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ON DIFFERENTIATION OF FUNCTIONAL IN PROBLEM ON

PARAMETRIC COEFFICIENT OPTIMIZATION IN

SEMILINEAR GLOBAL ELECTRIC CIRCUIT EQUATION

A.V. CHERNOV

Abstract. For the problem on parametric optimization with respect to an integral criterion
of the coefficient and the right-hand side of the semilinear global electric circuit equation,
we obtain formulae for the first partial derivatives of the cost functional with respect to
control parameters. The problem on reconstructing unknown parameters of the equation
by the observed data of local sensors can be represented in such form. In the paper we
generalize a similar result obtained earlier by the author for the case of linear global electric
circuit equation. But it is commonly believed by experts that the right hand side treated
as the volumetric density of external currents of the equation depends on the gradient,
with respect to the collection of space variables, of the unknown electric potential function.
Because of this, it is necessary to study the case of a semilinear equation. We use the
conditions of preserving global solvability of the semilinear global electric circuit equation
and the estimates for the increment of the solutions, which we have obtained formerly.
The mathematical novelty of presented research is due to the fact that, unlike the earlier
studied linear case, now the right hand side depends nonlinearly on the state, which, in its
turn, depends on the controlled parameters. Such more complicated nonlinear dependence
of the state on the control parameters requirs, in particular, the development of a special
technique to estimate the additional terms arising in the increment of solutions of the
controlled equation.

Keywords: controlled coefficient and right hand side, parametric optimization, semilinear
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1. Introduction

A linear equation of form

𝜕

𝜕𝑡
∆𝜙(𝑡, 𝑥) + 4𝜋div

(︀
𝜎(𝑥)∇𝜙(𝑡, 𝑥)

)︀
= 4𝜋 div 𝐽 st(𝑡, 𝑥), (1.1)

where 𝑡 ∈ [0;𝑇 ] is a time, 𝑥 ∈ Ω ⊂ R3 is a spatial variable, in physical and related mathe-
matical literature is called electric circuit equation in terms of potentials in quasi-stationary
approximation. In mathematical literature, equations of such form including those not resolved
with respect to the derivative in time, are called Sobolev type equations or pseudo-parabolic
equations, see, for instance, [1]. In the case of equation (1.1), an unknown function 𝜙(𝑡, 𝑥) is

treated as a scalar electric potential, and 𝐽 st is a volume density of external quasi-stationary
currents. A detailed bibliography on this subject and on the physical meaning of equation (1.1)
and a well-defined formulation of its initial and boundary conditions can be found in [2], [3].
Concerning the term ‘global electric circuit’, we cite [3]: “ The term ‘global electric circuit’
refers to the electric current distribution in the Earth’s atmosphere; this distribution includes,
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for instance, lightning currents, precipitation currents and corona discharge currents, but its
most important constituent is the so-called quasi-stationary current, which flows continuously
and . . . is maintained by permanent charge separation in thunderstorms and other electrified
clouds.”
Let us briefly overview works on the problem of modeling global electrical circuit (GEC).

Physical mechanisms of GECs formation in the Earth’s atmosphere were outlined in [4].
Achievements and prospects of researches on GEC were discussed in [5]. GEC models tak-
ing into account the topography of the earth’s surface, were constructed in [6], [7]. Stationary
and non-stationary GEC models taking into account thunderclouds as generators of electric
fields of the atmosphere, various cosmic factors, aerosol particles and radioactive substances,
were studied in details in [8], [9]. In [10], the electric field and current inside and around sta-
tionary mesoscale convective system and its contribution to the GEC were investigated. In [11],
a GEC modeling scheme was proposed and it collected effects from the troposphere to the iono-
sphere, previously studied separately, into a single model. In [12] an efficient numerical model
was developed based on the generalized finite difference method using radial basis functions to
simulate GEC in the Earth’s atmosphere taking into account the topography of the Earth’s
surface. Paper [13] was devoted to studying an alternative way of choosing boundary conditions
for stationary analog of equation (1.1). An interesting reader can find further details also in
the references in the above cited papers.
Now we go back to equation (1.1). Usually in practice, only some parametric representations

for the coefficient and the right side are known, that is 𝜎 = 𝜎(𝑥; 𝜐1), 𝐽
st = 𝐽 st(𝑡, 𝑥; 𝜐2), where the

parameters 𝜐1, 𝜐2 ∈ R are unknown; there can be more parameters but for further presentation
this is not essential. The problem on restoring unknown parameters according to observational
data can be reformulated, under certain conditions, as a minimization problem for some integral
functional depending on 𝜙, but in fact, on the unknown parameters. In order to be able to
apply one or another first order numerical minimization method, you need to know the gradient
for such function. This gives rise to a question of calculating partial derivatives of the specified
function with respect to the variables 𝜐1, 𝜐2 ∈ R. This motivated studying the problem on
calculating partial derivatives integral functional defined on solution of an equation of form
(1.1) with respect to the controlled parameters 𝜐1, 𝜐2 ∈ R in [14]; for the stationary case see
also [15], [16]. The initial boundary conditions were borrowed from [2]. We note that in [3],
other formulated of initial and boundary conditions were given and that fact that they are
well-posed was justified. The issue on uniqueness of the solution to the inverse problem on
restoring unknown parameters for the stationary case were considered in papers [17], [18]; for
a non-stationary case, similar constructions can be also carried out.
As it was mentioned in [19], experts believe that the volume density of external currents

actually depends on the gradient of the potential with respect to the spatial variables. But in
this case, one needs to study a semilinear analogue of the equation (1.1), in particular, under
the same initial and boundary conditions, which differs by the fact that the right hand side
involves also the gradient of the function 𝜙. The conditions of local and total preserving of
global solvability of semilinear global electric circuit equation useful in studying various issues
on controlling such equation were studied in [19], [20]. Here we employ conditions and an
estimate for the difference of solutions established in [19].
As we have already said, we study a semilinear controlled analogue of equation (1.1):

𝜕

𝜕𝑡
∆𝜙(𝑡, 𝑥) + 4𝜋div

(︀
𝜎(𝑡, 𝑥; 𝜐1)∇𝜙(𝑡, 𝑥)

)︀
= 4𝜋 div 𝐽 st(𝑡, 𝑥;∇𝜙; 𝜐2), (1.2)

where 𝑡 ∈ [0;𝑇 ] is a time, 𝑥 ∈ Ω ⊂ R3 is a spatial variable. Here we treat 𝜐𝑖 ∈ 𝒟𝑖, 𝑖 = 1, 2,
as controlled parameters. We consider equation (1.2) equipped with its natural initial and
boundary conditions and we study a parametric optimization of the coefficient and the right
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hand side. Namely, for the target integral functional defined on solutions of the mentioned
problem, we obtain formulae for the first order partial derivatives with respect to the controlled
parameters 𝜐1, 𝜐2 ∈ R. Then we employ an approach similar to one used earlier in work [14]
while studying a linear analogue of equation (1.2). A mathematical novelty of the presented
study is due to the fact that in contrast to the linear case studied before the right hand side now
nonlinearly depends on the state, which, in its turn, depends on the controlled parameters in the
higher coefficients. This essentially more complicated and nonlinear nature of the dependence
on the controlled parameters required in particular to develop a special method to estimating
additional arising residual terms in the formulae for the increment of the solution. A new
approach allowed, in particular, to weaken the conditions for the integrand of the functional
even in comparison with the linear case. At the places, where there is no principal differences
with the linear case, we just refer to work [14]. We limit the number of controlled parameters
by two (one parameter for each type of involving) is made just to simplify the formulations of
statements and calculations and is not essential.
We note that nowadays there are not so many works devoted to studying problems on optimal

control of higher coefficients in partial differential equations. Among recent one, we mention,
for instance, paper [21], where there were studied issues on finite-difference approximation both
in the state and the control of the problem on optimization of higher coefficients in semilinear
second order elliptic equation in a two-dimensional convex domain; see also the references
therein.
Let Ω ⊂ R𝑛 be a measurable (by default, in the Lebesgue sense) bounded set; in particular,

this can be a bounded domain; 𝑛 > 1; 𝑋 is an arbitrary Banach space; 𝑇 > 0. For the reader’s
convenience we recall the definition of the employed functional spaces for ℓ ∈ N, 1 6 𝑝 6 ∞.
The definition of the Lebesgue spaces 𝐿𝑝(Ω) and the Sobolev spaces 𝑊 ℓ

𝑝(Ω) are standard and

well-known, see, for instance, [22, §1.1]; 𝐿ℓ
𝑝(Ω) = 𝐿𝑝(Ω) × . . .× 𝐿𝑝(Ω)⏟  ⏞  

ℓ times

with the norm

‖𝜓‖𝐿ℓ
𝑝(Ω) =

⃦⃦
|𝜓|

⃦⃦
𝐿𝑝(Ω)

, |𝜓| =
ℓ∑︁

𝑗=1

|𝜓𝑗|, 𝜓 = (𝜓1, . . . , 𝜓ℓ) ∈ 𝐿ℓ
𝑝(Ω);

�̊� ℓ
𝑝(Ω) is the set of all elements in the space 𝑊 ℓ

𝑝(Ω) with supports in the domain Ω. For 𝑝 = 2

we employ the notations 𝐻ℓ(Ω) = 𝑊 ℓ
2(Ω), 𝐻ℓ

0(Ω) = �̊� ℓ
2(Ω).

The function 𝜙 : [0;𝑇 ] → 𝑋 is called continuous at the point 𝑡 ∈ [0;𝑇 ] if

‖𝜙(𝑡+ ℎ) − 𝜙(𝑡)‖𝑋 → 0 as ℎ→ 0, 𝑡+ ℎ ∈ [0;𝑇 ].

The same function is called differentiable at the point 𝑡 ∈ [0;𝑇 ] if there exists an element 𝜓 ∈ 𝑋
such that ⃦⃦⃦

ℎ−1
(︀
𝜙(𝑡+ ℎ) − 𝜙(𝑡)

)︀
− 𝜓

⃦⃦⃦
𝑋
→ 0 as ℎ→ 0, 𝑡+ ℎ ∈ [0;𝑇 ].

An element 𝜓 is called a derivative of the function 𝜙(𝑡) at a point 𝑡 and is denoted as 𝜙′(𝑡).
The second derivative is defined as the derivative of the derivative and so forth.
For 𝑘 = 0, 1, . . . the set of all functions 𝜙 : [0;𝑇 ] → 𝑋 possessing continuous derivatives of

order up to 𝑘 equipped with the norm

‖𝜙‖ =
𝑘∑︁

𝑗=0

max
𝑡∈[0;𝑇 ]

⃦⃦
𝜙(𝑗)(𝑡)

⃦⃦
𝑋
,

is denoted by C𝑘
(︀
[0;𝑇 ];𝑋

)︀
. This space is Banach, see, for instance, [23, Ch. IV, Sect.1]).
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For 𝑝 ∈ [1;∞), by 𝐿𝑝

(︀
[0;𝑇 ];𝑋

)︀
we denote the set of all Bohner measurable functions (on

Bohner measurability see, for instance, [23, Ch. IV, Sect. 1]) 𝜙 : [0;𝑇 ] → 𝑋, for which1 the

value
𝑇∫︀
0

⃦⃦
𝜙(𝑡)

⃦⃦𝑝

𝑋
𝑑𝑡 is finite. The norm in such space is introduced as follows:

‖𝜙‖
𝐿𝑝

(︀
[0;𝑇 ];𝑋

)︀ =

⎛⎝ 𝑇∫︁
0

⃦⃦
𝜙(𝑡)

⃦⃦𝑝

𝑋
𝑑𝑡

⎞⎠1/𝑝

.

Such space is Banach, see, for instance, [23, Ch. IV, Sect. 1, Thm. 1.11].

2. Formulation of problem and basic convention

Let Ω ⊂ R3 be a bounded domain diffeomorphic to a spherical layer and there exists a point
in the space2 such that the ray leaving it in an arbitrary direction intersects the boundary of
the domain 𝜕Ω = Γ1 ∪ Γ2 exactly at two points, one on each connected component Γ1, Γ2,
and both these connected components are diffeomorphic to a sphere in R3. From the physical
point of view, Ω is treated as the atmosphere of the Earth. We denote by 𝑉 (Ω) the set of all

functions 𝜓 ∈ 𝐻1(Ω), the trace of which 𝜓
⃒⃒⃒
Γ1

is zero, while the trace 𝜓
⃒⃒⃒
Γ2

is constant, that is,

there exists a constant 𝑐 ∈ R, depending on the choice of the function 𝜓, such that 𝜓
⃒⃒⃒
Γ2

= 𝑐).

It was already shown in [2], see also Lemma 3.1 below, that the set 𝑉 (Ω) is a Hilbert space
with the scalar product of form

(𝜙, 𝜓)𝑉 (Ω) =

∫︁
Ω

(︀
∇𝜙(𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥,

where the symbol “ · ” denotes the scalar product in R3.
Let 𝒟𝑖 ⊂ R be given convex sets, 𝑖 = 1, 2; 𝜎*, 𝜎

*, 𝜎*, 𝜎
* be given numbers such that

0 < 𝜎* 6 𝜎* 6 𝜎*, 𝜎* > 0.

We define the class Σ(𝜎*, 𝜎
*) of all functions 𝜎(𝑡, 𝑥; 𝜐1) : [0;𝑇 ] × Ω ×𝒟1 → R, differentiable in

𝜐1 ∈ 𝒟1 and being continuous in 𝜐1 ∈ 𝒟1 together with their derivatives 𝜎′
𝜐1

(𝑡, 𝑥; 𝜐1), bounded

on bounded sets and such that 𝜎( · , · ; 𝜐1), 𝜎′
𝜐1

( · , · ; 𝜐1) ∈ C
(︀
[0;𝑇 ];𝐿∞(Ω)

)︀
, 𝜎* 6 𝜎(𝑡, 𝑥; 𝜐1) 6

𝜎* for almost each 𝑥 ∈ Ω, ∀ 𝑡 ∈ [0;𝑇 ], 𝜐1 ∈ 𝒟1.
We also define a class F of all vector functions

𝑓(𝑡, 𝑥; 𝜂; 𝜐2) : [0;𝑇 ] × Ω ×R3 ×𝒟2 → R3,

which, together with their derivatives 𝑓 ′
𝜂(𝑡, 𝑥; 𝜂; 𝜐2), 𝑓

′
𝜐2

(𝑡, 𝑥; 𝜂; 𝜐2) are measurable in (𝑡, 𝑥) ∈
[0;𝑇 ] × Ω, continuous in (𝜂; 𝜐2) ∈ R3 ×𝒟2 and satisfying the conditions

𝑓( · , · ;∇𝜙; 𝜐2), 𝑓
′
𝜐2

(︀
· , · ;∇𝜙, 𝜐2

)︀
∈ C

(︀
[0;𝑇 ];𝐿3

2(Ω)
)︀
,

𝑓 ′
𝜂

(︀
· , · ;∇𝜙, 𝑢( · )

)︀
∈ C

(︀
[0;𝑇 ];𝐿3×3

∞ (Ω)
)︀
,

𝑓 ′
𝜂(𝑡, 𝑥; 𝜂; 𝜐2)𝜉 · 𝜉 6 𝜎* |𝜉|2,

⃒⃒
𝑓 ′
𝜂(𝑡, 𝑥; 𝜂; 𝜐2)𝜉

⃒⃒
6 𝜎*|𝜉| ∀𝜉 ∈ R3,⃦⃦

𝑓 ′
𝜐2

(︀
𝑡, .; 𝜂; 𝜐2

)︀⃦⃦
𝐿3
2(Ω)

6 𝒩
(︀
‖𝜂‖𝐿3

2(Ω)

)︀
∀ 𝜂 ∈ 𝐿3

2(Ω),

1The Bohner measurability of a function 𝜙(𝑡) implies the measurability of the scalar function
⃦⃦
𝜙(𝑡)

⃦⃦
𝑋

on

[0;𝑇 ] (but not vice versa!), see, for instance, [25, Ch. V, Sect. 4, Proof of Pettis theorem].
2For the spherical layer this is the center of the sphere.
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for almost each 𝑥 ∈ Ω and all 𝑡 ∈ [0;𝑇 ], 𝜙 ∈ C
(︀
[0;𝑇 ];𝑉 (Ω)

)︀
, 𝜐2 ∈ 𝒟2, 𝑢 ∈ 𝐿∞(Ω), ‖𝑢‖𝐿∞ 6 1;

instead of 1 we can take arbitrary positive constant. Moreover, we assume that we are given a
function 𝜙0 ∈ 𝑉 (Ω).

For 𝜐 = (𝜐1; 𝜐2) ∈ 𝒟 = 𝒟1 × 𝒟2, 𝜎 ∈ Σ(𝜎*, 𝜎
*), 𝑓 ∈ F we consider a semilinear differential

equation of form (1.2):

𝜕

𝜕𝑡
∆𝜙(𝑡, 𝑥) + div

(︀
𝜎(𝑡, 𝑥; 𝜐1)∇𝜙(𝑡, 𝑥)

)︀
= div 𝑓(𝑡, 𝑥;∇𝜙; 𝜐2). (2.1)

For a sufficiently smooth vector function �⃗�(𝑡, 𝑥) we consider its linear analogue:

𝜕

𝜕𝑡
∆𝜙(𝑡, 𝑥) + div

(︀
𝜎(𝑡, 𝑥; 𝜐1)∇𝜙(𝑡, 𝑥)

)︀
= div �⃗�(𝑡, 𝑥). (2.2)

As it was shown in [2], under boundary conditions of form∫︁
Γ2

(︂
𝜕

𝜕𝑡

𝜕𝜙(𝑡, 𝑥)

𝜕�⃗�
+ 𝜎(𝑡, 𝑥; 𝜐1)

𝜕𝜙(𝑡, 𝑥)

𝜕�⃗�
− �⃗��⃗�(𝑡, 𝑥)

)︂
𝑑ℓ = 0, 𝑡 ∈ (0;𝑇 ], (2.3)

where �⃗��⃗� is the normal component of the vector �⃗�, �⃗� is the vector of outward normal to the
surface Γ2,

𝜙(𝑡, 𝑥)
⃒⃒⃒
𝑥∈Γ1

= 0, 𝜙(𝑡, 𝑥)
⃒⃒⃒
𝑥∈Γ2

= 𝐶(𝑡), 𝑡 ∈ (0;𝑇 ], (2.4)

identity (2.2) written for a sufficiently smooth function 𝜙(𝑡, 𝑥) can be transformed to an integral
identity of form

𝑑

𝑑𝑡

∫︁
Ω

(︀
∇𝜙(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥+

∫︁
Ω

𝜎(𝑥; 𝜐1)
(︀
∇𝜙(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥

=

∫︁
Ω

(︀
�⃗�(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥 for 𝑡 ∈ (0;𝑇 ], 𝜓 ∈ 𝑉 (Ω).

(2.5)

Respectively, for �⃗� ∈ C
(︀
[0;𝑇 ];𝐿3

2(Ω)
)︀
we can define a generalized solution of equation (2.2)

satisfying boundary conditions (2.3), (2.4) and initial condition

𝜙(𝑡, 𝑥)
⃒⃒⃒
𝑡=0

= 𝜙0(𝑥), 𝑥 ∈ Ω, (2.6)

as a function 𝜙 ∈ C1
(︀
[0;𝑇 ];𝑉 (Ω)

)︀
satisfying identity (2.5) and initial condition (2.6).

As it was shown in [2], for the case 𝜎 = 𝜎(𝑥; 𝜐1), that is for the coefficient independent of
time, problem (2.5), (2.6) has a unique solution in the space C1

(︀
[0;𝑇 ];𝑉 (Ω)

)︀
for each choice

of the functions 𝜙0 ∈ 𝑉 (Ω), �⃗� ∈ C
(︀
[0;𝑇 ];𝐿3

2(Ω)
)︀
. This means that in this case a generalized

solution of problem (2.2), (2.3), (2.4), (2.6) is well-defined. Later we shall show that when
the coefficient 𝜎 depends on the time 𝑡, the notion of the generalized solution is still well-
defined. The study of the described case of the time-dependent coefficient is needed in order to
calculate the derivatives in controlled parameters of the integral functions defined on solutions
of a controlled problem. The matter is that the formulae of the mentioned derivatives involve
the functions beings the solutions of a similar problem, treated in the sense of the integral
identity, with the coefficient involving the derivative of the right hand side 𝑓 ′

𝜂(𝑡, 𝑥;∇𝜙; 𝜐2) and
moreover, in contrast to 𝜎, this derivative is a matrix.
Thus, the generalized solution of problem (2.2), (2.3), (2.4), (2.6) is a function 𝜙 ∈

C1
(︀
[0;𝑇 ];𝑉 (Ω)

)︀
, satisfying integral identity (2.5) and initial condition (2.6).
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In a similar way, for equation (2.1) we impose initial and boundary conditions (2.4), (2.6),
as well as conditions∫︁

Γ2

(︂
𝜕

𝜕𝑡

𝜕𝜙(𝑡, 𝑥)

𝜕�⃗�
+ 𝜎(𝑡, 𝑥; 𝜐1)

𝜕𝜙(𝑡, 𝑥)

𝜕�⃗�
− 𝑓�⃗�(𝑡, 𝑥;∇𝜙; 𝜐2)

)︂
𝑑ℓ = 0, (2.7)

𝑡 ∈ (0;𝑇 ]. A solution of problem (2.1), (2.4), (2.6), (2.7) is a function 𝜙 in the class
C1

(︀
[0;𝑇 ];𝑉 (Ω)

)︀
satisfying the identity

𝑑

𝑑𝑡

∫︁
Ω

(︀
∇𝜙(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥+

∫︁
Ω

𝜎(𝑡, 𝑥; 𝜐1)
(︀
∇𝜙(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥

=

∫︁
Ω

(︀
𝑓(𝑡, 𝑥;∇𝜙; 𝜐2) · ∇𝜓(𝑥)

)︀
𝑑𝑥 for 𝑡 ∈ (0;𝑇 ], 𝜓 ∈ 𝑉 (Ω),

(2.8)

and initial condition (2.6).

Remark 2.1. We seek solution 𝜙 in the space C1
(︀
[0;𝑇 ];𝑉 (Ω)

)︀
. According the definition of

this space, for a given 𝑡 ∈ [0;𝑇 ], the corresponding function 𝜙(𝑡, · ) belongs to the space 𝑉 (Ω).
In other words, 𝜙(𝑡, · ) ∈ 𝐻1(Ω), and its trace on the surface Γ1 vanishes, while the trace on the
surface Γ2 is independent of 𝑥 ∈ Ω, but, in general, it can depend on 𝑡 since the time moment
𝑡 is fixed and the constant 𝑐 in the definition 𝑉 (Ω) depends on the choice of the function in
𝑉 (Ω)). This is why the boundary conditions in the definition of the space 𝑉 (Ω) are due to
boundary conditions (2.4). On the physical meaning of these conditions see [2], [3].

We assume that we are given a function 𝐹 (𝑡, 𝑥, 𝜉, 𝜐) : [0;𝑇 ]×Ω×R×𝒟 → R, which and its
derivatives 𝐹 ′

𝜉(𝑡, 𝑥, 𝜉, 𝜐), 𝐹 ′
𝜐(𝑡, 𝑥, 𝜉, 𝜐) are measurable in (𝑡, 𝑥) ∈ [0;𝑇 ] × Ω ≡ Π, continuous in

(𝜉; 𝜐) ∈ R×𝒟 and being such that 𝐹 ( · , · , 𝜙, 𝜐) ∈ 𝐿1(Π) for all 𝜙 ∈ C1
(︀
[0;𝑇 ];𝑉 (Ω)

)︀
, 𝜐 ∈ 𝒟;

𝐹 ′
𝜐( · , · , 𝜙, 𝑢) ∈ 𝐿2

1(Π) for all 𝜙 ∈ C1
(︀
[0;𝑇 ];𝑉 (Ω)

)︀
, 𝑢 ∈ 𝐿2

∞(Π); and 𝐹 ′
𝜉( · , · , 𝜙, 𝑢) ∈ 𝐿𝑞′(Π)

for all 𝜙 ∈ 𝐿𝑞(Π), 𝑢 ∈ 𝐿2
∞(Π), ‖𝑢‖𝐿2

∞ 6 1, where
1

𝑞
+

1

𝑞′
= 1, 𝑞 ∈ [2; 6). According to the

Sobolev embedding theorem and to Lemma 3.1 given below, a bounded, and hence continuous,
embedding 𝑉 (Ω) ⊂ 𝑊 1

2 (Ω) ⊂ 𝐿𝑞(Ω) holds. Therefore, C
(︀
[0;𝑇 ];𝑉 (Ω)

)︀
⊂ 𝐿𝑞(Π).

We denote by 𝒟′ the set of all 𝜐 ∈ 𝒟, for which there exists a unique solution of problem
(2.1), (2.4), (2.6), (2.7). A solution 𝜙 corresponding to the set 𝜐 ∈ 𝒟′ is denoted by 𝜙[𝜐]. Thus,
the integral functional

𝐽 [𝜐] =

𝑇∫︁
0

𝑑𝑡

∫︁
Ω

𝐹
(︀
𝑡, 𝑥, 𝜙[𝜐](𝑡, 𝑥), 𝜐

)︀
𝑑𝑥, 𝜐 ∈ 𝒟′,

is well-defined. The functional 𝐽 [𝜐] can be regarded as a target functional in the problem on
parametric optimization: 𝐽 [𝜐] → min, 𝜐 ∈ 𝒟′. As it was explained in [14], in particular, in such
form we can formulate the problems on recovering the coefficients of equation (2.1). Later, see
Lemma 3.8, we shall show that the set 𝒟′ is open in 𝒟 ∩R2. Thus, we can pose a question on
differentiating the functional 𝐽 [𝜐] on the set 𝒟′.

Theorem 2.1. Under the made assumptions the function 𝐽 [𝜐], 𝜐 ∈ 𝒟′ possesses partial
derivatives with respect to both variables and the formulae hold:

𝜕𝐽

𝜕𝜐1
=

∫︁∫︁
Π

(︁
𝐹 ′
𝜉

(︀
𝑡, 𝑥, 𝜙[𝜐](𝑡, 𝑥), 𝜐

)︀
𝑦(𝑡, 𝑥) + 𝐹 ′

𝜐1

(︀
𝑡, 𝑥, 𝜙[𝜐](𝑡, 𝑥), 𝜐

)︀)︁
𝑑𝑡 𝑑𝑥, (2.9)
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or 1, under an additional condition,

𝐹 ′
𝜉( · , · ;𝜙[𝜐]; 𝜐) ∈ C

(︀
[0;𝑇 ];𝐿𝑞′(Ω)

)︀
, (2.10)

𝜕𝐽

𝜕𝜐1
=

∫︁∫︁
Π

(︁
−
(︀
𝜎′
𝜐1

(𝑡, 𝑥; 𝜐1)
)︀
∇𝑝 · ∇𝜙[𝜐] + 𝐹 ′

𝜐1

(︀
𝑡, 𝑥, 𝜙[𝜐], 𝜐

)︀)︁
𝑑𝑡 𝑑𝑥, (2.11)

𝜕𝐽

𝜕𝜐2
=

∫︁∫︁
Π

(︁
𝐹 ′
𝜉

(︀
𝑡, 𝑥, 𝜙[𝜐](𝑡, 𝑥), 𝜐

)︀
𝑧(𝑡, 𝑥) + 𝐹 ′

𝜐2

(︀
𝑡, 𝑥, 𝜙[𝜐](𝑡, 𝑥), 𝜐

)︀)︁
𝑑𝑡 𝑑𝑥,

or, under additional (2.10),

𝜕𝐽

𝜕𝜐2
=

∫︁∫︁
Π

(︁
𝑓 ′
𝜐2

(𝑡, 𝑥;∇𝜙[𝜐]; 𝜐2) · ∇𝑝(𝑡, 𝑥) + 𝐹 ′
𝜐2

(︀
𝑡, 𝑥, 𝜙[𝜐](𝑡, 𝑥), 𝜐

)︀)︁
𝑑𝑡 𝑑𝑥,

where 𝑦 ∈ C1
(︀
[0;𝑇 ], 𝑉 (Ω)

)︀
is the unique solution of problem

𝑑

𝑑𝑡

∫︁
Ω

(︀
∇𝑦(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥+

∫︁
Ω

𝒮(𝑡, 𝑥)∇𝑦(𝑡, 𝑥) · ∇𝜓(𝑥) 𝑑𝑥

= −
∫︁
Ω

(︀
𝜎′
𝜐1

(𝑡, 𝑥; 𝜐1)∇𝜙[𝜐] · ∇𝜓(𝑥)
)︀
𝑑𝑥, 𝑡 ∈ (0;𝑇 ], ∀𝜓 ∈ 𝑉 (Ω),

(2.12)

where 𝒮(𝑡, 𝑥) = 𝜎(𝑡, 𝑥; 𝜐1)𝐸− 𝑓 ′
𝜂 (𝑡, 𝑥;∇𝜙[𝜐]; 𝜐2), 𝐸 is the unit matrix with the initial condition

𝑦(0, 𝑥) = 0, 𝑥 ∈ Ω; and 𝑧 ∈ C1
(︀
[0;𝑇 ], 𝑉 (Ω)

)︀
is a unique solution of problem

𝑑

𝑑𝑡

∫︁
Ω

(︀
∇𝑧(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥+

∫︁
Ω

𝒮(𝑡, 𝑥)∇𝑧(𝑡, 𝑥) · ∇𝜓(𝑥) 𝑑𝑥

=

∫︁
Ω

(︀
𝑓 ′
𝜐2

(𝑡, 𝑥;∇𝜙[𝜐]; 𝜐2) · ∇𝜓(𝑥)
)︀
𝑑𝑥 for 𝑡 ∈ (0;𝑇 ], 𝜓 ∈ 𝑉 (Ω),

(2.13)

with the initial condition 𝑧(0, 𝑥) = 0, 𝑥 ∈ Ω; 𝑝 ∈ C1
(︀
[0;𝑇 ], 𝑉 (Ω)

)︀
is a unique solution of the

dual problem

− 𝑑

𝑑𝑡

∫︁
Ω

(︀
∇𝑝(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥+

∫︁
Ω

𝒮(𝑡, 𝑥)∇𝑝(𝑡, 𝑥) · ∇𝜓(𝑥) 𝑑𝑥

=

∫︁
Ω

𝐹 ′
𝜉

(︀
𝑡, 𝑥, 𝜙[𝜐], 𝜐

)︀
𝜓(𝑥) 𝑑𝑥 for 𝑡 ∈ (0;𝑇 ], 𝜓 ∈ 𝑉 (Ω),

(2.14)

with the final condition 𝑝(𝑇, 𝑥) = 0, 𝑥 ∈ Ω.

The proof of Theorem 2.1 is given in Section 4.

3. Auxiliary statements

To prove Theorem 2.1, we shall need a series of auxiliary statements. The first statement,
which is an analogue of a well-known Poincaré-Fridrichs inequality, was proved in [2].

Lemma 3.1. Let Ω ⊂ R3 be a bounded domain diffeomorphic to a spherical layer and there
exists a point in the space such that a ray leaving it in an arbitrary direction intersect the
boundary of the domain 𝜕Ω = Γ1∪Γ2 exactly at points, one on each of the connected components

1We mean that these two formulae are equivalent.
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Γ1, Γ2, and both these connected components are diffeomorphic to a sphere in R3. Then there
exists a constant 𝐶 > 0 depending only on the domain Ω such that∫︁

Ω

⃒⃒
𝜓(𝑥)

⃒⃒2
𝑑𝑥 6 𝐶

∫︁
Ω

⃒⃒
∇𝜓(𝑥)

⃒⃒2
𝑑𝑥 = 𝐶 ‖𝜓‖2𝑉 (Ω) ∀𝜓 ∈ 𝑉 (Ω).

Therefore, we have a bounded embedding 𝑉 (Ω) ⊂ 𝐻1(Ω).

Lemma 3.2. Let 𝜁, 𝜂 ∈ C1
(︀
[0;𝑇 ];𝑉 (Ω)

)︀
. Then

𝑑

𝑑𝑡

(︀
𝜁(𝑡, · ), 𝜂(𝑡, · )

)︀
𝑉 (Ω)

=

(︂
𝑑

𝑑𝑡
𝜁(𝑡, · ), 𝜂(𝑡, · )

)︂
𝑉 (Ω)

+

(︂
𝜁(𝑡, · ), 𝑑

𝑑𝑡
𝜂(𝑡, · )

)︂
𝑉 (Ω)

for all 𝑡 ∈ (0;𝑇 ].

The proof was given in [14].
The next statement is known as Riesz theorem on representing a linear continuous functional

in a Hilbert space, see, for instance, [24, Sect. 5.7, Thm. 5.7], [25, Ch. III, Sect. 6]).

Lemma 3.3. Assume that we are given a linear continuous functional 𝐹 on a Hilbert space
𝐻. Then there exists a unique element 𝜙 ∈ 𝐻 such that 𝐹 [𝜔] = (𝜙, 𝜔) for all 𝜔 ∈ 𝐻 and the
identity holds: ‖𝐹‖ = ‖𝜙‖.
The following statement is known as the Lax-Milgram theorem, see, for instance, [24, Sect.

5.8, Thm. 5.8]).

Lemma 3.4. Let 𝐻 be a real Hilbert space; 𝐵 : 𝐻 × 𝐻 → R be a bilinear form, which is
bounded and coercive, that is, there exists constants 𝛾1, 𝛾2 > 0 such that⃒⃒

𝐵[𝑥, 𝑦]
⃒⃒
6 𝛾2‖𝑥‖ ‖𝑦‖, 𝐵(𝑥, 𝑥) > 𝛾1‖𝑥‖2, 𝑥, 𝑦 ∈ 𝐻.

Then for each 𝜓 ∈ 𝐻* there exists a unique element 𝑥 ∈ 𝐻 such that 𝐵[𝑥, · ] = 𝜓.

The next statement is in fact an analogue of a statement in [25, Ch. III, Sect. 7], which was
presented there as a special version of Lax-Milgram theorem but in another, inconvenient for
us formulation and for a complex case. A simpler proof based on Lemmata 3.3 and 3.4, in
contrast to [25], can be found in [26, Lm. 3.3].

Lemma 3.5. Let the assumption of Lemma 3.4 be satisfied. Then there exists a strongly
positive definite linear bounded operator 𝐴 : 𝐻 → 𝐻, invertible on entire space and such that

𝐵[𝑥, 𝑦] =
(︀
𝐴[𝑥], 𝑦

)︀
for all 𝑥, 𝑦 ∈ 𝐻, ‖𝐴‖ 6 𝛾2, ‖𝐴−1‖ 6 𝛾−1

1 .

We define a class Σ3(𝜎*, 𝜎
*) of all matrix functions 𝒮(𝑡, 𝑥) : [0;𝑇 ] × Ω → R3×3, such that

𝒮 ∈ C
(︀
[0;𝑇 ];𝐿3×3

∞ (Ω)
)︀
,

𝒮(𝑡, 𝑥)𝜉 · 𝜉 > 𝜎* |𝜉|2,
⃒⃒
𝒮(𝑡, 𝑥)𝜉

⃒⃒
6 𝜎* |𝜉|

for all 𝜉 ∈ R3, for almost each 𝑥 ∈ Ω and all 𝑡 ∈ [0;𝑇 ]. For arbitrary 𝜙0 ∈ 𝑉 (Ω), 𝑧 ∈
C
(︀
[0;𝑇 ];𝐿𝑞′(Ω)

)︀
, �⃗� ∈ C

(︀
[0;𝑇 ];𝐿3

2(Ω)
)︀
we consider an analogue of problem (2.5):

𝑑

𝑑𝑡

∫︁
Ω

(︀
∇𝜙(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥+

∫︁
Ω

𝒮(𝑡, 𝑥)∇𝜙(𝑡, 𝑥) · ∇𝜓(𝑥) 𝑑𝑥

=

∫︁
Ω

(︀
𝑧(𝑡, 𝑥)𝜓(𝑥) + �⃗�(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥, 𝑡 ∈ (0;𝑇 ], 𝜓 ∈ 𝑉 (Ω),

(3.1)

subject to initial condition (2.6).

Lemma 3.6. Let 𝛾1 > 0, 𝛾2 > 0. Then for each 𝒮 ∈ Σ3(𝛾1, 𝛾2), 𝑧 ∈ C
(︀
[0;𝑇 ];𝐿𝑞′(Ω)

)︀
,

�⃗� ∈ C
(︀
[0;𝑇 ];𝐿3

2(Ω)
)︀
problem (3.1), (2.6) has a unique solution 𝜙 ∈ C1

(︀
[0;𝑇 ];𝑉 (Ω)

)︀
.
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Proof. For an arbitrary 𝑡 ∈ (0;𝑇 ] we define a bilinear form and a functional

𝐵𝑡[𝜙, 𝜓] =

∫︁
Ω

𝒮(𝑡, 𝑥)∇𝜙(𝑥) · ∇𝜓(𝑥) 𝑑𝑥, 𝜙, 𝜓 ∈ 𝑉 ;

𝐹𝑡[𝜓] =

∫︁
Ω

(︀
𝑧(𝑡, 𝑥)𝜓(𝑥) + �⃗�(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥, 𝜓 ∈ 𝑉,

on the Hilbert space 𝑉 = 𝑉 (Ω).
1. Let us confirm that the form 𝐵𝑡 is coercive. Indeed, for each 𝜙 ∈ 𝑉 we have

𝐵𝑡[𝜙, 𝜙] > 𝛾1

∫︁
Ω

⃒⃒
∇𝜙(𝑥)

⃒⃒2
𝑑𝑥 = 𝛾1‖∇𝜙‖2𝐿3

2
= 𝛾1‖𝜙‖2𝑉 , 𝛾1 = 𝜎*.

2. Let us make sure that the form 𝐵𝑡 is bounded. Indeed, for each 𝜙, 𝜓 ∈ 𝑉 , by Cauchy-
Schwarz and Hölder inequalities we have:⃒⃒

𝐵[𝜙, 𝜓]
⃒⃒
6
∫︁
Ω

⃒⃒
𝒮(𝑡, 𝑥)∇𝜙(𝑥) · ∇𝜓(𝑥)

⃒⃒
𝑑𝑥 6

∫︁
Ω

⃒⃒
𝒮(𝑡, 𝑥)∇𝜙(𝑥)

⃒⃒ ⃒⃒
∇𝜓(𝑥)

⃒⃒
𝑑𝑥

6𝛾2

∫︁
Ω

⃒⃒
∇𝜙(𝑥)

⃒⃒ ⃒⃒
∇𝜓(𝑥)

⃒⃒
𝑑𝑥 6 𝛾2‖∇𝜙‖𝐿3

2
‖∇𝜓‖𝐿3

2
= 𝛾2‖𝜙‖𝑉 ‖𝜓‖𝑉 , 𝛾2 = 𝜎*.

3. Let us check that the linear functional 𝐹𝑡 is bounded and therefore, is continuous. Indeed,
for each 𝜓 ∈ 𝑉 , in view of the boundedness of the embedding 𝑉 ⊂ 𝐿𝑞(Ω) and Hölder inequality
we have:⃒⃒
𝐹𝑡[𝜓]

⃒⃒
6

⃦⃦
𝑧(𝑡, · )

⃦⃦
𝐿𝑞′

‖𝜓‖𝐿𝑞 +
⃦⃦
�⃗�(𝑡, · )

⃦⃦
𝐿3
2
‖∇𝜓‖𝐿3

2
6

(︁
𝐶
⃦⃦
𝑧
⃦⃦
C
(︀
[0;𝑇 ];𝐿𝑞′

)︀ +
⃦⃦
�⃗�
⃦⃦
C
(︀
[0;𝑇 ];𝐿3

2

)︀)︁ ‖𝜓‖𝑉 .

4. According Lemma 3.5, there exists a strongly positive definite linear bounded operator
𝐴𝑡 : 𝑉 → 𝑉 invertible on entire space 𝑉 such that

𝐵𝑡[𝜙, 𝜓] =
(︀
𝐴𝑡[𝜙], 𝜓

)︀
𝑉

for all 𝜙, 𝜓 ∈ 𝑉, ‖𝐴𝑡‖ 6 𝛾2, ‖𝐴−1
𝑡 ‖ 6 𝛾−1

1 .

It is obvious that the operator 𝐴𝑡 is uniformly Lipschitz in 𝑡 ∈ [0;𝑇 ]:

‖𝐴𝑡𝜙− 𝐴𝑡𝜓‖𝑉 =
⃦⃦
𝐴𝑡[𝜙− 𝜓]

⃦⃦
𝑉
6 𝛾2 ‖𝜙− 𝜓‖𝑉 ∀𝜙, 𝜓 ∈ 𝑉.

Let us confirm that for all 𝜙 ∈ 𝑉 the mapping [0;𝑇 ] ∋ 𝑡→ 𝐴𝑡[𝜙] belongs to the clasC
(︀
[0;𝑇 ];𝑉

)︀
.

We choose arbitrary 𝑡, 𝜏 ∈ [0;𝑇 ], 𝜙, 𝜓 ∈ 𝑉 , and by Cauchy-Schwarz and Hölder inequalities we
estimate:

(𝐴𝑡𝜙− 𝐴𝜏𝜙, 𝜓)𝑉 =𝐵𝑡[𝜙, 𝜓] −𝐵𝜏 [𝜙, 𝜓] =

∫︁
Ω

(︀
𝒮(𝑡, 𝑥) − 𝒮(𝜏, 𝑥)

)︀
∇𝜙 · ∇𝜓 𝑑𝑥

6
∫︁
Ω

⃒⃒⃒(︀
𝒮(𝑡, 𝑥) − 𝒮(𝜏, 𝑥)

)︀
∇𝜙

⃒⃒⃒
|∇𝜓| 𝑑𝑥 6

⃦⃦
𝒮(𝑡, · ) − 𝒮(𝜏, · )

⃦⃦
𝐿3×3
∞ (Ω)

‖𝜙‖𝑉 ‖𝜓‖𝑉 .

Substituting 𝜓 = 𝐴𝑡𝜙− 𝐴𝜏𝜙, we obtain:

‖𝐴𝑡𝜙− 𝐴𝜏𝜙‖𝑉 6
⃦⃦
𝒮(𝑡, · ) − 𝒮(𝜏, · )

⃦⃦
𝐿3×3
∞ (Ω)

‖𝜙‖𝑉 → 0 as 𝜏 → 𝑡,

in view of the fact that 𝒮 ∈ C
(︀
[0;𝑇 ];𝐿3×3

∞ (Ω)
)︀
. This means that the mapping [0;𝑇 ] ∋ 𝑡→ 𝐴𝑡[𝜙]

belongs to the class C
(︀
[0;𝑇 ];𝑉

)︀
. As it was shown in [23, Ch. V, Sect. 1, Lm. 1.1], this

implies that 𝐴 : C
(︀
[0;𝑇 ];𝑉

)︀
→ C

(︀
[0;𝑇 ];𝑉

)︀
, where 𝐴 is the operator defined by the formula

(𝐴𝜙)(𝑡) = 𝐴𝑡𝜙(𝑡, · ).
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5. According to Lemma 3.3, for each 𝑡 ∈ [0;𝑇 ] there exits a unique element 𝑍(𝑡) ∈ 𝑉 such
that

𝐹𝑡[𝜓] =
(︀
𝑍(𝑡), 𝜓

)︀
𝑉

∀𝜓 ∈ 𝑉.

Moreover,
⃦⃦
𝑍(𝑡)

⃦⃦
𝑉

= ‖𝐹𝑡‖. Let us show that 𝑍 ∈ C
(︀
[0;𝑇 ];𝑉

)︀
. Indeed, for all 𝑡, 𝜏 ∈ [0;𝑇 ],

𝜓 ∈ 𝑉 we have:(︀
𝑍(𝑡) − 𝑍(𝜏), 𝜓

)︀
𝑉

=𝐹𝑡[𝜓] − 𝐹𝜏 [𝜓]

=

∫︁
Ω

(︁(︀
𝑧(𝑡, 𝑥) − 𝑧(𝜏, 𝑥)

)︀
𝜓(𝑥) +

(︀
�⃗�(𝑡, 𝑥) − �⃗�(𝜏, 𝑥)

)︀
· ∇𝜓(𝑥)

)︁
𝑑𝑥.

Now similar to Item 3 we obtain:(︀
𝑍(𝑡) − 𝑍(𝜏), 𝜓

)︀
𝑉
6

(︁
𝐶
⃦⃦
𝑧(𝑡, · ) − 𝑧(𝜏, · )

⃦⃦
𝐿𝑞′

+
⃦⃦
�⃗�(𝑡, · ) − �⃗�(𝜏, · )

⃦⃦
𝐿3
2

)︁
‖𝜓‖𝑉 .

Substituting 𝜓 = 𝑍(𝑡) − 𝑍(𝜏), we find:⃦⃦
𝑍(𝑡) − 𝑍(𝜏)

⃦⃦
𝑉
6 𝐶

⃦⃦
𝑧(𝑡, · ) − 𝑧(𝜏, · )

⃦⃦
𝐿𝑞′

+
⃦⃦
�⃗�(𝑡, · ) − �⃗�(𝜏, · )

⃦⃦
𝐿3
2
→ 0

as 𝜏 → 𝑡. This means that 𝑍 ∈ C
(︀
[0;𝑇 ];𝑉

)︀
.

6. We observe that in terms of our notations and in view of Lemma 3.2, identity (3.1) is
rewritten as follows: (︂

𝑑𝜙

𝑑𝑡
, 𝜓

)︂
𝑉

+𝐵𝑡[𝜙(𝑡, · ), 𝜓] = 𝐹𝑡[𝜓] ∀𝜓 ∈ 𝑉.

According to the above proven facts, it is represented as(︂
𝑑𝜙

𝑑𝑡
+ 𝐴𝑡𝜙(𝑡, · ) − 𝑍(𝑡), 𝜓

)︂
𝑉

= 0 ∀𝜓 ∈ 𝑉.

Thus, problem (3.1), (2.6) is equivalent to the Cauchy problem for the an operator differential
equation in the space 𝑉 :

𝑑𝜙

𝑑𝑡
+ 𝐴𝑡𝜙(𝑡, · ) = 𝑍(𝑡), 𝑡 ∈ (0;𝑇 ], 𝜙(0) = 𝜙0; 𝜙 ∈ C1

(︀
[0;𝑇 ];𝑉

)︀
.

In view of Items 4, 5, for this problem the assumptions of Theorem 1.1 in [23, Ch. V, Sect.
1] are satisfied and by this theorem, the formulated problem possesses exactly one solution
𝜙 ∈ C1

(︀
[0;𝑇 ];𝑉

)︀
.

Remark 3.1. Let 𝜎 ∈ Σ(𝜎*, 𝜎
*), 𝒮(𝑡, 𝑥) = 𝜎(𝑡, 𝑥; 𝜐1)𝐸, where 𝐸 is the unit matrix. It is

obvious that 𝒮 ∈ Σ3(𝜎*, 𝜎
*). This is why, according to Lemma 3.6, problem (2.5), (2.6) has a

unique solution in the space C1
(︀
[0;𝑇 ];𝑉 (Ω)

)︀
.

Remark 3.2. For 𝜎 ∈ Σ(𝜎*, 𝜎
*), 𝑓 ∈ F, 𝜙 ∈ C

(︀
[0;𝑇 ];𝑉 (Ω)

)︀
𝜐 ∈ 𝒟, we consider a matrix

function

𝒮(𝑡, 𝑥) = 𝜎(𝑡, 𝑥; 𝜐1)𝐸 − 𝑓 ′
𝜂(𝑡, 𝑥;∇𝜙; 𝜐2).

According to our assumptions, the estimates hold:

𝒮(𝑡, 𝑥)𝜉 · 𝜉 = 𝜎 |𝜉|2 − 𝑓 ′
𝜂𝜉 · 𝜉 >

(︀
𝜎* − 𝜎*

)︀
|𝜉|2,

⃒⃒
𝒮(𝑡, 𝑥)𝜉

⃒⃒
6

(︀
𝜎* + 𝜎*)︀|𝜉|

for almost each 𝑥 ∈ Ω and all 𝑡 ∈ [0;𝑇 ], 𝜉 ∈ R3. Thus, 𝒮 ∈ Σ3(𝛾1, 𝛾2) as 𝛾1 = 𝜎* − 𝜎*,
𝛾2 = 𝜎* + 𝜎*. This is why, according to Lemma 3.6, initial problems related with equations
(2.12)–(2.14) possess unique solutions in the space C1

(︀
[0;𝑇 ];𝑉 (Ω)

)︀
; equation (2.14) is reduced

to (3.1) by means of the “time inversion” change 𝜏 = 𝑇 − 𝑡.
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Lemma 3.7. Let 𝛾1, 𝛾2 > 0, 𝒮 ∈ Σ3(𝛾1, 𝛾2), �⃗� ∈ C
(︀
[0;𝑇 ];𝐿3

2(Ω)
)︀
, 𝑧 ≡ 0, 𝜙 = 𝜁 ∈

C1
(︀
[0;𝑇 ];𝑉 (Ω)

)︀
is a solution of problem with the initial condition 𝜙(0, 𝑥) = 0, 𝑥 ∈ Ω for

equation (3.1). Then the estimate

sup
𝜏∈[0;𝑡]

‖𝜁(𝜏, · )‖𝑉 (Ω) 6 2

𝑡∫︁
0

‖�⃗�(𝜏, · )‖𝐿3
2
𝑑𝜏

holds true. And by Lemma 3.1 there exists a constant 𝐶1 > 0 depending only on the domain Ω
such that

sup
𝜏∈[0;𝑡]

‖𝜁(𝜏, · )‖𝐿2(Ω) 6 𝐶1

𝑡∫︁
0

‖�⃗�(𝜏, · )‖𝐿3
2
𝑑𝜏, 𝑡 ∈ [0;𝑇 ].

The proof is just a literal formal rewriting of the proof of [19, Lm. 2.3] with replacing 𝜎(𝑥)
by 𝒮(𝑡, 𝑥), 𝜎* by 𝛾1, 𝜎

* by 𝛾2.

Remark 3.3. We can obtain a similar statement also for the case 𝑧 ̸≡ 0 but we shall not
need it.

Lemma 3.8. Let 𝜎 ∈ Σ(𝜎*, 𝜎
*), 𝑓 ∈ F, 𝜙0 ∈ 𝑉 (Ω) be arbitrary. Assume that a control

𝜐 = 𝜐 ∈ 𝒟 = 𝒟1 × 𝒟2 produces a solution 𝜙 = 𝜙 of equation (2.8) with initial condition
(2.6) (and hence, a solution of problem (2.1), (2.4), (2.6), (2.7)). Then there exists a constant
𝛾 > 0 and a neighbourhood of a point 𝜐 in the space R2 such that for each control 𝜐 in the
intersection of this neighbourhood with 𝒟 there exists a unique solution of equation (2.8) with
initial condition (2.6). The estimate holds: ‖𝜙− 𝜙‖

C
(︀
[0;𝑇 ];𝑉 (Ω)

)︀ 6 𝛾 |𝜐 − 𝜐|.

Proof. We choose arbitrarily

𝑡 ∈ [0;𝑇 ], 𝑀 > 0, 𝜁, 𝑦 ∈ C
(︀
[0;𝑇 ];𝑉 (Ω)

)︀
, 𝜐1, 𝜐1 + 𝑤1 ∈ 𝒟1, 𝜐2, 𝜐2 + 𝑤2 ∈ 𝒟2,

max
(︁
‖𝜁(𝜏, · )‖𝑉 (Ω), ‖(𝜁 + 𝑦)(𝜏, · )‖𝑉 (Ω), |𝜐1|, |𝜐2|, |𝜐1 + 𝑤1|, |𝜐2 + 𝑤2|

)︁
6𝑀, 𝜏 ∈ [0;𝑇 ].

Employing mean value theorem in the integral form, for almost each 𝑥 ∈ Ω we obtain:

⃒⃒
𝜎(𝑡, 𝑥; 𝜐1 + 𝑤1) − 𝜎(𝑡, 𝑥; 𝜐1)

⃒⃒
6 |𝑤1|

1∫︁
0

⃒⃒
𝜎′
𝜐1

(𝑡, 𝑥; 𝜐1 + 𝜃𝑤1)
⃒⃒
𝑑𝜃.

In view of our assumptions, the derivative 𝜎′
𝜐1

is bounded on bounded sets. This is why there
exists a function 𝒩1 : R+ → R+ independent of 𝑡 and 𝑥 such that⃒⃒

𝜎(𝑡, 𝑥; 𝜐1 + 𝑤1) − 𝜎(𝑡, 𝑥; 𝜐1)
⃒⃒
6 𝒩1(𝑀)|𝑤1|.

Moreover, we can regard this function as non-decreasing, otherwise we just replace it by the
function of form ̃︀𝒩1(𝑠) = sup

𝜉∈[0;𝑠]
𝒩1(𝜉). We estimate:

⃦⃦
𝑓(𝑡, · ,∇[𝜁 + 𝑦], 𝜐2 + 𝑤2) − 𝑓(𝑡, · ,∇𝜁, 𝜐2)

⃦⃦
𝐿3
2(Ω)

6 ℱ1 + ℱ2,

where

ℱ1 =
⃦⃦
𝑓(𝑡, · ,∇[𝜁 + 𝑦], 𝜐2 + 𝑤2) − 𝑓(𝑡, · ,∇𝜁, 𝜐2 + 𝑤2)

⃦⃦
𝐿3
2(Ω)

,

ℱ2 =
⃦⃦
𝑓(𝑡, · ,∇𝜁, 𝜐2 + 𝑤2) − 𝑓(𝑡, · ,∇𝜁, 𝜐2)

⃦⃦
𝐿3
2(Ω)

.
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Employing once again the mean value theorem in the integral form, for almost each 𝑥 ∈ Ω we
obtain:

ℱ1 6

⃦⃦⃦⃦
⃦⃦

1∫︁
0

⃒⃒
𝑓 ′
𝜂(𝑡, · ,∇𝜁 + 𝜃∇𝑦, 𝜐2 + 𝑤2)∇𝑦

⃒⃒
𝑑𝜃

⃦⃦⃦⃦
⃦⃦
𝐿2(Ω)

6 𝜎*‖∇𝑦‖𝐿3
2(Ω) = 𝜎*‖𝑦‖𝑉 ;

ℱ2 6

⃦⃦⃦⃦
⃦⃦

1∫︁
0

𝑓 ′
𝜐2

(𝑡, · ,∇𝜁, 𝜐2 + 𝜃𝑤2)𝑤2 𝑑𝜃

⃦⃦⃦⃦
⃦⃦
𝐿3
2(Ω)

6 |𝑤2|𝒩 (𝑀),

see the definition of the class F and [27, Lm. 5.2]. In view of the obtained estimates and
Lemmata 3.6, 3.7, the rest of the proof just reproduces literally the proof of Theorems 1.1, 1.2
in [19].

Lemma 3.9. Let Π ⊂ R𝑛 be a bounded Lebesgue measurable set, the function 𝑔(𝑡, 𝑥) : Π ×
R𝜈 → R is measurable in 𝑡 ∈ Π, is continuous in 𝑥 ∈ R𝜈 and such that 𝑔

(︀
· , 𝑥1( · ), . . . , 𝑥𝜈( · )

)︀
∈

𝑍 for all 𝑥𝑗 ∈ 𝑋𝑗, 𝑗 = 1, 𝜈, where 𝑋𝑗 = 𝑋𝑗(Π), 𝑗 = 1, 𝜈, 𝑍 = 𝑍(Π) are Lebesgue spaces with
summability indices in [1; +∞); 𝑋 = 𝑋1 × . . .×𝑋𝜈. Then the operator 𝐺 : 𝑋 → 𝑍 defined by
the formula 𝐺[𝑥] = 𝑔

(︀
· , 𝑥( · )

)︀
is continuous and bounded.

For 𝜈 = 1 Lemma 3.9 was proved in [28, Sect. I.2, Thm. 2.1; Thm. 2.2]. Its validity for
𝜈 > 1 follows from the analysis of the proofs of Theorems 2.1, 2.2 in [28, Sect. I.2].

Lemma 3.10. Let Π ⊂ R𝑛 be a bounded Lebesgue measurable set, (𝑎; 𝑏) ⊂ R be an interval
containing the zero, the function Φ(𝑡, 𝑦, 𝑣) : Π × R𝜇 × [𝑎; 𝑏] → R+ is measurable in 𝑡 ∈ Π,
continuous in (𝑦, 𝑣) ∈ R𝜇 × [𝑎; 𝑏] and such that

Φ
(︀
· , 𝑦1( · ), . . . , 𝑦𝜇( · ), 𝑢( · )

)︀
∈ 𝑍(Π)

for all 𝑦𝑗 ∈ 𝑌𝑗, 𝑗 = 1, 𝜇, 𝑢 ∈ 𝐿∞(Π), 𝑢(𝑡) ∈ [𝑎; 𝑏] for almost each 𝑡 ∈ Π, where 𝑌𝑗 = 𝑌𝑗(Π),
𝑗 = 1, 𝜇, 𝑍 = 𝑍(Π) are Lebesgue spaces with summability indices in [1; +∞); 𝑌 = 𝑌1× . . .×𝑌𝜇.
Assume that Φ(𝑡, 0, . . . , 0) = 0 for almost each 𝑡 ∈ Π. Then for a family

(︀
𝑦[𝑣]

)︀
⊂ 𝑋 such that⃦⃦

𝑦[𝑣]
⃦⃦
𝑌
→ 0 as 𝑣 → 0, 𝑣 ∈ (𝑎; 𝑏), and the functions

𝜔(𝑣) =
⃦⃦⃦

Φ
(︀
· , 𝑦[𝑣], 𝑣

)︀⃦⃦⃦
𝑍
, 𝑣 ∈ (𝑎; 𝑏),

we have 𝜔(𝑣) → 0 as 𝑣 → 0.

Proof. Without loss of generality, we assume (𝑎; 𝑏) = (−1; 1). We let

ℎ[𝑣] = tan
(︁𝜋

2
𝑣
)︁
, 𝑥[𝑣] =

(︀
𝑦[𝑣], ℎ[𝑣]

)︀
, 𝜈 = 𝜇+ 1, 𝑋 = 𝑌 × 𝑌𝜈 , 𝑌𝜈 = 𝐿1(Π),

and for 𝑡 ∈ Π, 𝑥 = (𝑦, ℎ) ∈ R𝜈 ×R we define a function 𝑔(𝑡, 𝑥) = Φ
(︀
𝑡, 𝑦, 2

𝜋
arctanℎ

)︀
. It is clear

that this function satisfies the assumptions of Lemma 3.9. At that,⃦⃦
𝑦[𝑣]

⃦⃦
𝑌
→ 0,

⃦⃦
ℎ[𝑣]

⃦⃦
𝑌𝜈

→ 0 ⇒
⃦⃦
𝑥[𝑣]

⃦⃦
𝑋
→ 0 as 𝑣 → 0.

Taking into consideration that 𝜔(𝑣) =
⃦⃦⃦
𝑔
(︀
· , 𝑥[𝑣]

)︀
−𝑔( · , 0)

⃦⃦⃦
𝑍
, it remains to employ Lemma 3.9.



164 A.V. CHERNOV

Lemma 3.11. Let �⃗� ∈ C
(︀
[0;𝑇 ];𝐿3

2(Ω)
)︀
, 𝑊 ∈ C

(︀
[0;𝑇 ];𝐿𝑞′(Ω)

)︀
; 𝛾1, 𝛾2 > 0 be given num-

bers; 𝒮 ∈ Σ3(𝛾1, 𝛾2); 𝑦 = 𝑦[�⃗�] ∈ C1
(︀
[0;𝑇 ];𝑉 (Ω)

)︀
be a solution of problem

𝑑

𝑑𝑡

∫︁
Ω

(︀
∇𝑦(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥+

∫︁
Ω

𝒮(𝑡, 𝑥)∇𝑦(𝑡, 𝑥) · ∇𝜓(𝑥) 𝑑𝑥

=

∫︁
Ω

�⃗�(𝑡, 𝑥) · ∇𝜓(𝑥) 𝑑𝑥 for 𝑡 ∈ (0;𝑇 ], 𝜓 ∈ 𝑉 (Ω),

with the initial condition 𝑦(0, 𝑥) = 0, 𝑥 ∈ Ω, and 𝑝 = 𝑝[𝑊 ] ∈ C1
(︀
[0;𝑇 ];𝑉 (Ω)

)︀
is a solution of

problem

− 𝑑

𝑑𝑡

∫︁
Ω

(︀
∇𝑝(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥+

∫︁
Ω

𝒮(𝑡, 𝑥)∇𝑝(𝑡, 𝑥) · ∇𝜓(𝑥) 𝑑𝑥

=

∫︁
Ω

𝑊 (𝑡, 𝑥)𝜓(𝑥) 𝑑𝑥 for 𝑡 ∈ (0;𝑇 ], 𝜓 ∈ 𝑉 (Ω),

with the final condition 𝑝(𝑇, 𝑥) = 0, 𝑥 ∈ Ω. Then the identity holds:∫︁∫︁
Π

𝑊 (𝑡, 𝑥) 𝑦[�⃗�](𝑡, 𝑥) 𝑑𝑡 𝑑𝑥 =

∫︁∫︁
Π

�⃗�(𝑡, 𝑥) · ∇𝑝[𝑊 ](𝑡, 𝑥) 𝑑𝑡 𝑑𝑥.

In view of Lemma 3.6, the proof of this lemma is just a literal formal rewriting of the proof
of Lemma 2.5 in [14] with replacing 𝜎(𝑥) by 𝒮(𝑡, 𝑥).

Lemma 3.12. Let 𝑓 ∈ F, 𝜙, 𝜁 ∈ C
(︀
[0;𝑇 ];𝑉 (Ω)

)︀
, 𝜐2 ∈ 𝒟2. Then

1∫︁
0

𝑓 ′
𝜂( · , · ;∇𝜙+ 𝜃∇𝜁; 𝜐2) 𝑑𝜃 ∈ C

(︀
[0;𝑇 ];𝐿3×3

∞ (Ω)
)︀
.

Proof. Since in a finite-dimensional Euclidean space all norms are equivalent, up to a multi-
plicative constant we suppose that the modulus of a vector is a sum of the absolute values of
its components, while the modulus of the matrix is understood as the operator norm. For the
sake of brevity we denote:

𝜔[𝜃](𝑡, 𝑥) =
(︀
𝑓 ′
𝜂( · , · ;∇𝜙+ 𝜃∇𝜁; 𝜐2)

)︀
(𝑡, 𝑥).

According our assumptions, 𝜔[𝜃] ∈ C
(︀
[0;𝑇 ];𝐿3×3

∞ (Ω)
)︀
for all 𝜃 ∈ [0; 1]. We fix arbitrary 𝑡 ∈

[0;𝑇 ]. We need to prove that

Ψ(𝜏) =

⃦⃦⃦⃦
⃦⃦

1∫︁
0

(︀
𝜔[𝜃](𝜏, · ) − 𝜔[𝜃](𝑡, · )

)︀
𝑑𝜃

⃦⃦⃦⃦
⃦⃦
𝐿3×3
∞ (Ω)

→ 0 as 𝜏 → 𝑡, 𝜏 ∈ [0;𝑇 ].

We choose arbitrarily 𝜉 ∈ R3, |𝜉| = 1, and for almost each 𝑥 ∈ Ω we estimate:⃒⃒⃒⃒
⃒⃒

1∫︁
0

(︀
𝜔[𝜃](𝜏, 𝑥) − 𝜔[𝜃](𝑡, 𝑥)

)︀
𝑑𝜃 𝜉

⃒⃒⃒⃒
⃒⃒ 6

1∫︁
0

⃒⃒⃒(︀
𝜔[𝜃](𝜏, 𝑥) − 𝜔[𝜃](𝑡, 𝑥)

)︀
𝜉
⃒⃒⃒
𝑑𝜃

6

1∫︁
0

⃒⃒
𝜔[𝜃](𝜏, 𝑥) − 𝜔[𝜃](𝑡, 𝑥)

⃒⃒
𝑑𝜃 6

1∫︁
0

Φ𝜏 (𝜃) 𝑑𝜃,
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where

Φ𝜏 (𝜃) =
⃦⃦
𝜔[𝜃](𝜏, · ) − 𝜔[𝜃](𝑡, · )

⃦⃦
𝐿3×3
∞

→ 0 as 𝜏 → 𝑡 for all 𝜃 ∈ [0; 1].

By the definition of the class F we have: Φ𝜏 (𝜃) 6 2𝜎*. This is why, employing the Lebesgue
theorem on dominated convergence, we conclude that

Ψ(𝜏) 6

1∫︁
0

Φ𝜏 (𝜃) 𝑑𝜃 → 0 as 𝜏 → 𝑡.

Lemma 3.13. Let 𝑓 ∈ F, 𝜙 ∈ C
(︀
[0;𝑇 ];𝑉 (Ω)

)︀
, 𝜐2, 𝜐2 + ℎ ∈ 𝒟2. Then

1∫︁
0

𝑓 ′
𝜐2

( · , · ;∇𝜙; 𝜐2 + 𝜃ℎ) 𝑑𝜃 ∈ C
(︀
[0;𝑇 ];𝐿3

2(Ω)
)︀
.

Proof. By the Hölder inequality, for each function 𝑔 = 𝑔(𝑥, 𝜃) ∈ 𝐿2(Ω × [0; 1]) we can estimate
as follows: ∫︁

Ω

⎛⎝ 1∫︁
0

𝑔(𝑥, 𝜃) 𝑑𝜃

⎞⎠2

𝑑𝑥 6
∫︁
Ω

𝑑𝑥

1∫︁
0

𝑔2(𝑥, 𝜃) 𝑑𝜃 =

1∫︁
0

𝑑𝜃

∫︁
Ω

𝑔2(𝑥, 𝜃) 𝑑𝑥. (3.2)

Then, up to an arbitrary constant, we suppose that the modulus of a vector is understood as
a sum of the absolute values of its components. For the sake of brevity we denote:

𝜔[𝜃](𝑡, 𝑥) =
(︀
𝑓 ′
𝜐2

( · , · ;∇𝜙; 𝜐2 + 𝜃ℎ)
)︀
(𝑡, 𝑥).

By our assumptions, 𝜔[𝜃] ∈ C
(︀
[0;𝑇 ];𝐿3

2(Ω)
)︀
for all 𝜃 ∈ [0; 1]. We fix arbitrary 𝑡 ∈ [0;𝑇 ]. We

need to prove that

Ψ(𝜏) =

⃦⃦⃦⃦
⃦⃦

1∫︁
0

(︀
𝜔[𝜃](𝜏, · ) − 𝜔[𝜃](𝑡, · )

)︀
𝑑𝜃

⃦⃦⃦⃦
⃦⃦
𝐿3
2(Ω)

→ 0 as 𝜏 → 𝑡, 𝜏 ∈ [0;𝑇 ].

For almost each 𝑥 ∈ Ω we estimate:⃒⃒⃒⃒
⃒⃒

1∫︁
0

(︀
𝜔[𝜃](𝜏, 𝑥) − 𝜔[𝜃](𝑡, 𝑥)

)︀
𝑑𝜃

⃒⃒⃒⃒
⃒⃒ 6

1∫︁
0

⃒⃒
𝜔[𝜃](𝜏, 𝑥) − 𝜔[𝜃](𝑡, 𝑥)

⃒⃒
𝑑𝜃.

Employing inequality (3.2), we obtain:

∫︁
Ω

𝑑𝑥

⃒⃒⃒⃒
⃒⃒

1∫︁
0

(︀
𝜔[𝜃](𝜏, 𝑥) − 𝜔[𝜃](𝑡, 𝑥)

)︀
𝑑𝜃

⃒⃒⃒⃒
⃒⃒
2

6

1∫︁
0

𝑑𝜃

∫︁
Ω

⃒⃒
𝜔[𝜃](𝜏, 𝑥) − 𝜔[𝜃](𝑡, 𝑥)

⃒⃒2
𝑑𝑥.

Thus,

Ψ(𝜏) 6

⎛⎝ 1∫︁
0

Φ𝜏 (𝜃) 𝑑𝜃

⎞⎠
1
2

,

where

Φ𝜏 (𝜃) =
⃦⃦
𝜔[𝜃](𝜏, · ) − 𝜔[𝜃](𝑡, · )

⃦⃦2

𝐿3
2(Ω)

→ 0 as 𝜏 → 𝑡 for all 𝜃 ∈ [0; 1].
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By the definition of the class F, Φ𝜏 (𝜃) 6 4𝒩 2(𝑀), 𝑀 = ‖∇𝜙‖
C
(︀
[0;𝑇 ];𝑉

)︀. Then, employing

the Lebesgue theorem on dominated convergence we conclude that

Ψ(𝜏) 6

⎛⎝ 1∫︁
0

Φ𝜏 (𝜃) 𝑑𝜃

⎞⎠
1
2

→ 0 as 𝜏 → 𝑡.

The analysis of the proofs of Lemmata 3.12, 3.13 shows that also the following statement
holds.

Lemma 3.14. Let 𝜎 ∈ Σ(𝜎*, 𝜎
*), 𝜙 ∈ C

(︀
[0;𝑇 ];𝑉 (Ω)

)︀
, 𝜐1, 𝜐1 + ℎ ∈ 𝒟1. Then

1∫︁
0

𝜎′
𝜐1

( · , · ; 𝜐1 + 𝜃ℎ)∇𝜙𝑑𝜃 ∈ C
(︀
[0;𝑇 ];𝐿3

2(Ω)
)︀
.

4. Proof of main result

First of all we prove two lemmata on estimating the difference of solutions.

Lemma 4.1. Let 𝜙1 = 𝜙[𝜐1, 𝜐2], 𝜙2 = 𝜙[𝜐1 +ℎ, 𝜐2], 𝜁 = 𝜙2−𝜙1. Then 𝜁 = 𝑦ℎ+ 𝑟[ℎ], where

sup
𝑡∈[0;𝑇 ]

‖𝑟[ℎ](𝑡, · )‖𝑉 (Ω) = 𝑜(ℎ), sup
𝑡∈[0;𝑇 ]

‖𝑟[ℎ](𝑡, · )‖𝐿2(Ω) = 𝑜(ℎ), (4.1)

𝑦 = 𝑦[𝜐] ∈ C1
(︀
[0;𝑇 ];𝑉 (Ω)

)︀
is a solution of problem (2.12) with the initial condition 𝑦(0, 𝑥) = 0,

𝑥 ∈ Ω.

Proof. In the statement of the lemma we implicitly assume that the control 𝜐 ∈ 𝒟 produces
a solution 𝜙 = 𝜙1 ∈ C1

(︀
[0;𝑇 ];𝑉 (Ω)

)︀
of problem (2.8), (2.6). According to Lemma 3.8, there

exist numbers 𝛾 > 0 and 𝛿 > 0 such that for all ℎ ∈ (−𝛿; 𝛿) problem (2.8), (2.6) possesses a
unique solution 𝜙 = 𝜙2 ∈ C1

(︀
[0;𝑇 ];𝑉 (Ω)

)︀
, corresponding to the control (𝜐1 + ℎ, 𝜐2) ∈ 𝒟, and

moreover, the estimate
sup

𝑡∈[0;𝑇 ]

⃦⃦
𝜁(𝑡, · )

⃦⃦
𝑉 (Ω)

6 𝛾 |ℎ| (4.2)

holds. Then, without loss of generality, we suppose that 𝛿 < 1. The said above implies the
identities

𝑑

𝑑𝑡

(︀
𝜙1(𝑡, · ), 𝜓

)︀
𝑉 (Ω)

+

∫︁
Ω

𝜎(𝑡, 𝑥; 𝜐1)
(︀
∇𝜙1(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥

=

∫︁
Ω

(︀
𝑓(𝑡, 𝑥;∇𝜙1; 𝜐2) · ∇𝜓(𝑥)

)︀
𝑑𝑥 for 𝑡 ∈ (0;𝑇 ], 𝜓 ∈ 𝑉 (Ω),

(4.3)

with the initial condition 𝜙1(0, 𝑥) = 𝜙0(𝑥), 𝑥 ∈ Ω, and

𝑑

𝑑𝑡

(︀
𝜙2(𝑡, · ), 𝜓

)︀
𝑉 (Ω)

+

∫︁
Ω

𝜎(𝑡, 𝑥; 𝜐1 + ℎ)
(︀
∇𝜙2(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥

=

∫︁
Ω

(︀
𝑓(𝑡, 𝑥;∇𝜙2; 𝜐2) · ∇𝜓(𝑥)

)︀
𝑑𝑥 for 𝑡 ∈ (0;𝑇 ], 𝜓 ∈ 𝑉 (Ω),

(4.4)

with the initial condition 𝜙2(0, 𝑥) = 𝜙0(𝑥), 𝑥 ∈ Ω. Deducting (4.3) from (4.4), we obtain:

𝑑

𝑑𝑡

(︀
𝜁(𝑡, · ), 𝜓

)︀
𝑉

+

∫︁
Ω

(︀
𝜎(𝑡, 𝑥; 𝜐1 + ℎ)∇𝜙2(𝑡, 𝑥) − 𝜎(𝑡, 𝑥; 𝜐1)∇𝜙1(𝑡, 𝑥)

)︀
· ∇𝜓 𝑑𝑥 =

∫︁
Ω

𝜔(𝑡, 𝑥) 𝑑𝑥,
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where

𝜔(𝑡, 𝑥) =
(︀
𝑓(𝑡, 𝑥;∇𝜙2; 𝜐2) − 𝑓(𝑡, 𝑥;∇𝜙1; 𝜐2)

)︀
· ∇𝜓,

for all 𝑡 ∈ (0;𝑇 ], 𝜓 ∈ 𝑉 = 𝑉 (Ω), with the initial condition 𝜁(0, 𝑥) = 0, 𝑥 ∈ Ω. Now, adding
and deducting in the second term the expression of form 𝜎(𝑡, 𝑥; 𝜐1 + ℎ)∇𝜙1(𝑡, 𝑥), we obtain:

𝑑

𝑑𝑡

(︀
𝜁(𝑡, · ), 𝜓

)︀
𝑉

+

∫︁
Ω

𝜎(𝑡, 𝑥; 𝜐1 + ℎ)
(︀
∇𝜁(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥

= −
∫︁
Ω

(︀
𝜎(𝑡, 𝑥; 𝜐1 + ℎ) − 𝜎(𝑡, 𝑥; 𝜐1)

)︀ (︀
∇𝜙1 · ∇𝜓

)︀
𝑑𝑥+

∫︁
Ω

𝜔 𝑑𝑥

(4.5)

for 𝑡 ∈ (0;𝑇 ] and for all 𝜓 ∈ 𝑉 .
Adding and deducting the expression 𝜎(𝑡, · , 𝜐1)∇𝜁(𝑡, · ) ·∇𝜓, in the second term in (4.5), we

find:

𝑑

𝑑𝑡

(︀
𝜁(𝑡, · ),𝜓

)︀
𝑉

+

∫︁
Ω

𝜎(𝑡, 𝑥; 𝜐1)
(︀
∇𝜁(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥

=

∫︁
Ω

𝜔 𝑑𝑥−
∫︁
Ω

(︀
𝜎(𝑡, 𝑥; 𝜐1 + ℎ) − 𝜎(𝑡, 𝑥; 𝜐1)

)︀ (︁(︀
∇𝜁(𝑡, 𝑥) + ∇𝜙1(𝑡, 𝑥)

)︀
· ∇𝜓(𝑥)

)︁
𝑑𝑥,

for 𝑡 ∈ (0;𝑇 ], 𝜓 ∈ 𝑉 . Employing mean value theorem in the integral form, we can rewrite the
latter identity in the form:

𝑑

𝑑𝑡

(︀
𝜁(𝑡, · ), 𝜓

)︀
𝑉

+

∫︁
Ω

𝜎(𝑡, 𝑥; 𝜐1)
(︀
∇𝜁(𝑡, · ) · ∇𝜓

)︀
𝑑𝑥

=

∫︁
Ω

𝜔1∇𝜁 · ∇𝜓 𝑑𝑥− ℎ

∫︁
Ω

1∫︁
0

𝜎′
𝜐1

(𝑡, · , 𝜐1 + 𝜃ℎ) 𝑑𝜃∇
(︀
𝜁 + 𝜙1

)︀
· ∇𝜓 𝑑𝑥,

(4.6)

for 𝑡 ∈ (0;𝑇 ], 𝜓 ∈ 𝑉 , where

𝜔1(𝑡, 𝑥) =

1∫︁
0

𝑓 ′
𝜂( · , · ;∇𝜙1 + 𝜃∇𝜁; 𝜐2)(𝑡, 𝑥) 𝑑𝜃.

Let ̃︀𝑦(ℎ) ∈ C1
(︀
[0;𝑇 ], 𝑉 (Ω)

)︀
be the solution of problem (2.12) under the change

𝒮(𝑡, 𝑥) = ̃︀𝒮(𝑡, 𝑥) = 𝜎(𝑡, 𝑥)𝐸 − 𝜔1(𝑡, 𝑥);

with zero initial condition; we recall that 𝜙[𝜐] = 𝜙1. Lemma 3.12 obviously yields that ̃︀𝒮 ∈
Σ3(𝛾1, 𝛾2) as 𝛾1 = 𝜎* − 𝜎*, 𝛾2 = 𝜎* + 𝜎*, see the definition of class F). We denote ̃︀𝑦ℎ = ℎ̃︀𝑦(ℎ).

Multiplying identity (2.12) with 𝒮 = ̃︀𝒮, by ℎ, we get:
𝑑

𝑑𝑡

∫︁
Ω

(︀
∇̃︀𝑦ℎ(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥+

∫︁
Ω

̃︀𝒮(𝑡, 𝑥)∇̃︀𝑦ℎ(𝑡, 𝑥) · ∇𝜓(𝑥) 𝑑𝑥

= −ℎ
∫︁
Ω

(︀
𝜎′
𝜐1

(𝑡, 𝑥; 𝜐1)∇𝜙1 · ∇𝜓
)︀
𝑑𝑥, 𝑡 ∈ (0;𝑇 ], 𝜓 ∈ 𝑉 (Ω).

(4.7)



168 A.V. CHERNOV

We denote ̃︀𝑟ℎ = 𝜁 − ̃︀𝑦ℎ. Deducting (4.7) from (4.6), we obtain:

𝑑

𝑑𝑡

∫︁
Ω

(︀
∇̃︀𝑟ℎ(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥+

∫︁
Ω

̃︀𝒮(𝑡, 𝑥)∇̃︀𝑟ℎ(𝑡, 𝑥) · ∇𝜓(𝑥) 𝑑𝑥

= −ℎ
∫︁
Ω

(︀
�⃗�1(𝑡, 𝑥) + �⃗�2(𝑡, 𝑥)

)︀
· ∇𝜓(𝑥) 𝑑𝑥, 𝑡 ∈ (0;𝑇 ], 𝜓 ∈ 𝑉 (Ω),

where

�⃗�1(𝑡, 𝑥) =

1∫︁
0

𝜎′
𝜐1

(𝑡, 𝑥, 𝜐1 + 𝜃ℎ) 𝑑𝜃∇𝜁(𝑡, 𝑥),

�⃗�2(𝑡, 𝑥) =

1∫︁
0

(︀
𝜎′
𝜐1

(𝑡, 𝑥, 𝜐1 + 𝜃ℎ) − 𝜎′
𝜐1

(𝑡, 𝑥, 𝜐1)
)︀
𝑑𝜃∇𝜙1(𝑡, 𝑥).

Applying Lemmata 3.7, 3.14, we obtain the estimate

sup
𝑡∈[0;𝑇 ]

‖̃︀𝑟ℎ(𝑡, · )‖𝑉 6 2|ℎ|
𝑇∫︁

0

(︁
‖�⃗�1(𝑡, · )‖𝐿3

2(Ω) + ‖�⃗�2(𝑡, · )‖𝐿3
2(Ω)

)︁
𝑑𝑡.

Taking into consideration Lemma 3.14 and almost literally reproducing the arguing from the
proof of Lemma 2.8 in [14], we obtain the estimate:

sup
𝑡∈[0;𝑇 ]

‖̃︀𝑟ℎ(𝑡, · )‖𝑉 6 2|ℎ|
𝑇∫︁

0

𝑑𝑡
(︁⃦⃦
�⃗�1(𝑡, · )

⃦⃦
𝐿3
2(Ω)

+
⃦⃦
�⃗�2(𝑡, · )

⃦⃦
𝐿3
2(Ω)

)︁
= 𝑜(ℎ).

Thus,

𝜁 =ℎ̃︀𝑦(ℎ) + ̃︀𝑟ℎ = ℎ̃︀𝑦(0) + ℎ
(︀̃︀𝑦(ℎ) − ̃︀𝑦(0)

)︀
+ ̃︀𝑟ℎ = ℎ𝑦 + ℎ̂︀𝑟ℎ + ̃︀𝑟ℎ,

𝑦 =̃︀𝑦(0), ̃︀𝑦 = ̃︀𝑦(ℎ), ̂︀𝑟ℎ = ̃︀𝑦 − 𝑦.

We observe that 𝑦 is exactly a solution of identity (2.12) from the formulation of Theorem 2.1,

that is, as 𝒮(𝑡, 𝑥) = 𝜎(𝑡, 𝑥; 𝜐1)𝐸 − 𝑓 ′
𝜂 (𝑡, 𝑥;∇𝜙1; 𝜐2). Deducting it from a similar identity under

the change 𝒮 = ̃︀𝒮, we obtain:
𝑑

𝑑𝑡

∫︁
Ω

(︀
∇̂︀𝑟ℎ(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥+

∫︁
Ω

̃︀𝒮(𝑡, 𝑥)∇̂︀𝑟ℎ(𝑡, 𝑥) · ∇𝜓(𝑥) 𝑑𝑥

=

∫︁
Ω

𝑅(𝑡, 𝑥) · ∇𝜓(𝑥) 𝑑𝑥, 𝑡 ∈ (0;𝑇 ], ∀𝜓 ∈ 𝑉 (Ω),

where

𝑅(𝑡, 𝑥) =

1∫︁
0

(︀
𝑓 ′
𝜂( · , · ;∇𝜙1 + 𝜃∇𝜁; 𝜐2)(𝑡, 𝑥) − 𝑓 ′

𝜂( · , · ;∇𝜙1; 𝜐2)(𝑡, 𝑥)
)︀
𝑑𝜃∇𝑦(𝑡, 𝑥).

Applying Lemmata 3.7, 3.12, we obtain the estimate:

sup
𝑡∈[0;𝑇 ]

‖̂︀𝑟ℎ(𝑡, · )‖𝑉 6 2

𝑇∫︁
0

𝑑𝑡
⃦⃦
�⃗�(𝑡, · )

⃦⃦
𝐿3
2(Ω)

.
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Applying Lemmata 3.9, 3.12, in view of estimates (3.2) and (4.2), for all 𝑡 ∈ [0;𝑇 ] we get:⃦⃦
�⃗�(𝑡, · )

⃦⃦
𝐿3
2(Ω)

→ 0 as ℎ→ 0.

At that, by the definition of the class F,
⃦⃦
�⃗�(𝑡, · )

⃦⃦
𝐿3
2(Ω)

6 2𝜎*‖𝑦‖
C
(︀
[0;𝑇 ];𝑉

)︀. Then by the

Lebesgue theorem on dominated convergence we get:

sup
𝑡∈[0;𝑇 ]

‖̂︀𝑟ℎ(𝑡, · )‖𝑉 → 0 as ℎ→ 0.

To obtain the first estimate in the statement of the lemma it remains to denote 𝑟ℎ = ̃︀𝑟ℎ + ℎ̂︀𝑟ℎ.
The second estimate follows by means of Lemma 3.1.

Lemma 4.2. Let 𝜙1 = 𝜙[𝜐1, 𝜐2], 𝜙2 = 𝜙[𝜐1, 𝜐2 + ℎ], 𝜁 = 𝜙2 − 𝜙1. Then 𝜁 = 𝑧ℎ + 𝑟[ℎ],
where the function 𝑟[ℎ](𝑡, 𝑥) satisfies estimates (4.1); 𝑧 = 𝑧[𝜐] ∈ C1

(︀
[0;𝑇 ];𝑉 (Ω)

)︀
is a solution

of problem (2.13) with initial condition 𝑧(0, 𝑥) = 0, 𝑥 ∈ Ω.

Proof. In the statement of the lemma we suppose implicitly that the control 𝜐 ∈ 𝒟 produces
the solution 𝜙 = 𝜙1 ∈ C1

(︀
[0;𝑇 ];𝑉 (Ω)

)︀
of problem (2.8), (2.6). And according Lemma 3.8,

there exist numbers 𝛾 > 0 and 𝛿 > 0 such that for all ℎ ∈ (−𝛿; 𝛿) problem (2.8), (2.6) has a
unique solution 𝜙 = 𝜙2 ∈ C1

(︀
[0;𝑇 ];𝑉 (Ω)

)︀
, corresponding to the control (𝜐1, 𝜐2 + ℎ) ∈ 𝒟, and

moreover, the estimate holds: (4.2). Then, without loss of generality, we suppose that 𝛿 < 1.
The said above implies the identities

𝑑

𝑑𝑡

(︀
𝜙1(𝑡, · ), 𝜓

)︀
𝑉 (Ω)

+

∫︁
Ω

𝜎(𝑡, 𝑥; 𝜐1)
(︀
∇𝜙1(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥

=

∫︁
Ω

(︀
𝑓(𝑡, 𝑥;∇𝜙1; 𝜐2) · ∇𝜓(𝑥)

)︀
𝑑𝑥 for 𝑡 ∈ (0;𝑇 ], 𝜓 ∈ 𝑉 (Ω),

(4.8)

with the initial condition 𝜙1(0, 𝑥) = 𝜙0(𝑥), 𝑥 ∈ Ω, and

𝑑

𝑑𝑡

(︀
𝜙2(𝑡, · ), 𝜓

)︀
𝑉 (Ω)

+

∫︁
Ω

𝜎(𝑡, 𝑥; 𝜐1)
(︀
∇𝜙2(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥

=

∫︁
Ω

𝑓(𝑡, 𝑥;∇𝜙2; 𝜐2 + ℎ) · ∇𝜓 𝑑𝑥 for 𝑡 ∈ (0;𝑇 ], 𝜓 ∈ 𝑉 (Ω),

(4.9)

with the initial condition 𝜙2(0, 𝑥) = 𝜙0(𝑥), 𝑥 ∈ Ω. Deducting (4.8) from (4.9), we obtain:

𝑑

𝑑𝑡

(︀
𝜁(𝑡, · ), 𝜓

)︀
𝑉 (Ω)

+

∫︁
Ω

𝜎(𝑡, 𝑥; 𝜐1)
(︀
∇𝜁(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥

=

∫︁
Ω

(︀
𝑓(𝑡, 𝑥;∇𝜙2; 𝜐2 + ℎ) − 𝑓(𝑡, 𝑥;∇𝜙1; 𝜐2)

)︀
· ∇𝜓(𝑥) 𝑑𝑥 for𝑡 ∈ (0;𝑇 ],

for all 𝜓 ∈ 𝑉 = 𝑉 (Ω), with the initial condition 𝜁(0, 𝑥) = 0, 𝑥 ∈ Ω. Adding and deducting the

term 𝑓(𝑡, 𝑥;∇𝜙1; 𝜐2 + ℎ) in the right hand side and employing the mean value theorem in the
integral form, we rewrite the same identity in form

𝑑

𝑑𝑡

(︀
𝜁(𝑡, · ), 𝜓

)︀
𝑉

+

∫︁
Ω

𝜎(𝑡, 𝑥; 𝜐1)
(︀
∇𝜁(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥

=

∫︁
Ω

𝜔∇𝜁 · ∇𝜓 𝑑𝑥+ ℎ

∫︁
Ω

1∫︁
0

𝑓 ′
𝜐2

(𝑡, 𝑥;∇𝜙1; 𝜐2 + 𝜃ℎ) 𝑑𝜃 · ∇𝜓(𝑥) 𝑑𝑥 for 𝑡 ∈ (0;𝑇 ],

(4.10)
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for all 𝜓 ∈ 𝑉 = 𝑉 (Ω), where

𝜔(𝑡, 𝑥) =

1∫︁
0

𝑓 ′
𝜂 ( · , · ;∇𝜙1 + 𝜃∇𝜁; 𝜐2 + ℎ)(𝑡, 𝑥) 𝑑𝜃.

Let ̃︀𝑧 = ̃︀𝑧(ℎ) ∈ C1
(︀
[0;𝑇 ];𝑉 (Ω)

)︀
be a solution of problem (2.13) under the change

𝒮(𝑡, 𝑥) = ̃︀𝒮(𝑡, 𝑥) = 𝜎(𝑡, 𝑥; 𝜐1)𝐸 − 𝜔(𝑡, 𝑥),

with zero initial condition: ̃︀𝑧(0, 𝑥) = 0, 𝑥 ∈ Ω. It follows from Lemma 3.12 that ̃︀𝒮 ∈ Σ3(𝛾1, 𝛾2)
as 𝛾1 = 𝜎* − 𝜎*, 𝛾2 = 𝜎* + 𝜎*. We denote ̃︀𝑧ℎ = ℎ̃︀𝑧(ℎ), ̃︀𝑟ℎ = 𝜁 − ̃︀𝑧ℎ. Multiplying (2.13) with

𝒮 = ̃︀𝒮 by ℎ, we obtain:

𝑑

𝑑𝑡

(︀̃︀𝑧ℎ(𝑡, · ), 𝜓
)︀
𝑉

+

∫︁
Ω

̃︀𝒮(𝑡, 𝑥)∇̃︀𝑧ℎ(𝑡, 𝑥) · ∇𝜓(𝑥) 𝑑𝑥

=ℎ

∫︁
Ω

𝑓 ′
𝜐2

(𝑡, 𝑥;∇𝜙1; 𝜐2) · ∇𝜓(𝑥) 𝑑𝑥 for 𝑡 ∈ (0;𝑇 ], 𝜓 ∈ 𝑉,

(4.11)

with the initial condition ̃︀𝑧ℎ(0, 𝑥) = 0, 𝑥 ∈ Ω. Deducting (4.11) from (4.10), we have:

𝑑

𝑑𝑡

(︀̃︀𝑟ℎ(𝑡, · ), 𝜓
)︀
𝑉

+

∫︁
Ω

̃︀𝒮(𝑡, 𝑥)∇̃︀𝑟ℎ(𝑡, 𝑥) · ∇𝜓(𝑥) 𝑑𝑥 = ℎ

∫︁
Ω

�⃗�1(𝑡, 𝑥) · ∇𝜓(𝑥) 𝑑𝑥,

for 𝑡 ∈ (0;𝑇 ], for all 𝜓 ∈ 𝑉 = 𝑉 (Ω), with the initial condition ̃︀𝑟ℎ(0, 𝑥) = 0, 𝑥 ∈ Ω, where

�⃗�1(𝑡, 𝑥) =

1∫︁
0

(︀
𝑓 ′
𝜐2

( · , · ;∇𝜙1; 𝜐2 + 𝜃ℎ)(𝑡, 𝑥) − 𝑓 ′
𝜐2

( · , · ;∇𝜙1; 𝜐2)(𝑡, 𝑥)
)︀
𝑑𝜃.

In view of Lemma 3.13 and estimate (4.2), in the same way how this was done in the proof of
Lemma 2.9 in [14], we obtain that

𝑇∫︁
0

𝑑𝑡
⃦⃦
�⃗�1(𝑡, · )

⃦⃦
𝐿3
2(Ω)

→ 0 as ℎ→ 0.

Employing Lemmata 3.7, 3.13, we obtain:

sup
𝑡∈[0;𝑇 ]

‖̃︀𝑟ℎ(𝑡, · )‖𝑉 6 2|ℎ|
𝑇∫︁

0

𝑑𝑡
⃦⃦
�⃗�1(𝑡, · )

⃦⃦
𝐿3
2(Ω)

= 𝑜(ℎ).

Thus,

𝜁 =ℎ̃︀𝑧(ℎ) + ̃︀𝑟ℎ = ℎ̃︀𝑧(0) + ℎ
(︀̃︀𝑧(ℎ) − ̃︀𝑧(0)

)︀
+ ̃︀𝑟ℎ = ℎ𝑧 + ℎ̂︀𝑟ℎ + ̃︀𝑟ℎ,

𝑧 =̃︀𝑧(0), ̃︀𝑧 = ̃︀𝑧(ℎ), ̂︀𝑟ℎ = ̃︀𝑧 − 𝑧.

We observe that 𝑧 is exactly the solution of identity (2.13) in the formulation of Theorem 2.1,

that is, as 𝒮(𝑡, 𝑥) = 𝜎(𝑡, 𝑥; 𝜐1)𝐸 − 𝑓 ′
𝜂 (𝑡, 𝑥;∇𝜙1; 𝜐2). Deducting it from a similar identity under

the change 𝒮 = ̃︀𝒮, we obtain:
𝑑

𝑑𝑡

∫︁
Ω

(︀
∇̂︀𝑟ℎ(𝑡, 𝑥) · ∇𝜓(𝑥)

)︀
𝑑𝑥+

∫︁
Ω

̃︀𝒮(𝑡, 𝑥)∇̂︀𝑟ℎ(𝑡, 𝑥) · ∇𝜓(𝑥) 𝑑𝑥

=

∫︁
Ω

𝑅(𝑡, 𝑥) · ∇𝜓(𝑥) 𝑑𝑥, 𝑡 ∈ (0;𝑇 ], ∀𝜓 ∈ 𝑉 (Ω),
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where

𝑅(𝑡, 𝑥) =

1∫︁
0

(︀
𝑓 ′
𝜂( · , · ;∇𝜙1 + 𝜃∇𝜁; 𝜐2 + ℎ) − 𝑓 ′

𝜂( · , · ;∇𝜙1; 𝜐2)
)︀
(𝑡, 𝑥) 𝑑𝜃∇𝑧(𝑡, 𝑥).

Applying Lemmata 3.7, 3.12, we arrive at the estimate:

sup
𝑡∈[0;𝑇 ]

‖̂︀𝑟ℎ(𝑡, · )‖𝑉 6 2

𝑇∫︁
0

𝑑𝑡
⃦⃦
�⃗�(𝑡, · )

⃦⃦
𝐿3
2(Ω)

.

Applying Lemmata 3.10, 3.12, in view of estimates (3.2) and (4.2), for all 𝑡 ∈ [0;𝑇 ] we obtain:⃦⃦
�⃗�(𝑡, · )

⃦⃦
𝐿3
2(Ω)

→ 0 as ℎ→ 0.

At that, by the definition of the class F, we have
⃦⃦
�⃗�(𝑡, · )

⃦⃦
𝐿3
2(Ω)

6 2𝜎*‖𝑧‖
C
(︀
[0;𝑇 ];𝑉

)︀. Then, by

the Lebesgue dominated convergence theorem we get:

sup
𝑡∈[0;𝑇 ]

‖̂︀𝑟ℎ(𝑡, · )‖𝑉 → 0 as ℎ→ 0.

In order to obtain the first estimate in the statement of the lemma we simply denote 𝑟ℎ =̃︀𝑟ℎ + ℎ̂︀𝑟ℎ. The second follows by means of Lemma 3.1.

Proof of Theorem 2.1. 1. Calculation of
𝜕𝐽

𝜕𝜐1
.

According Lemma 3.8, there exist numbers 𝛾 > 0 and 𝛿 ∈ (0; 1) such that for all ℎ ∈ (−𝛿; 𝛿)
problem (2.8), (2.6) has a unique solution produced by the control (𝜐1 + ℎ, 𝜐2) ∈ 𝒟 and
moreover, estimate of form (4.2) holds. Assuming that |ℎ| < 𝛿, we denote: 𝜙1 = 𝜙[𝜐1, 𝜐2],
𝜙2 = 𝜙[𝜐1 +ℎ, 𝜐2], 𝜁 = 𝜙2−𝜙1. We consider the increment ∆ℎ𝐽 = 𝐽 [𝜐1 +ℎ, 𝜐2]− 𝐽 [𝜐1, 𝜐2]. We
have:

∆ℎ𝐽 =

∫︁∫︁
Π

(︁
𝐹 (𝑡, 𝑥, 𝜙2; 𝜐1 + ℎ, 𝜐2) − 𝐹 (𝑡, 𝑥, 𝜙1; 𝜐1, 𝜐2)

)︁
𝑑𝑡 𝑑𝑥.

Adding and deducting 𝐹 (𝑡, 𝑥, 𝜙1; 𝜐1 + ℎ, 𝜐2) in round brackets and employing mean value the-
orem in the integral form, we obtain:

∆ℎ𝐽 =

∫︁∫︁
Π

1∫︁
0

𝐹 ′
𝜉( · , · , 𝜙1 + 𝜃𝜁; 𝜐1 +ℎ, 𝜐2) 𝑑𝜃 𝜁 𝑑𝑡 𝑑𝑥+ℎ

∫︁∫︁
Π

1∫︁
0

𝐹 ′
𝜐1

( · , · , 𝜙1; 𝜐1 + 𝜃ℎ, 𝜐2) 𝑑𝜃 𝑑𝑡 𝑑𝑥,

or

∆ℎ𝐽 =

∫︁∫︁
Π

𝐹 ′
𝜉(𝑡, 𝑥, 𝜙1, 𝜐)𝜁(𝑡, 𝑥) 𝑑𝑡 𝑑𝑥+ ℎ

∫︁∫︁
Π

𝐹 ′
𝜐1

(𝑡, 𝑥, 𝜙1, 𝜐) 𝑑𝑡 𝑑𝑥+ 𝑃ℎ +𝑅ℎ,

where

𝑃ℎ =

∫︁∫︁
Π

1∫︁
0

(︀
𝐹 ′
𝜉( · , · , 𝜙1 + 𝜃𝜁; 𝜐1 + ℎ, 𝜐2) − 𝐹 ′

𝜉( · , · , 𝜙1; 𝜐1, 𝜐2)
)︀
𝑑𝜃 𝜁 𝑑𝑡 𝑑𝑥,

𝑅ℎ =ℎ

∫︁∫︁
Π

1∫︁
0

(︀
𝐹 ′
𝜐1

( · , · , 𝜙1; 𝜐1 + 𝜃ℎ, 𝜐2) − 𝐹 ′
𝜐1

( · , · , 𝜙1; 𝜐1, 𝜐2)
)︀
𝑑𝜃 𝑑𝑡 𝑑𝑥,
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and according Lemma 3.10, 𝑅ℎ = 𝑜(ℎ). Applying Lemma 4.1 and the Hölder inequality, the
obtained relation can be rewritten in the form

∆ℎ𝐽 = ℎ

∫︁∫︁
Π

𝐹 ′
𝜉(𝑡, 𝑥, 𝜙1, 𝜐)𝑦(𝑡, 𝑥) 𝑑𝑡 𝑑𝑥+ ℎ

∫︁∫︁
Π

𝐹 ′
𝜐1

(𝑡, 𝑥, 𝜙1, 𝜐) 𝑑𝑡 𝑑𝑥+ 𝑃ℎ + 𝑜(ℎ). (4.12)

Applying once again Lemma 4.1 and Hölder inequality, in view of the established continuous
embedding 𝑉 (Ω) ⊂ 𝐿𝑞(Ω) implied by Lemma 3.1 and by the Sobolev embedding theorem for
the space 𝐻1(Ω), we conclude that there exists a constant 𝛾0 > 0 such that

|𝑃ℎ| 6 𝛾0 |ℎ|

⃦⃦⃦⃦
⃦⃦

1∫︁
0

(︀
𝐹 ′
𝜉( · , · , 𝜙1 + 𝜃𝜁; 𝜐1 + ℎ, 𝜐2) − 𝐹 ′

𝜉( · , · , 𝜙1; 𝜐1, 𝜐2)
)︀
𝑑𝜃

⃦⃦⃦⃦
⃦⃦
𝐿𝑞′

.

Employing Lemma 3.10 once again as well as estimate (4.2), we obtain: 𝑃ℎ = 𝑜(ℎ). Thus,
relation (4.12) can be rewritten as

∆ℎ𝐽 = ℎ

⎛⎝∫︁∫︁
Π

(︀
𝐹 ′
𝜉(𝑡, 𝑥, 𝜙1, 𝜐)𝑦(𝑡, 𝑥) + 𝐹 ′

𝜐1
(𝑡, 𝑥, 𝜙1, 𝜐)

)︀
𝑑𝑡 𝑑𝑥

⎞⎠ + 𝑜(ℎ).

This immediately implies (2.9). In its turn, under additional condition (2.10), by Lemma 3.11

with �⃗�(𝑡, 𝑥) = −𝜎′
𝜐1

(𝑡, 𝑥, 𝜐1)∇𝜙1(𝑡, 𝑥), 𝑊 = 𝐹 ′
𝜉(𝑡, 𝑥, 𝜙1, 𝜐), relation (2.9) is equivalent to rela-

tion (2.11).

2. Calcuation of
𝜕𝐽

𝜕𝜐2
can be done similar to Item 1, just instead of Lemma 4.1 one should

employ Lemma 4.2.
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