𝑑𝜔(𝜃), lim
|𝑧|→∞,𝑧 /∈ℐ𝑔

𝛽(𝑧)

𝑟𝜌(𝑟)
= 0,

where 𝑎𝜌 is a coefficient at 𝑧𝜌 in the polynomial 𝑃 (𝑧) in expansion (3.1) of the function 𝑓 = 𝑔
and ℐ𝑔 is a 𝐶0-set.

Proof. We can suppose that 𝜆𝑘 ̸= 0; otherwise we consider the function 𝑔(𝑧)/𝑧𝑛1 . By Theo-
rem 3.3, 𝑔 = 𝑓1𝑓2, where 𝑓1, 𝑓2 are entire functions of order 𝜌(𝑟) and Items 1)–4) of this theorem
hold. Let

𝑓𝑗 = 𝑒𝑃𝑗(𝑧)

∞∏︁
𝑘=1

[︂
𝐺

(︂
𝑧

𝜆𝑘,𝑗
, 𝑝

)︂]︂𝑛𝑘,𝑗

, 𝑃𝑗(𝑧) = 𝑎0,𝑗 + 𝑎1,𝑗𝑧 + · · · + 𝑎𝜌,𝑗𝑧
𝜌, 𝑗 = 1, 2.

We have: 𝑎𝜌 = 𝑎𝜌,1 + 𝑎𝜌,2. Since 𝑓1 has a regular growth, then

ln |𝑓1(𝑧)| = 𝑟𝜌(𝑟)(𝐻(𝜙) + 𝑟𝑓 cos 𝜌(𝜙− 𝜙𝑓 )) + 𝛼1(𝑧), (4.5)

𝑟𝑓𝑒
−𝑖𝜙𝑓 = 𝜈(Λ𝑓1) = lim

𝑡→∞
𝑟𝜌−𝜌(𝑡)

(︂
𝑎𝜌,1 +

1

𝜌
𝑁(𝑡,Λ𝑓1 , 𝜌)

)︂
, lim
𝑟→∞,𝑧 /∈ℐ1

𝛼1(𝑟𝑒
𝑖𝜙)

𝑟𝜌(𝑟)
= 0,

where ℐ1 is some 𝐶0-set. It follows from the penultimate identity that

𝑟𝜌(𝑟)𝑟𝑓 cos 𝜌(𝜙− 𝜙𝑓 ) = 𝑟𝜌Re

(︂(︂
𝑎𝜌,1 +

1

𝜌
𝑁(𝑡,Λ𝑓1 , 𝜌)

)︂
𝑒𝑖𝜌𝜙
)︂

+ 𝛼0(𝑧),

lim
𝑟→∞

𝛼0(𝑟𝑒
𝑖𝜙)

𝑟𝜌(𝑟)
= 0. (4.6)
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Since Λ𝑓2 has a zero density at order 𝜌(𝑟), then, according to Lemma 4.1,

ln |𝑓2(𝑧)| = 𝑟𝜌Re

(︂(︂
𝑎𝜌,2 +

1

𝜌
𝑁(𝑡,Λ𝑓2 , 𝜌)

)︂
𝑒𝑖𝜌𝜙
)︂

+ 𝛼2(𝑧), lim
𝑟→∞,𝑧 /∈ℐ2

𝛼2(𝑟𝑒
𝑖𝜙)

𝑟𝜌(𝑟)
= 0, (4.7)

where ℐ2 is some 𝐶0-set. We let ℐ𝑔 = ℐ1 ∪ ℐ2 and 𝛽 = 𝛼1 + 𝛼0 + 𝛼2. Then by (4.5)-(4.7) we
obtain (4.4). The proof is complete.

Remark 4.2. Theorem 4.1 generalizes a result by B.Ya. Levin for the functions with a regu-
larly distributed zero set [1, Ch. II, Sect. 1, Thm. 2] to the functions with a zero set possessing
an angular density.
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