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EXPONENTIAL SERIES IN

NORMED SPACES OF ANALYTIC FUNCTIONS

R.A. BASHMAKOV, K.P. ISAEV, A.A. MAKHOTA

Abstract. There is a classical well-known theorem by A.F. Leontiev on representing func-
tions analytic in a convex domain 𝐷 and continuous up to the boundary by series of form∑︀∞

𝑘=1 𝑓𝑘𝑒
𝜆𝑘𝑧 converging in the topology of the space 𝐻(𝐷), that is, uniformly on compact

subsets in 𝐷.
In the paper we prove the possibility of representing the functions in

𝐴0(𝐷) =

{︃
𝑓 ∈ 𝐻(𝐷)

⋂︁
𝐶(𝐷) : ‖𝑓‖ := sup

𝑧∈𝐷
|𝑓(𝑧)|

}︃
by the exponential series converging in a stronger topology, namely, there exists an integer
number 𝑠 > 0 such that

1) for each bounded convex domain 𝐷 there exists a system of exponentials 𝑒𝜆𝑘𝑧, 𝑘 ∈ N,
such that each function 𝑓 ∈ 𝐻(𝐷)

⋂︀
𝐶(𝑠)(𝐷) is represented as a series over this system

converging in the norm of the space 𝐴0(𝐷);
2) for each bounded convex domain 𝐷 there exists a system of exponentials 𝑒𝜆𝑘𝑧, 𝑘 ∈ N

such that each function 𝑓 ∈ 𝐴0(𝐷) is represented as a series over this system converging in
the norm

‖𝑓‖ = sup
𝑧∈𝐷

|𝑓(𝑧)|(𝑑(𝑧))𝑠,

where 𝑑(𝑧) is the distance from a point 𝑧 to the boundary of the domain 𝐷. The number 𝑠 is
related with the existence of entire functions with a maximal possible asymptotic estimate.

In particular cases, when 𝐷 is a polygon or a domina with a smooth boundary possessing
a smooth curvature separated from zero, we can assume that 𝑠 = 4.

Keywords: analytic function, entire function, Fourier–Laplace transform, interpolation,
exponential series.
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1. Introduction

Let 𝐷 be a bounded convex domain in the complex plane. In this work we consider a problem on
representing the functions functions in the space

𝐴0(𝐷) =

{︃
𝑓 ∈ 𝐻(𝐷)

⋂︁
𝐶(𝐷) : ‖𝑓‖ := sup

𝑧∈𝐷
|𝑓(𝑧)|

}︃
by the exponential series

𝑓(𝑧) =

∞∑︁
𝑘=1

𝑓𝑘𝑒
𝜆𝑘𝑧, 𝑧 ∈ 𝐷, 𝑓 ∈ 𝐴0(𝐷).

R.A. Bashmakov, K.P. Isaev, A.A. Makhota, Exponential series in normed spaces of analytic

functions.
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In the context of this work, the notation 𝐴0(𝐷) is more convenient than a traditional one 𝐴(𝐷) since
we shall consider a parametrized family of normed spaces 𝐴𝑛(𝐷), 𝑛 ∈ Z. The possibility of such
representation is implied by the classical theorem by A.F. Leontiev, see [1, Thm. 5.3.2], but the series
in this theorem converge in the topology of the space𝐻(𝐷), that is, uniformly on the compact sets in𝐷.
We are going to prove that the functions in 𝐴0(𝐷) can be represented by exponential series converging
to its sums in a topology, which is essentially stronger than the topology of uniform convergence on
compact sets but at the same time being weaker than the normed topology of 𝐴0(𝐷), see Theorem 3.2.
We shall also obtain the formulae for the coefficients of the series. There just few known examples of
the normed spaces, in which the expansions into exponential series are possible, that is, in which there
exist a basis of exponentials. This is the space 𝐿2 on a segment, the Sobolev space on a segment [2]
and Smirnov and Bergman spaces on convex polygons [3], [4]. It was proved in works [5] and [6] that
the Smirnov and Bergman spaces on convex domains with a smooth boundary contain no exponential
bases. The main statement of the present work reads as follows. There exists an integer number 𝑠 > 0
such that

1) for each bounded convex domain 𝐷 there exists a system of exponentials 𝑒𝜆𝑘𝑧, 𝑘 ∈ N, such that

each function 𝑓 ∈ 𝐻(𝐷)
⋂︀
𝐶(𝑠)(𝐷) is represented as a series over this system converging in the norm

of the space 𝐴0(𝐷);
2) for each bounded convex domain 𝐷 there exists a system of exponentials 𝑒𝜆𝑘𝑧, 𝑘 ∈ N, such that

each function 𝑓 ∈ 𝐴0(𝐷) is represented as a series over this system converging in the norm

‖𝑓‖ = sup
𝑧∈𝐷

|𝑓(𝑧)|(𝑑(𝑧))𝑠,

where 𝑑(𝑧) is the distance from a point 𝑧 to the boundary of the domain 𝐷. The number 𝑠 is related
with existence of entire functions with a best possible asymptotic estimate.

In particular cases, when 𝐷 is a polygon or a domain with a smooth boundary having a curvature
separated from zero we can suppose that 𝑠 = 4.

2. Fourier-Laplace transforms

We introduce a family of normed spaces

𝐴𝑛(𝐷) =

{︂
𝑓 ∈ 𝐻(𝐷)

⋂︁
𝐶(𝑛)(𝐷) : ‖𝑓‖ := max

𝑘=0,...,𝑛
sup
𝑧∈𝐷

|𝑓 (𝑘)(𝑧)| < ∞
}︂
, 𝑛 ∈ N.

It is obvious that the continuous embeddings 𝐴𝑛 ⊂ 𝐴𝑛−1, 𝑛 ∈ N, hold true and the differential operator

𝒟𝑛 : 𝑓 → 𝑓 (𝑛)

acts continuously from 𝐴𝑛 onto 𝐴0.
We define extra two auxiliary families of normed spaces of entire functions with a continuous pa-

rameter 𝛼 ∈ R:

𝒫𝛼(𝐷) =

{︂
𝐹 ∈ 𝐻(C) : ‖𝐹‖ := sup

𝜆∈C
|𝐹 (𝜆)|𝑒−𝐻𝐷(𝜆)−𝛼 ln(|𝜆|+1) < ∞

}︂
,

̃︀𝒫𝛼(𝐷) =

{︂
𝐹 ∈ 𝐻(C) : ‖𝐹‖ := sup

𝜆∈C
|𝐹 (𝜆)|𝑒−𝐻𝐷(𝜆)−𝛼 ln(|𝜆|+1)+2 ln+ ln(|𝜆|+1) < ∞

}︂
,

where

𝐻𝐷(𝜆) = sup
𝑧∈𝐷

Re𝜆𝑧

is the support function of the domain𝐷 and ln+ 𝑎 = max(ln 𝑎, 0). The following continuous embeddings

are obvious: ̃︀𝒫𝛼 ⊂ 𝒫𝛼 ⊂ 𝒫𝛽 as 𝛽 > 𝛼.
Finally, for 𝑎 > 0 we let:

𝐵𝑎(𝐷) =

{︂
𝑓 ∈ 𝐻(𝐷) : ‖𝑓‖ = sup

𝑧∈𝐷
|𝑓(𝑧)|(𝑑(𝑧))𝑎 < ∞

}︂
,

where the symbol 𝑑(𝑧) denotes the distance from a point 𝑧 to the boundary 𝐷:

𝑑(𝑧) = inf
𝑤/∈𝐷

|𝑧 − 𝑤|, 𝑧 ∈ 𝐷.
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Lemma 2.1. 1. Let 𝑆 be a linear continuous functional on 𝐴𝑛(𝐷) and ̂︀𝑆(𝜆) = 𝑆(𝑒𝜆𝑧) be its Fourier-

Laplace transform. Then ̂︀𝑆(𝜆) is an entire function satisfying the estimate

|̂︀𝑆(𝜆)| 6 ‖𝑆‖𝐴*
𝑛
𝑒𝐻𝐷(𝜆)+𝑛 ln(|𝜆|+1), 𝜆 ∈ C,

that is, ̂︀𝑆(𝜆) ∈ 𝒫𝑛 and

‖̂︀𝑆‖𝒫𝑛 6 ‖𝑆‖𝐴*
𝑛
.

2. If 𝐹 (𝜆) ∈ ̃︀𝒫𝑛−1, then 𝐹 (𝜆) ≡ ̂︀𝑆(𝜆), 𝜆 ∈ C, for some linear continuous functional 𝑆 = 𝑆𝐹 on the
space 𝐴𝑛(𝐷). At that,

‖𝑆‖𝐴*
𝑛
6 𝐶‖𝐹‖ ̃︀𝒫𝑛−1

.

The constant 𝐶 = 𝐶(𝐷,𝑛) is independent of the function 𝐹 .

Proof. 1. The fact that the Laplace-Fourier transform is an entire function and the formula

𝑑

𝑑𝜆
̂︀𝑆(𝜆) = 𝑆(𝑧𝑒𝜆𝑧), 𝜆 ∈ C,

holds is well-known and in our case it can be easily proved. The estimate implies immediately from
the definition of the norm of the functional

|̂︀𝑆(𝜆)| 6 ‖𝑆‖ · ‖𝑒𝜆𝑧‖𝐴𝑛(𝐷) = ‖𝑆‖ sup
𝑘=0,...,𝑛

|𝜆|𝑘 sup
𝑧∈𝐷

𝑒Re𝜆𝑧 6 ‖𝑆‖𝑒𝐻𝐷(𝜆)+𝑛 ln(|𝜆|+1), 𝜆 ∈ C.

2a. We first consider the case 𝑛 = 0. Let 𝐹 ∈ 𝒫−1 and

𝛾(𝜁) =
∞∑︁
𝑘=0

𝐹 (𝑘)(0)

𝜁𝑘+1
, 𝜁 ∈ C ∖𝐷,

be its Borel transform. As it is known, in the half-plane Π(𝜙) = {Re 𝜁𝑒𝑖𝜙 > ℎ𝐷(𝜙)}, where ℎ𝐷(𝜙) =
𝑟−1𝐻𝐷(𝑟𝑒𝑖𝜙), the identity holds:

𝛾(𝜁) =

∞∫︁
0

𝐹 (𝜆)𝑒−𝜁𝜆𝑑𝜆,

where the integral is taken over the ray {𝜆 = 𝑟𝑒𝑖𝜙, 𝑟 > 0}. Therefore, for 𝜁 ∈ Π(𝜙) the inequality
holds:

|𝛾(𝜁)| 6 sup
𝜆∈C

|𝐹 (𝜆)|𝑒−𝐻𝐷(𝜆)+ln(|𝜆|+1)+2 ln+ ln(|𝜆|+1)

∞∫︁
0

1

(𝑟 + 1) ln2(𝑟 + 1)
𝑑𝑟,

and hence,

|𝛾(𝜁)| 6 ‖𝐹‖ ̃︀𝒫−1
, 𝜁 ∈ Π(𝜙).

In view of C ∖𝐷 =
⋃︀

𝜙∈[0;2𝜋)
Π(𝜙) this implies the boundedness of the function 𝛾:

|𝛾(𝜁)| 6 ‖𝐹‖ ̃︀𝒫−1
, 𝜁 ∈ C ∖𝐷. (1)

We take an arbitrary function 𝑓 ∈ 𝐴0(𝐷). Without loss of generality we suppose that 0 ∈ 𝐷. We take
an arbitrary number 𝑡 ∈ (1; 2] and a closed Jordan contour 𝐶𝑡 enveloping the domain 𝐷 and lying in
the domain 𝑡𝐷 = {𝑡𝑧 : 𝑧 ∈ 𝐷}. The function 𝑓(𝑧) is uniformly continuous on the compact set 𝐷 and
hence the function

𝐵(𝑡) =
1

2𝜋𝑖

∫︁
𝐶𝑡

𝛾(𝜁)𝑓

(︂
𝜁

𝑡

)︂
𝑑𝜁,

is uniformly continuous on the interval (1; 2); in particular, the limit

< 𝑓, 𝛾 >:= lim
𝑡→1

𝐵(𝑡) (2)

is well-defined and it follows from (1) that

| < 𝑓, 𝛾 > | 6 |𝜕𝐷|
2𝜋

‖𝑓‖𝐴0‖𝐹‖ ̃︀𝒫−1
. (3)
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Thus, the formula

𝑆(𝑓) =< 𝑓, 𝛾 >, 𝑓 ∈ 𝐴0,

defines a linear continuous functional on 𝐴0 and

‖𝑆‖𝐴*
0
6

|𝜕𝐷|
2𝜋

‖𝐹‖ ̃︀𝒫−1
.

Moreover, by the Borel formula we have:

𝑆(𝑒𝜆𝑧) = lim
𝑡→1

1

2𝜋𝑖

∫︁
𝐶𝑡

𝛾(𝑧)𝑒𝜆
𝑧
𝑡 𝑑𝑧 = lim

𝑡→1
𝐹

(︂
𝜆

𝑡

)︂
= 𝐹 (𝜆).

Remark 2.1. By a more lengthy calculations one can prove that 𝛾(𝑧) is continuous on C ∖𝐷 and
the functional 𝑆 = 𝑆𝐹 is defined by the formula

𝑆𝐹 (𝑓) =
1

2𝜋𝑖

∫︁
𝜕𝐷

𝛾(𝜁)𝑓(𝜁)𝑑𝜁, 𝑓 ∈ 𝐴0.

2b. We proceed to the case of an arbitrary 𝑛. It is easy to confirm that the linear operator

𝐿𝑛(𝐹 )(𝜆) := 𝜆−𝑛

(︃
𝐹 (𝜆) −

𝑛−1∑︁
𝑘=0

𝐹 (𝑘)(0)

𝑘!
𝜆𝑘

)︃
, 𝜆 ∈ C,

acts continuously from ̃︀𝒫𝑛−1 into ̃︀𝒫−1. Let 𝐹 ∈ ̃︀𝒫𝑛−1. It follows from statement proved in Item 2a
that

𝐹𝑛 = 𝐿𝑛(𝐹 ) = ̂︀𝑆𝑛

for some 𝑆𝑛 ∈ 𝐴*
0. Then the formula

𝑆(𝑓) = 𝑆𝑛(𝒟𝑛𝑓) +
𝑛−1∑︁
𝑘=0

𝐹 (𝑘)(0)𝑓 (𝑘)(0), 𝑓 ∈ 𝐴𝑛,

defines a linear continuous functional on 𝐴𝑛 and

‖𝑆‖𝐴*
𝑛

= ‖𝑆𝑛‖𝐴*
0
‖𝒟𝑛𝑓‖𝐴0 +

𝑛−1∑︁
𝑘=0

‖𝛿(𝑘)‖ · ‖𝐹‖ ̃︀𝒫𝑛−1

6
|𝜕𝐷|
2𝜋

‖𝐹𝑛‖ ̃︀𝒫−1
‖𝒟𝑛𝑓‖𝐴0 +

𝑛−1∑︁
𝑘=0

‖𝛿(𝑘)‖ · ‖𝐹‖ ̃︀𝒫𝑛−1

6

(︃
|𝜕𝐷|
2𝜋

‖𝐿𝑛‖‖𝒟𝑛𝑓‖𝐴0 +
𝑛−1∑︁
𝑘=0

‖𝛿(𝑘)‖

)︃
‖𝐹‖ ̃︀𝒫𝑛−1

,

where by ‖𝛿(𝑘)‖ we denote the norm of the functional 𝐹 → 𝐹 (𝑘)(0) in the space 𝒫𝑛−1.

The identity ̂︀𝑆 = 𝐹 is checked by straightforward substitution.

Corollary 2.1. Each function 𝑓 ∈ 𝐴𝑛(𝐷) is the Fourier-Laplace transform of some functional 𝑆

on the space ̃︀𝒫𝑛−1.

Proof. For 𝑛 = 0 the form < 𝑓, 𝛾 > defined in (2) is bilinear on 𝐴0×𝒫−1 and for a fixed 𝑓 it is a linear

functional 𝑆𝑓 on 𝒫−1. Estimate (3) implies the continuity of this functional. The identity ̂︀𝑆𝑓 = 𝑓 is
implied by the Cauchy formula. For an arbitrary 𝑛 the proof also follows from Item 2b.

3. Interpolation in spaces ̃︀𝒫𝛼

The properties of the systems of exponentials 𝑒𝜆𝑘𝑧, 𝑘 ∈ N, are traditionally described by a charac-
teristic entire function 𝐿(𝜆) with zeroes 𝜆𝑘, 𝑘 ∈ N. In this paper we employ the results of works [7].
In particular, Theorem 1 in this work implies easily the following theorem.
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Theorem A. There exists an universal constant 𝐴 such that for each bounded convex domain 𝐷
there exists an entire function 𝑓(𝜆) possessing the properties:
1) the set of zeroes 𝜆𝑘, 𝑘 ∈ N, is separated in the sense that for some 𝛿 ∈ (0; 1) the circles 𝐵𝛿(𝜆𝑘) =
𝐵(𝜆𝑘, 𝛿(|𝜆| + 1)−1) are mutually disjoint;
2) the relations hold:

| ln |𝑓(𝜆)| −𝐻𝐷(𝜆)| 6 𝐴 ln(|𝜆| + 1) + 𝐶, 𝜆 /∈
⋃︁
𝑘∈N

𝐵𝛿(𝜆𝑘),

| ln |𝑓 ′(𝜆𝑘)| −𝐻𝐷(𝜆𝑘)| 6 𝐴 ln(|𝜆𝑘| + 1) + 𝐶 ′, 𝑘 ∈ N,

where 𝐶 and 𝐶 ′ are constants independent of the domain 𝐷.

By using this theorem, we are going to show the existence of two entire functions 𝐿±, which will be
employed as a tool for constructing the systems of exponentials.

Theorem 3.1. There exists universal constants 𝑏 > 0 and 𝑞 ∈ (1; 2] such that for each bounded
convex domain 𝐷 there exist entire functions 𝐿+(𝜆) and 𝐿−(𝜆) possessing the following properties:
1) the sets of zeroes Λ+ and Λ− of these functions are separated in the sense that for some 𝛿 ∈ (0; 1)
the circles 𝐵𝛿(𝜆) = 𝐵(𝜆, 𝛿(|𝜆| + 1|)−1), 𝜆 ∈ Λ+ (𝜆 ∈ Λ−) are mutually disjoint;
2) the function 𝐿+ satisfies the relations

𝐻𝐷(𝜆) + 𝑞 ln(|𝜆| + 1) 6 ln |𝐿+(𝜆)| 6 𝐻𝐷(𝜆) + 𝑏 ln(|𝜆| + 1) + 𝐶, 𝜆 /∈
⋃︁

𝑤∈Λ+

𝐵𝛿(𝑤),

ln |𝐿′
+(𝜆)| > 𝐻𝐷(𝜆) + 𝑞 ln(|𝜆| + 1), 𝜆 ∈ Λ+;

3) the function 𝐿− satisfies the relations

𝐻𝐷(𝜆) − 𝑏 ln(|𝜆| + 1) + 𝐶 6 ln |𝐿−(𝜆)| 6 𝐻𝐷(𝜆) − 𝑞 ln(|𝜆| + 1), 𝜆 /∈
⋃︁

𝑤∈Λ−

𝐵𝛿(𝑤),

ln |𝐿′
−(𝜆)| > 𝐻𝐷(𝜆) − 𝑏 ln(|𝜆| + 1), 𝜆 ∈ Λ−.

Proof. Let 𝑓 be a function, the existence of which is stated in Theorem A. We take a polynomial 𝑃 (𝜆)
of degree [𝐴] + 2 so that the set of the zeroes of the function 𝐿+ = 𝑓𝑃 is separated. The desired
estimates for 𝐿+ are implied by the estimates in Theorem A in a trivial way for 𝑏 = [𝐴] + 2 + 𝐴,
𝑞 = [𝐴] + 2 −𝐴.

Let 𝑁 = [𝐴] + 2 and

𝑄(𝜆) =
𝑁∏︁
𝑘=1

(𝜆− 𝜆𝑘),

where {𝜆𝑘, 𝑘 = 1, 2, . . . , 𝑁} are the first 𝑁 zeroes of the function 𝑓 from Theorem A taking in the

ascending order of their absolute values. Then the function 𝐿− = 𝑓
𝑄 satisfies the desired estimates.

Lemma 3.1. For each function 𝐹 ∈ ̃︀𝒫𝛼, 𝛼 6 𝑞 its Lagrangue series by the function 𝐿+ converges
to the function 𝐹 uniformly on compact sets and moreover, as 𝛼 6 𝑞 − 1, this series converges in the
norm of the space 𝒫𝑏.

Proof. The separated property of the zero set of the function 𝐿+ implies the existence of the system

of curves Γ𝑚 not intersecting with the set
∞⋃︀
𝑘=1

𝐵𝛿(𝜆𝑘) and satisfying the estimate

min
𝑧∈Γ𝑚

|𝑧| → ∞, |Γ𝑚| = 𝑂

(︂
min
𝑧∈Γ𝑚

|𝑧|
)︂
, 𝑚 → ∞.

By the lower bound for 𝐿+ in Theorem 3.1, for each function 𝐹 ∈ ̃︀𝒫𝛼, 𝛼 6 𝑞, we have:⃒⃒⃒⃒
⃒⃒ 1

2𝜋𝑖

∫︁
𝛾𝑚

𝐹 (𝑧)𝑑𝑧

(𝑧 − 𝜆)𝐿+(𝑧)

⃒⃒⃒⃒
⃒⃒ = 𝑂

(︂
ln−2

(︂
min
𝑧∈Γ𝑚

|𝑧| + 1

)︂)︂
= 𝑜(1), 𝑚 → ∞.
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Therefore, the Lagrange series

𝐹 (𝜆) =

∞∑︁
𝑘=1

𝐹 (𝜆𝑘)
𝐿+(𝜆)

(𝜆− 𝜆𝑘)𝐿′
+(𝜆𝑘)

, 𝜆 ∈ C,

converges uniformly on compact sets.
The upper bounds for |𝐿+| in Theorem 3.1 and the Lipschitz property of the function 𝐻𝐷(𝜆) +

𝑏 ln(|𝜆| + 1) we obtain an uniform in 𝑘 estimate:⃦⃦⃦⃦
𝐿+(𝜆)

(𝜆− 𝜆𝑘)𝐿′
+(𝜆𝑘)

⃦⃦⃦⃦
𝒫𝑏

6 Const · 1

|𝐿′
+(𝜆𝑘)|

, 𝑘 ∈ N, (4)

and therefore, ⃦⃦⃦⃦
⃦⃦∑︁
𝑘>𝑁

𝐹 (𝜆𝑘)
𝐿+(𝜆)

(𝜆− 𝜆𝑘)𝐿′
+(𝜆𝑘)

⃦⃦⃦⃦
⃦⃦
𝒫𝑏

6 Const ·
∑︁
𝑘>𝑁

|𝐹 (𝜆𝑘)|
|𝐿′

+(𝜆𝑘)|
.

Since 𝜆𝑘 are the zeroes of an entire function of exponential type, then for 𝐹 ∈ ̃︀𝒫𝛼, 𝛼 6 𝑞 − 1 we have:⃦⃦⃦⃦
⃦⃦∑︁
𝑘>𝑁

𝐹 (𝜆𝑘)
𝐿+(𝜆)

(𝜆− 𝜆𝑘)𝐿′
+(𝜆𝑘)

⃦⃦⃦⃦
⃦⃦
𝒫𝑏

6 Const ·
∑︁
𝑘>𝑁

(|𝜆𝑘| + 1)𝛼−𝑞

ln2(|𝜆𝑘| + 1)
→ 0, 𝑁 → ∞.

Lemma 3.2. For each function 𝐹 ∈ ̃︀𝒫𝛼, 𝛼 6 −𝑏, its Lagrange series by the function 𝐿− converges
to the function 𝐹 uniformly on compact sets and moreover, as 𝛼 6 −𝑏− 1, this series diverges in the
norm of the space 𝒫−𝑞.

Proof. By the separated property of the zeroes of the function 𝐿− and by the lower bounds for |𝐿−|
we get: ⃒⃒⃒⃒

⃒⃒ 1

2𝜋𝑖

∫︁
𝛾𝑚

𝐹 (𝑧)𝑑𝑧

(𝑧 − 𝜆)𝐿−(𝑧)

⃒⃒⃒⃒
⃒⃒ = 𝑂

(︂
ln−2

(︂
min
𝑧∈Γ𝑚

|𝑧| + 1

)︂)︂
= 𝑜(1), 𝑚 → ∞.

Therefore, the Lagrange series

𝐹 (𝜆) =
∞∑︁
𝑘=1

𝐹 (𝜆𝑘)
𝐿−(𝜆)

(𝜆− 𝜆𝑘)𝐿′
−(𝜆𝑘)

, 𝜆 ∈ C,

converges uniformly on compact sets.
By the lower bounds for |𝐿−| in Theorem 3.1 and the Lipschitz property of the function 𝐻𝐷(𝜆) +

𝑏 ln(|𝜆| + 1) we get a uniform in 𝑘 estimate⃦⃦⃦⃦
𝐿−(𝜆)

(𝜆− 𝜆𝑘)𝐿′
−(𝜆𝑘)

⃦⃦⃦⃦
𝒫−𝑞

6 Const · 1

|𝐿′
+(𝜆𝑘)|

, 𝑘 ∈ N, (5)

and hence, ⃦⃦⃦⃦
⃦⃦∑︁
𝑘>𝑁

𝐹 (𝜆𝑘)
𝐿−(𝜆)

(𝜆− 𝜆𝑘)𝐿′
−(𝜆𝑘)

⃦⃦⃦⃦
⃦⃦
𝒫−𝑞

6 Const ·
∑︁
𝑘>𝑁

|𝐹 (𝜆𝑘)|
|𝐿′

−(𝜆𝑘)|
.

Since 𝜆𝑘 are the zeroes of an entire function of exponential type, then for 𝐹 ∈ ̃︀𝒫𝛼, 𝛼 6 −𝑏−1 we have:⃦⃦⃦⃦
⃦⃦∑︁
𝑘>𝑁

𝐹 (𝜆𝑘)
𝐿+(𝜆)

(𝜆− 𝜆𝑘)𝐿′
+(𝜆𝑘)

⃦⃦⃦⃦
⃦⃦
𝒫𝑏+

6 Const ·
∑︁
𝑘>𝑁

(|𝜆𝑘| + 1)𝛼+𝑏

ln2(|𝜆𝑘| + 1)
→ 0, 𝑁 → ∞.

We let 𝑠 = [𝑏] + 2=2([A]+2). According to Corollary of Lemma 2.1, each function in the space 𝐴𝑠(𝐷)

is the Fourier-Laplace transform of some functional on the space ̃︀𝒫𝑠−1. Since the family of spaces 𝒫𝛼 is
continuously embedded, each function 𝑓 ∈ 𝐴𝑠(𝐷) is the Fourier-Laplace transform of some functional
on the space 𝒫𝑏.
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Theorem 3.2. Each function 𝑓 ∈ 𝐴𝑠 can be represented as the series

𝑓(𝑧) =

∞∑︁
𝑘=1

𝑓𝑘𝑒
𝜆𝑘𝑧, 𝑧 ∈ 𝐷,

converging in uniform norm over 𝐷. The coefficients can be found by the formulae

𝑓𝑘 = 𝑆

(︂
𝐿+(𝜆)

(𝜆− 𝜆𝑘)𝐿′
+(𝜆𝑘)

)︂
, 𝑘 ∈ N,

where 𝑆 = 𝑆𝑓 is a functional on the space 𝒫𝑏 generated by the function 𝑓 .

Proof. We take an arbitrary point 𝑧 ∈ 𝐷. The function 𝑒𝜆𝑧, 𝜆 ∈ C, belongs to all spaces 𝒫𝛼, 𝛼 > 0,
and by Lemma 3.1, the Lagrange series

𝑒𝜆𝑧 =

∞∑︁
𝑘=1

𝑒𝜆𝑘𝑧
𝐿+(𝜆)

(𝜆− 𝜆𝑘)𝐿′
+(𝜆𝑘)

, 𝜆 ∈ C,

converges in the space 𝒫𝑏. Therefore, a point-wise identity holds:

𝑓(𝑧) = 𝑆(𝑒𝜆𝑧) =
∞∑︁
𝑘=1

𝑒𝜆𝑘𝑧𝑆

(︂
𝐿+(𝜆)

(𝜆− 𝜆𝑘)𝐿′
+(𝜆𝑘)

)︂
=

∞∑︁
𝑘=1

𝑓𝑘𝑒
𝜆𝑘𝑧.

We are going to prove a uniform on 𝐷 convergence of this series. By estimate (4) we have:

|𝑓𝑘| 6 ‖𝑆𝑓‖
⃦⃦⃦⃦

𝐿+(𝜆)

(𝜆− 𝜆𝑘)𝐿′
+(𝜆𝑘)

⃦⃦⃦⃦
𝒫𝑏

6 Const · 1

|𝐿′
+(𝜆𝑘)|

, 𝑘 ∈ N.

Hence, ⃦⃦⃦⃦
⃦⃦∑︁
𝑘>𝑁

𝑒𝜆𝑘𝑧
𝐿+(𝜆)

(𝜆− 𝜆𝑘)𝐿′
+(𝜆𝑘)

⃦⃦⃦⃦
⃦⃦ 6 Const ·

∑︁
𝑘>𝑁

𝑒𝐻𝐷(𝜆𝑘)

𝐿′
+(𝜆𝑘)

.

By the lower bounds for the derivatives and the inequality 𝑞 > 1 this implies:⃦⃦⃦⃦
⃦⃦∑︁
𝑘>𝑁

𝑒𝜆𝑘𝑧
𝐿+(𝜆)

(𝜆− 𝜆𝑘)𝐿′
+(𝜆𝑘)

⃦⃦⃦⃦
⃦⃦ 6 Const ·

∑︁
𝑘>𝑁

1

(|𝜆𝑘| + 1)𝑞
→ 0, 𝑁 → ∞.

By Corollary of Lemma 2.1, each function in 𝐴0 is the Fourier-Laplace transform of some functional

𝑆 = 𝑆𝑓 on ̃︀𝒫−1. Since the spaces 𝒫𝛼 are continuously embedded, the functional 𝑆𝑓 acts also in the
spaces 𝒫−𝑞 for 𝑞 < −1.

Theorem 3.3. Each function 𝑓 ∈ 𝐴0 can be represented by the series

𝑓(𝑧) =

∞∑︁
𝑘=1

𝑓𝑘𝑒
𝜆𝑘𝑧, 𝑧 ∈ 𝐷,

converging in the space 𝐵𝑠(𝐷), where 𝑠 = [𝑏] + 2. The coefficients can be calculated by the formulae:

𝑓𝑘 = 𝑆

(︂
𝐿−(𝜆)

(𝜆− 𝜆𝑘)𝐿′
−(𝜆𝑘)

)︂
, 𝑘 ∈ N,

where 𝑆 = 𝑆𝑓 is a functional on the space 𝒫−𝑞 generated by the function 𝑓 .

Proof. We take an arbitrary point 𝑧 ∈ 𝐷. The function 𝑒𝜆𝑧, 𝜆 ∈ C, 𝑧 ∈ 𝐷, belongs to all spaces 𝒫𝛼

and by Lemma 3.1 the Lagrange series

𝑒𝜆𝑧 =

∞∑︁
𝑘=1

𝑒𝜆𝑘𝑧
𝐿−(𝜆)

(𝜆− 𝜆𝑘)𝐿′
−(𝜆𝑘)

, 𝜆 ∈ C,
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converges in the space 𝒫−𝑞. Therefore, a pointwise identity holds:

𝑓(𝑧) = 𝑆(𝑒𝜆𝑧) =
∞∑︁
𝑘=1

𝑒𝜆𝑘𝑧𝑆

(︂
𝐿−(𝜆)

(𝜆− 𝜆𝑘)𝐿′
−(𝜆𝑘)

)︂
=

∞∑︁
𝑘=1

𝑓𝑘𝑒
𝜆𝑘𝑧.

Let us prove the convergence of this series in the norm of the space 𝐵𝑠(𝐷). By estimate (5) we have:

|𝑓𝑘| 6 ‖𝑆𝑓‖
⃦⃦⃦⃦

𝐿−(𝜆)

(𝜆− 𝜆𝑘)𝐿′
−(𝜆𝑘)

⃦⃦⃦⃦
𝒫−𝑞

6 Const · 1

|𝐿′
−(𝜆𝑘)|

, 𝑘 ∈ N.

Therefore, ⃦⃦⃦⃦
⃦⃦∑︁
𝑘>𝑁

𝑒𝜆𝑘𝑧
𝐿−(𝜆)

(𝜆− 𝜆𝑘)𝐿′
−(𝜆𝑘)

⃦⃦⃦⃦
⃦⃦
𝐵𝑠

6 Const ·
∑︁
𝑘>𝑁

‖𝑒𝜆𝑘𝑧‖𝐵𝑠

𝐿′
−(𝜆𝑘)

.

To estimate the norms of the exponentials in the space 𝐵𝑠(𝐷) we make use of the inequality

𝐻𝐷(𝜆) − Re𝜆𝑧 = sup
𝜁∈𝐷

Re𝜆(𝜁 − 𝑧) > sup
|𝜁−𝑧|<𝑑(𝑧)

Re𝜆(𝜁 − 𝑧) = 𝑑(𝑧)|𝜆|,

where 𝑧 ∈ 𝐷, 𝜆 ∈ C, 𝑑(𝑧) is the distance from a point 𝑧 ∈ 𝐷 to the boundary 𝐷. Hence, for sufficiently
large |𝜆|, the inequality holds:

‖𝑒𝜆𝑧‖𝐵𝑠 = 𝑒𝐻𝐷(𝜆)𝑒sup𝑧∈𝐷(−𝑑(𝑧)|𝜆|+𝑠 ln 𝑑(𝑧)) 6
(︁𝑠
𝑒

)︁𝑠
𝑒𝐻𝐷(𝜆)−𝑠 ln |𝜆|.

Therefore, by the lower bounds for the derivatives and the relations 𝑏 − 𝑠 = 𝑏 − ([𝑏] + 2) = −𝑞 < −1
we get: ⃦⃦⃦⃦

⃦⃦∑︁
𝑘>𝑁

𝑒𝜆𝑘𝑧
𝐿−(𝜆)

(𝜆− 𝜆𝑘)𝐿′
−(𝜆𝑘)

⃦⃦⃦⃦
⃦⃦ 6 Const ·

∑︁
𝑘>𝑁

1

(|𝜆𝑘| + 1)𝑞
→ 0, 𝑁 → ∞.

In conclusion we mention that Theorems 3.2 and 3.3 imply the following statement.

Theorem 3.4. If for a support function 𝐻𝐷(𝜆) of a bounded convex domain 𝐷 there exists an entire
function 𝐿 obeying the conditions:
1) the set of zeroes 𝜆𝑘, 𝑘 ∈ N, is separated in the sense that for some 𝛿 ∈ (0; 1) the circles 𝐵𝛿(𝜆𝑘) =
𝐵(𝜆𝑘, 𝛿(|𝜆| + 1)−1) are mutually disjoint;
2) the relations hold:

| ln |𝐿(𝜆)| −𝐻𝐷(𝜆)| 6 𝐴 ln(|𝜆| + 1) + 𝐶, 𝜆 /∈
∞⋃︁
𝑘=1

𝐵𝛿(𝜆𝑘),

| ln |𝐿′(𝜆𝑘)| −𝐻𝐷(𝜆𝑘)| 6 𝐴 ln(|𝜆𝑘| + 1) + 𝐶 ′, 𝑘 ∈ N,

and 𝑠 = 2([𝐴] + 2), then
1. There exists a system of exponentials 𝑒𝜆𝑘𝑧, 𝑘 ∈ N, such that each function 𝑓 ∈ 𝐴𝑠 is represented

by the series

𝑓(𝑧) =
∞∑︁
𝑘=1

𝑓𝑘𝑒
𝜆𝑘𝑧, 𝑧 ∈ 𝐷,

converging in the uniform norm over 𝐷.
2. There exists a system of exponentials 𝑒𝜆𝑘𝑧, 𝑘 ∈ N, such that each function 𝑓 ∈ 𝐴0 is represented

by a series

𝑓(𝑧) =
∞∑︁
𝑘=1

𝑓𝑘𝑒
𝜆𝑘𝑧, 𝑧 ∈ 𝐷,

converging in the norm

‖𝑓‖ = sup
𝑧∈𝐷

|𝑓(𝑧)|(𝑑(𝑧))𝑠.
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It was shown in work [3] that for bounded convex polygons there exist entire functions 𝐿 with
constant 𝐴 = 0. In work [8], for the domains 𝐷, the boundary of which has a continuous curvature
separated from zero, there were constructed entire functions 𝐿 with constant 𝐴 = 1

2 . Thus, for these
classes of domains, we can suppose that 𝑠 = 4 in Theorems 3.2–3.4.
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