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HARDY TYPE INEQUALITIES INVOLVING

GRADIENT OF DISTANCE FUNCTION

F.G. AVKHADIEV

Abstract. We prove several new Hardy type inequalities in Euclidean domains; these
inequalities involve the gradient of the distance function from a point to the boundary
of the domain. For test functions we consider improved inequalities in form proposed by
Balinsky and Evans for convex domains. Namely, in Hardy type inequalities, instead of
the gradient of the test function, one takes the scalar product of the gradients of the test
function and of the distance from a point to the boundary of a given domain.

In the present paper, integral Hardy type inequalities are studied in non-convex 𝑛-
dimensional domains having a finite inradius. We prove three new Hardy type 𝐿𝑝-
inequalities in an improved form with explicit estimates for the constants depending on
the dimension of the Euclidean space 𝑛 > 2, the inradius of the domain and two parameters
𝑝 > 1, 𝑠 > 𝑛.

Our proofs are based on three key ingredients. The first of them is related with an
approximation and a special partition of the domain, in particular, we employ the approx-
imation of the domain by subsets formed by finitely many cubes with sides parallel to the
coordinate planes.

The second ingredient is the representation of the domain as a countable union of sub-
domains with piece-wise smooth boundaries and applying a new theorem by the author on
convergence of the gradients of the distance functions for these subdomains. Moreover, we
prove three new Hardy type inequalities on a finite interval, which are employed in justifying
the inequalities in multi-dimensional domains.

Keywords: Hardy type inequality, inradius, gradient of distance function.

Mathematics Subject Classification: 26D10, 33C20

1. Introduction

Let 𝑛 > 2 and let Ω ⊂ R𝑛 be a domain such that Ω ̸= R𝑛. In such domains we consider weighted
integral Hardy type inequalities for the functions 𝑢 ∈ 𝐶1

0 (Ω), where 𝐶1
0 (Ω) is a family of real-valued

smooth functions with compact supports in the domain Ω.
We note that Hardy studied one-dimensional integral inequalities for various values of the parameters

𝑝 ∈ [1,∞) and 𝑠 ∈ R ∖ {1}. His results can be summarized as follows, cf. [1].

Theorem 1.1. Assume that 𝑝 ∈ [1,∞) and 𝑠 ∈ R ∖ {1}. Then for each function 𝑓 : (0,∞) → R

satisfying the conditions 𝑓 ∈ 𝐶1
0 ((0,∞)) and 𝑓 ̸≡ 0 the inequality holds:

∞∫︁
0

|𝑓 ′(𝑡)|𝑝

𝑡𝑠−𝑝
𝑑𝑡 >

|𝑠− 1|𝑝

𝑝𝑝

∞∫︁
0

|𝑓(𝑡)|𝑝

𝑡𝑠
𝑑𝑡,

where the constant |𝑠− 1|𝑝/𝑝𝑝 is sharp.
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In generalizations of Hardy inequalities for multi-dimensional case, a quantity 𝜌(𝑥, 𝜕Ω) is used; this
quantity is a distance from a point 𝑥 ∈ Ω to the boundary of the domain Ω, that is,

𝜌(𝑥, 𝜕Ω) := inf
𝑦∈R𝑛∖Ω

|𝑥− 𝑦|.

By ∇𝜌(𝑥,Ω) we denote the gradient of this function. We also note that hereinafter we employ the

Euclidean norm |𝑥| = (𝑥21 + 𝑥22 + . . . + 𝑥2𝑛)
1
2 and the Euclidean scalar product

𝑥 · 𝑦 = 𝑥1𝑦1 + 𝑥2𝑦2 + . . . + 𝑥𝑛𝑦𝑛

for the vectors 𝑥 = (𝑥1, 𝑥2, . . . 𝑥𝑛) ∈ R𝑛 and 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ R𝑛.
We mention a well-known fact: |∇𝜌(𝑥, 𝜕Ω)| = 1 almost everywhere on Ω. Therefore, in view of

Cauchy-Schwarz inequality for the scalar product, for each function 𝑢 ∈ 𝐶1
0 (Ω) we get:

|∇𝑢(𝑥)| > |∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω)| almost everywhere on Ω. (1.1)

There are many various multi-dimensional analogues of Hardy inequalities, see, for instance, books
[2] and [3]. We shall be interesting in generalizations of the following two inequalities, where the
parameters are chosen so that 𝑝 ∈ [1,∞) and 𝑠 ∈ [1,∞).

The first inequality reads as∫︁
Ω

|∇𝑢(𝑥)|𝑝𝑑𝑥
𝜌𝑠−𝑝(𝑥, 𝜕Ω)

> 𝑐𝑝(𝑠,Ω)

∫︁
Ω

|𝑢(𝑥)|𝑝𝑑𝑥
𝜌𝑠(𝑥, 𝜕Ω)

∀𝑢 ∈ 𝐶1
0 (Ω), (1.2)

while the second inequality is the improving of the first by means of (1.1) and it reads as∫︁
Ω

|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω)|𝑝𝑑𝑥
𝜌𝑠−𝑝(𝑥, 𝜕Ω)

> 𝑐*𝑝(𝑠,Ω)

∫︁
Ω

|𝑢(𝑥)|𝑝𝑑𝑥
𝜌𝑠(𝑥, 𝜕Ω)

∀𝑢 ∈ 𝐶1
0 (Ω). (1.3)

The constants 𝑐𝑝(𝑠,Ω) ∈ [0,∞) and 𝑐*𝑝(𝑠,Ω) ∈ [0,∞) are supposed to be maximal possible, that is,
they are defined by the formulae

𝑐𝑝(𝑠,Ω) = inf
𝑢∈𝐶1

0 (Ω), 𝑢 ̸≡0

∫︁
Ω

|∇𝑢(𝑥)|𝑝𝑑𝑥
𝜌𝑠−𝑝(𝑥, 𝜕Ω)

𝑑𝑥

∫︁
Ω

|𝑢(𝑥)|𝑝𝑑𝑥
𝜌𝑠(𝑥, 𝜕Ω)

, (1.4)

for inequality (1.2) and

𝑐*𝑝(𝑠,Ω) = inf
𝑢∈𝐶1

0 (Ω), 𝑢 ̸≡0

∫︁
Ω

|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω)|𝑝𝑑𝑥
𝜌𝑠−𝑝(𝑥, 𝜕Ω)

𝑑𝑥

∫︁
Ω

|𝑢(𝑥)|𝑝𝑑𝑥
𝜌𝑠(𝑥, 𝜕Ω)

(1.5)

for inequality (1.3). Maximal constants 𝑐𝑝(𝑠,Ω) and 𝑐*𝑝(𝑠,Ω) in inequalities (1.2) and (1.3) defined by
formulae (1.4) and (1.5), respectively, are invariant with respect to linear conformal transformations
of the domain. In particular, the identities

𝑐𝑝(𝑠,Ω) = 𝑐𝑝(𝑠, 𝑘Ω + 𝑥0), 𝑐*𝑝(𝑠,Ω) = 𝑐*𝑝(𝑠, 𝑘Ω + 𝑥0),

hold, where

𝑘Ω + 𝑥0 := {𝑦 ∈ R𝑛 : 𝑦 = 𝑘𝑥 + 𝑥0, 𝑥 ∈ Ω} (𝑥0 ∈ R𝑛, 𝑘 ∈ R, 𝑘 ̸= 0).

We attract the attention of the reader to a simple but important fact. The invariancy of the
inequalities with respect to scaling, that is, to transformations of form 𝑦 = 𝑘𝑥, 𝑘 > 0, yields that the
constants 𝑐𝑝(𝑠,Ω) and 𝑐*𝑝(𝑠,Ω) are dimensionless quantities. We also note that by (1.1), (1.4) and (1.5)

𝑐*𝑝(𝑠,Ω) 6 𝑐𝑝(𝑠,Ω).

This paper is devoted to proving new inequalities of form (1.3) and their generalizations. There are
just few results in this direction and we shall describe them below.
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2. Basic properties of functions 𝜌( · ,Ω) and their applications

The distance function 𝜌( · , 𝜕Ω) has numerous applications in a series of fields of theory of functions
and the theory of differential elliptic equations. This function is rather well studied. Its basic properties
are the following two facts, see, for instance, Chapter 2 of book [2]: the function 𝜌( · , 𝜕Ω) satisfies the
Lipschitz condition:

|𝜌(𝑥, 𝜕Ω) − 𝜌(𝑦, 𝜕Ω)| 6 |𝑥− 𝑦| ∀𝑥, 𝑦 ∈ Ω,

and therefore, is differentiable almost everywhere by the Rademacher theorem [4]. Thus, the distance
function 𝜌( · , 𝜕Ω) is differentiable on the set Ω∖𝑆(Ω), where 𝑆(Ω) is the set of all singular points, that
is, all points in which 𝜌( · ,Ω) is non differentiable, and mes𝑛 𝑆(Ω) = 0.

It is also known that 𝑥 ∈ Ω ∖ 𝑆(Ω) if and only if there exists a unique point 𝑥′ ∈ 𝜕Ω such that
𝜌(𝑥, 𝜕Ω) = |𝑥− 𝑥′|, and

∇𝜌(𝑥, 𝜕Ω) =
𝑥− 𝑥′

|𝑥− 𝑥′|
. (2.1)

As it was mentioned in [2], this statement goes back to K.S. Motzkin [5], later it was independently
obtained by other mathematicians independently of Motzkin. As an implication of (2.1) we obtain
that

|∇𝜌(𝑥, 𝜕Ω)| = 1 ∀𝑥 ∈ Ω ∖ 𝑆(Ω).

There exist domains for which mes𝑛 𝑆(Ω) = 0, where 𝑆(Ω) denotes the closure of the set 𝑆(Ω) of
singular points in Ω. The examples of such domains are a ball, a half-space and a convex polygon.
However, it turns out that mes𝑛 𝑆(Ω) > 0 for a series of domains of planar and spatial domains.
C. Mantegazza and A.C. Mennucci published [6] an example of a bounded convex domain Ω* ⊂ R2,
for which the set 𝑆(Ω*) has a positive two-dimensional Lebesgue measure. In fact, in paper [6], there
was give a series of such domains Ω* ⊂ R2. The geometric construction of Ω* is based on Smith-
Volterra-Cantor type set on the unit circumference {𝑥 ∈ R2 : |𝑥| = 1}.

The example by C. Mantegazza and A.C. Mennucci can be easily generalized for the case 𝑛 >
3. In particular, let Ω** := Ω* × (0, 𝑎)𝑛−2, where 𝑎 is a sufficiently large positive number. Then
mes𝑛 𝑆(Ω**) > 0. Several methods were developed for proving Hardy type inequalities in domains of
form (1.2) in Euclidean domains. The simplest and most effective methods are based on employing
integration by parts via Green-type formulae.

But in domains, in which mes𝑛 𝑆(Ω) > 0, one can not employ these simple methods for proving
inequalities of form (1.3) and of their generalizations. This is why we developed a new approach based
on employing representations of form

Ω =
∞⋃︁
𝑗=1

Ω𝑗 ,

where Ω𝑗 are chosen so that mes𝑛 𝑆(Ω𝑗) = 0. Moreover, we shall need statements, which we proved
in recent papers [7] and [8] on the convergence of the distance functions and their gradients under
exhausting a domain.

Let us recall the main result of paper [8].

Theorem 2.1. Let 𝑛 > 2 and

Ω =
∞⋃︁
𝑗=1

Ω𝑗 ,

where Ω and Ω𝑗 are open sets in the Euclidean space R𝑛, Ω ̸= R𝑛, 𝐾 is some compact set in R𝑛, and

the conditions

𝐾 ⊂ Ω𝑗 ⊂ Ω𝑗+1 ∀𝑗 ∈ N
are satisfied. Then the following statements hold:

(𝑖) 𝜌(𝑥, 𝜕Ω𝑗) → 𝜌(𝑥, 𝜕Ω) as 𝑗 → ∞ uniformly on the compact set 𝐾, that is,

lim
𝑗→∞

max
𝑥∈𝐾

|𝜌(𝑥, 𝜕Ω) − 𝜌(𝑥, 𝜕Ω𝑗)| = 0;
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(𝑖𝑖) there exists a set 𝑆 ⊂ 𝐾 such that its 𝑛-dimensional Lebesgue measure satisfies the identity

mes𝑛 𝑆 = 0 and

lim
𝑗→∞

∇𝜌(𝑥, 𝜕Ω𝑗) = ∇𝜌(𝑥, 𝜕Ω)

at each point 𝑥 ∈ 𝐾 ∖ 𝑆.
In papers [7] and [8] we also obtained similar results on convergence under outer approximations of

the domain and on their applications for verifying strict forms of Hardy type inequalities.
In particular, in paper [8] we proved the following theorem.

Theorem 2.2. Assume that 𝑛 > 2 and Ω ⊂ R𝑛 is a convex domain, Ω ̸= R𝑛, 𝑝 ∈ [1,∞) and

𝑠 ∈ (1,∞). Then

𝑐*𝑝(𝑠,Ω) =
(𝑠− 1)𝑝

𝑝𝑝
.

A.A. Balinsky and W.D. Evans had proved this theorem earlier in paper [9] for the case 𝑝 = 𝑠 ∈
(1,∞) and under some additional conditions for the domain. It was pointed out in paper [9] that some
inequalities of form (1.3) have applications in problems on images recognition and recovering.

The next theorem belongs to the author, see [8] and [10].

Theorem 2.3. Let 𝑛 > 2 and Ω ⊂ R𝑛 is an arbitrary domain satisfying the condition Ω ̸= R𝑛. If

𝑝 ∈ [1,∞) and 𝑠 ∈ [𝑛,∞), then

𝑐𝑝(𝑠,Ω) > 𝑐*𝑝(𝑠,Ω) >
(𝑠− 𝑛)𝑝

𝑝𝑝
.

These estimates are sharp in the sense that there exist both bounded and unbounded domains Ω ̸= R𝑛,

for which

𝑐𝑝(𝑠,Ω) = 𝑐*𝑝(𝑠,Ω) =
(𝑠− 𝑛)𝑝

𝑝𝑝
.

Other estimates for the constants 𝑐𝑝(𝑠,Ω) can be found in papers [11]–[16].

3. Inequalities in domains with a finite inradius

An inradius 𝜌(Ω) of a domain Ω is defined by the identity

𝜌(Ω) = sup
𝑥∈Ω

𝜌(𝑥, 𝜕Ω).

It is obvious that the inradius of a bounded domain is finite. We observe that the inverse is not
true: there exist unbounded domains with a finite inradius.

As 𝑝 = 1 and 𝑠 ∈ (𝑛,∞), by (1.3), (1.5) and Theorem 2.3, in an arbitrary domain Ω ⊂ R𝑛, Ω ̸= R𝑛,
the inequality holds:∫︁

Ω

|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω)|𝑑𝑥
𝜌𝑠−1(𝑥, 𝜕Ω)

> (𝑠− 𝑛)

∫︁
Ω

|𝑢(𝑥)|𝑑𝑥
𝜌𝑠(𝑥, 𝜕Ω)

∀𝑢 ∈ 𝐶1
0 (Ω), (3.1)

and there exist both bounded and unbounded domains Ω, for which the constant 𝑐*1(𝑠,Ω) = 𝑠 − 𝑛 in
this inequality is sharp, that is, it is maximal possible. We recall one feature of Hardy type inequalities:
the sharpness of the constant does not mean the existence of an extremal function 𝑢 ̸≡ 0, at which the
inequality becomes the identity.

Let us prove that inequality (3.1) can be essentially strengthened for each domain Ω with a finite
inradius 𝜌(Ω). Namely, we are going to prove the following two statements.

Theorem 3.1. Assume that 𝑛 > 2, 𝑠 ∈ (𝑛,∞) and Ω ⊂ R𝑛 is an arbitrary domain obeying the only

condition 𝜌(Ω) < ∞. Then∫︁
Ω

|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω)|𝑑𝑥
𝜌𝑠−1(𝑥, 𝜕Ω)

− (𝑠− 𝑛)

∫︁
Ω

|𝑢(𝑥)|𝑑𝑥
𝜌𝑠(𝑥, 𝜕Ω)

> 𝑆1(𝑢,Ω) ∀𝑢 ∈ 𝐶1
0 (Ω), (3.2)

where

𝑆1(𝑢,Ω) =
𝑠− 𝑛

(𝑠− 1) 𝜌𝑠(Ω)

∫︁
Ω

|𝑢(𝑥)| 𝑑𝑥 +
1

𝜌𝑠(Ω)

∫︁
Ω

𝜌(𝑥, 𝜕Ω)|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω)| 𝑑𝑥.
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The next statement is a simultaneous generalization and implication of Theorem 3.1.

Theorem 3.2. Assume that 𝑛 > 2 and Ω ⊂ R𝑛 is an arbitrary domain obeying the only condition

𝜌(Ω) < ∞. If 𝑝 ∈ [1,∞) and 𝑠 ∈ (𝑛,∞), then∫︁
Ω

|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω)|𝑝𝑑𝑥
𝜌𝑠−𝑝(𝑥, 𝜕Ω)

− (𝑠− 𝑛)𝑝

𝑝𝑝

∫︁
Ω

|𝑢(𝑥)|𝑝𝑑𝑥
𝜌𝑠(𝑥, 𝜕Ω)

> 𝑆𝑝(𝑢,Ω) ∀𝑢 ∈ 𝐶1
0 (Ω), (3.3)

where

𝑆𝑝(𝑢,Ω) =
(𝑠− 𝑛)𝑝

𝑝𝑝−1 (𝑠− 1) 𝜌𝑠(Ω)

∫︁
Ω

|𝑢(𝑥)|𝑝 𝑑𝑥 +
1

𝜌𝑝𝑠(Ω)

∫︁
Ω

|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω)|𝑝

𝜌𝑠−𝑝−𝑝𝑠(𝑥, 𝜕Ω)
𝑑𝑥.

As we have mentioned above, since |∇𝜌(𝑥, 𝜕Ω)| = 1 almost everywhere on Ω, by the Cauchy-Schwarz
inequality for the scalar product inequality (1.1) is true. This is why Theorem 3.2 implies the following
corollary.

Corollary 3.1. Assume that 𝑛 > 2, 𝑝 ∈ [1,∞), 𝑠 ∈ (𝑛,∞) and Ω ⊂ R𝑛 is an arbitrary domain

obeying the condition 𝜌(Ω) < ∞. Then∫︁
Ω

|∇𝑢(𝑥)|𝑝𝑑𝑥
𝜌𝑠−𝑝(𝑥, 𝜕Ω)

− (𝑠− 𝑛)𝑝

𝑝𝑝

∫︁
Ω

|𝑢(𝑥)|𝑝𝑑𝑥
𝜌𝑠(𝑥, 𝜕Ω)

> 𝑆*
𝑝(𝑢,Ω) ∀𝑢 ∈ 𝐶1

0 (Ω),

where

𝑆*
𝑝(𝑢,Ω) =

(𝑠− 𝑛)𝑝

𝑝𝑝−1 (𝑠− 1) 𝜌𝑠(Ω)

∫︁
Ω

|𝑢(𝑥)|𝑝𝑑𝑥 +
1

𝜌𝑝𝑠(Ω)

∫︁
Ω

|∇𝑢(𝑥)|𝑝

𝜌𝑠−𝑝−𝑝𝑠(𝑥, 𝜕Ω)
𝑑𝑥.

As 𝑠 = 𝑛, non-trivial analogues of inequality (3.1) are possible via changing the weight functions with
applying logarithmic factors in the way how this was done in paper [10] in a less general situation, when
the inequalities involve |∇𝑢(𝑥)| instead the absolute value of the scalar product |∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω)|.
Namely, by applying the logarithmic factors, we are going to prove the following two theorems.

Theorem 3.3. Assume that 𝑝 ∈ [1,∞), 𝑛 > 2 and Ω ⊂ R𝑛 is an arbitrary domain obeying the

condition 𝜌(Ω) < ∞. Then the inequality∫︁
Ω

|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω)|𝑝

𝜌𝑛−𝑝(𝑥, 𝜕Ω)
ln𝑝 𝜌(Ω)

𝜌(𝑥, 𝜕Ω)
𝑑𝑥 >

1

𝑝𝑝

∫︁
Ω

|𝑢(𝑥)|𝑝𝑑𝑥
𝜌𝑛(𝑥, 𝜕Ω)

∀𝑢 ∈ 𝐶1
0 (Ω) (3.4)

holds true.

We note that in the general case. the logarithmic factor in this inequality is an essential ingredient.
For instance, for the domain

Ω1 = {𝑥 ∈ R𝑛 : 0 < |𝑥| < 1},
that is, for the unit ball with the punctured center, there exists no positive constant 𝑐(𝑝, 𝑛) such that
the inequality holds:∫︁

Ω1

|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω1)|𝑝

𝜌𝑛−𝑝(𝑥, 𝜕Ω1)
𝑑𝑥 > 𝑐(𝑝, 𝑛)

∫︁
Ω1

|𝑢(𝑥)|𝑝𝑑𝑥
𝜌𝑛(𝑥, 𝜕Ω1)

∀𝑢 ∈ 𝐶1
0 (Ω1).

We also stress that Theorem 3.3 implies the following statement, which we proved in paper [10].

Corollary 3.2. Assume that 𝑛 > 2 and Ω ⊂ R𝑛 is a domain obeying the condition 𝜌(Ω) < ∞.

Then the inequalities hold:∫︁
Ω

|∇𝑢(𝑥)|
𝜌𝑛−1(𝑥, 𝜕Ω)

ln
𝜌(Ω)

𝜌(𝑥, 𝜕Ω)
𝑑𝑥 >

∫︁
Ω

|𝑢(𝑥)|𝑑𝑥
𝜌𝑛(𝑥, 𝜕Ω)

∀𝑢 ∈ 𝐶1
0 (Ω),

∫︁
Ω

|∇𝑢(𝑥)|𝑛 ln𝑛 𝜌(Ω)

𝜌(𝑥, 𝜕Ω)
𝑑𝑥 >

1

𝑛𝑛

∫︁
Ω

|𝑢(𝑥)|𝑛𝑑𝑥
𝜌𝑛(𝑥, 𝜕Ω)

∀𝑢 ∈ 𝐶1
0 (Ω).
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In Theorem 3.3, the kernel of the integral is strengthened by means of the factor

ln𝑝 𝜌(Ω)

𝜌(𝑥, 𝜕Ω)
→ ∞, as 𝜌(𝑥, 𝜕Ω) → 0.

Now we consider the case, when the kernel of the integral in the right hand side of the inequality is
weakened by means of a logarithmic factor.

Theorem 3.4. Assume that 𝑝 ∈ [1,∞), 𝑛 > 2 and Ω ⊂ R𝑛 is a domain obeying the condition

𝜌(Ω) < ∞. Then∫︁
Ω

|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω)|
𝜌𝑛−1(𝑥, 𝜕Ω)

𝑑𝑥 >
∫︁
Ω

|𝑢(𝑥)|
𝜌𝑛(𝑥, 𝜕Ω)

ln−2 𝑒 𝜌(Ω)

𝜌(𝑥, 𝜕Ω)
𝑑𝑥 ∀𝑢 ∈ 𝐶1

0 (Ω). (3.5)

As usually, by 𝑒 ≈ 2.718 we denote the radix of the natural logarithm.
If 𝑝 > 1, then the condition 𝑢 ∈ 𝐶1

0 (Ω) implies that 𝑣 := |𝑢|𝑝 ∈ 𝐶1
0 (Ω). This is why the following

corollary is true.

Corollary 3.3. Assume that 𝑝 ∈ [1,∞), 𝑛 > 2 and Ω ⊂ R𝑛 is an arbitrary domain obeying the

condition 𝜌(Ω) < ∞. Then∫︁
Ω

|𝑢(𝑥)|𝑝−1|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω)|
𝜌𝑛−1(𝑥, 𝜕Ω)

𝑑𝑥 >
1

𝑝

∫︁
Ω

|𝑢(𝑥)|𝑝𝐴(𝑥,Ω)

𝜌𝑛(𝑥, 𝜕Ω)
𝑑𝑥 ∀𝑢 ∈ 𝐶1

0 (Ω),

where

𝐴(𝑥,Ω) = ln−2 𝑒 𝜌(Ω)

𝜌(𝑥, 𝜕Ω)
.

For proving the theorems, we shall employ the following four lemmata generalizing and strengthening
corresponding statements, which we proved in [10].

Lemma 3.1. Assume that 𝑐 = 𝑐𝑜𝑛𝑠𝑡 > 0 and in a domain Ω ⊂ R𝑛 two continuous functions

𝑤1 = 𝑤1(𝑥) > 0, 𝑤2 = 𝑤2(𝑥) > 0 are defined and a functional 𝐽 : 𝐶1
0 (Ω) → R is defined as well.

If

𝐽(𝑢) +

∫︁
Ω

|𝑢(𝑥)|𝑤1(𝑥)𝑑𝑥 6 𝑐

∫︁
Ω

|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω)|𝑤2(𝑥)𝑑𝑥,

for each real-valued function 𝑢 ∈ 𝐶1
0 (Ω), then for each 𝑝 ∈ (1,∞) and each real-valued function

𝑢 ∈ 𝐶1
0 (Ω) the inequality holds:

𝑝𝐽(|𝑢|𝑝) +

∫︁
Ω

|𝑢(𝑥)|𝑝𝑤1(𝑥)𝑑𝑥 6 (𝑐𝑝)𝑝
∫︁
Ω

|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω)|𝑝𝑤1−𝑝
1 (𝑥)𝑤𝑝

2(𝑥)𝑑𝑥.

Proof. Assume that 𝑝 > 1 and 𝑢 ∈ 𝐶1
0 (Ω) is a real-valued function. Then the function 𝑣 := |𝑢|𝑝 ∈ 𝐶1

0 (Ω)
since

∇𝑣 = ∇|𝑢|𝑝 = 𝑝|𝑢|𝑝−1(∇𝑢)sign 𝑝(𝑢)

and a function |𝑢|𝑝−1sign (𝑢) is continuous since 𝑢 ∈ 𝐶1
0 (Ω) and 𝑝 > 1. By the assumption of the

lemma, the function 𝑣 = |𝑢|𝑝 ∈ 𝐶1
0 (Ω) satisfies the inequality

𝐽(|𝑢|𝑝) +

∫︁
Ω

|𝑢(𝑥)|𝑝𝑤1(𝑥)𝑑𝑥 6 𝑐

∫︁
Ω

|∇|𝑢(𝑥)|𝑝 · ∇𝜌(𝑥, 𝜕Ω)|𝑤2(𝑥)𝑑𝑥.

We estimate the integral in the right hand side from above by employing a simple inequality

|∇|𝑢(𝑥)|𝑝 · ∇𝜌(𝑥, 𝜕Ω)| 6 𝑝|𝑢(𝑥)|𝑝−1|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω)|
and the Young inequality

𝑎𝑝−1𝑏 6

(︂
1 − 1

𝑝

)︂
𝑎𝑝 +

𝑏𝑝

𝑝

for the quantities

𝑎 = |𝑢(𝑥)|𝑤
1
𝑝

1 (𝑥), 𝑏 = 𝑐𝑝|∇𝑢(𝑥)|𝑤
1
𝑝
−1

1 (𝑥)𝑤2(𝑥).
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We get:

𝐽(|𝑢|𝑝) +

∫︁
Ω

|𝑢(𝑥)|𝑝𝑤1(𝑥)𝑑𝑥 6

(︂
1 − 1

𝑝

)︂∫︁
Ω

|𝑢(𝑥)|𝑝𝑤1(𝑥)𝑑𝑥

+
1

𝑝

∫︁
Ω

(𝑐𝑝)𝑝 |∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω)|𝑝𝑤1−𝑝
1 (𝑥)𝑤𝑝

2(𝑥)𝑑𝑥,

and this completes the proof.

Lemma 3.2. Assume that 0 < 𝑎 6 𝑏, 𝑘 ∈ {1, 2, . . . , 𝑛}, where 𝑛 is a natural number, 𝑛 > 2,
𝑠 ∈ (𝑛,∞). If 𝑓 : [0, 𝑎] → R is an absolutely continunous function satisfying the condition 𝑓(0) = 0,
then an inequality holds:

𝑎∫︁
0

|𝑓(𝑡)|
𝑡𝑠−𝑘+1

(︂
1 +

𝑡𝑠

(𝑠− 1)𝑏𝑠

)︂
𝑑𝑡 6

1

𝑠− 𝑛

𝑎∫︁
0

|𝑓 ′(𝑡)|
𝑡𝑠−𝑘

(︂
1 − 𝑡𝑠

𝑏𝑠

)︂
𝑑𝑡.

Proof. Since

|𝑓(𝑡)| 6
𝑡∫︁

0

|𝑓 ′(𝜏)|𝑑𝜏,

we get:
𝑎∫︁

0

|𝑓(𝑡)|
𝑡𝑠−𝑘+1

(︂
1 +

𝑡𝑠

(𝑠− 1)𝑏𝑠

)︂
𝑑𝑡 6

𝑎∫︁
0

1

𝑡𝑠−𝑘+1

(︂
1 +

𝑡𝑠

(𝑠− 1)𝑏𝑠

)︂
𝑑𝑡

𝑡∫︁
0

|𝑓 ′(𝜏)|𝑑𝜏.

Swapping the integration order in the iterated integral and calculating the internal integral, we obtain:

𝑎∫︁
0

|𝑓(𝑡)|
𝑡𝑠−𝑘+1

(︂
1 +

𝑡𝑠

(𝑠− 1)𝑏𝑠

)︂
𝑑𝑡 6

𝑎∫︁
0

|𝑓 ′(𝜏)|
𝜏 𝑠−𝑘

𝑇 (𝜏)𝑑𝜏,

where

𝑇 (𝜏) = 𝜏 𝑠−𝑘

𝑎∫︁
𝜏

1

𝑡𝑠−𝑘+1

(︂
1 +

𝑡𝑠

(𝑠− 1)𝑏𝑠

)︂
𝑑𝑡.

Letting 𝑡 = 𝑥𝜏 and employing the estimates

𝑎 6 𝑏, 𝑠 > 𝑛, 𝑥𝑘−1 6 𝑥𝑛−1 as 1 6 𝑥 6
𝑏

𝜏
,

1 − 𝑦𝑠−𝑛 +
𝑠− 𝑛

𝑛(𝑠− 1)
(𝑦𝑠−𝑛 − 𝑦𝑠) 6 1 − 𝑦𝑠 as 0 6 𝑦 = 𝜏/𝑏 6 1,

we find:

𝑇 (𝜏) 6

𝑏
𝜏∫︁

1

1

𝑥𝑠−𝑛+1

(︂
1 +

𝑥𝑠𝜏 𝑠

(𝑠− 1)𝑏𝑠

)︂
𝑑𝑥

=
1 − 𝑦𝑠−𝑛

𝑠− 𝑛
+

𝑦𝑠−𝑛 − 𝑦𝑠

𝑛(𝑠− 1)
6

1 − 𝑦𝑠

𝑠− 𝑛
, 𝑦 =

𝜏

𝑏
.

Thus, we have obtained the inequality

𝑎∫︁
0

|𝑓(𝑡)|
𝑡𝑠−𝑘+1

(︂
1 +

𝑡𝑠

(𝑠− 1)𝑏𝑠

)︂
𝑑𝑡 6

1

𝑠− 𝑛

𝑎∫︁
0

|𝑓 ′(𝜏)|
𝜏 𝑠−𝑘

(︂
1 − 𝜏 𝑠

𝑏𝑠

)︂
𝑑𝑡,

and this completes the proof.
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Lemma 3.3. Assume that 0 < 𝑎 6 𝑏, 𝑘 ∈ {1, 2, . . . , 𝑛}, where 𝑛 is a natural number, 𝑛 > 2. If

𝑓 : [0, 𝑎] → R is an absolutely continuous function satisfying the condition 𝑓(0) = 0, then an inequality

holds true:
𝑎∫︁

0

|𝑓(𝑡)|
𝑡𝑛−𝑘+1

𝑑𝑡 6

𝑎∫︁
0

|𝑓 ′(𝑡)|
𝑡𝑛−𝑘

ln
𝑏

𝑡
𝑑𝑡.

Proof. Following the lines of the previous proof, we have:

𝑎∫︁
0

|𝑓(𝑡)|
𝑡𝑛−𝑘+1

𝑑𝑡 6

𝑎∫︁
0

1

𝑡𝑛−𝑘+1
𝑑𝑡

𝑡∫︁
0

|𝑓 ′(𝜏)|𝑑𝜏 =

𝑎∫︁
0

|𝑓 ′(𝜏)

𝜏𝑛−𝑘
𝑇 *(𝜏)𝑑𝜏,

where

𝑇 *(𝜏) = 𝜏𝑛−𝑘

𝑎∫︁
𝜏

𝑑𝑡

𝑡𝑛−𝑘+1
6 𝜏𝑛−𝑘

𝑏∫︁
𝜏

𝑑𝑡

𝑡𝑛−𝑘+1
=

𝑏/𝜏∫︁
1

𝑑𝑥

𝑥𝑛−𝑘+1
6

𝑏/𝜏∫︁
1

𝑑𝑥

𝑥
= ln

𝑏

𝜏
.

This completes the proof.

Lemma 3.4. Assume that 0 < 𝑎 6 𝑏, 𝑘 ∈ {1, 2, . . . , 𝑛}, where 𝑛 is a natural number, 𝑛 > 2. If

𝑓 : [0, 𝑎] → R is an absolutely continuous function obeying the condition 𝑓(0) = 0, then an inequality

holds:
𝑎∫︁

0

|𝑓(𝑡)|
𝑡𝑛−𝑘+1 ln2 𝑏𝑒

𝑡

𝑑𝑡 6

𝑎∫︁
0

|𝑓 ′(𝑡)|
𝑡𝑛−𝑘

𝑑𝑡.

Proof. Following the lines of the proof of Lemma 3.2, we get:

𝑎∫︁
0

|𝑓(𝑡)|𝑑𝑡
𝑡𝑛−𝑘+1 ln2 𝑏𝑒

𝑡

6

𝑎∫︁
0

𝑑𝑡

𝑡𝑛−𝑘+1 ln2 𝑏𝑒
𝑡

𝑡∫︁
0

|𝑓 ′(𝜏)|𝑑𝜏 =

𝑎∫︁
0

|𝑓 ′(𝜏)

𝜏𝑛−𝑘
𝑇 **(𝜏)𝑑𝜏,

where

𝑇 **(𝜏) = 𝜏𝑛−𝑘

𝑎∫︁
𝜏

𝑑𝑡

𝑡𝑛−𝑘+1 ln2 𝑏𝑒
𝑡

6 𝜏𝑛−𝑘

𝑏∫︁
𝜏

𝑑𝑡

𝑡𝑛−𝑘+1 ln2 𝑏𝑒
𝑡

=

𝑏/𝜏∫︁
1

𝑑𝑥

𝑥𝑛−𝑘+1 ln2 𝑏𝑒
𝜏𝑥

6

𝑏/𝜏∫︁
1

𝑑𝑥

𝑥 ln2 𝑏𝑒
𝜏𝑥

= 1 − 1

ln 𝑏𝑒
𝜏

6 1.

This completes the proof.

Proof of Theorem 3.1. We shall employ an exhausting of the domain Ω ̸= R𝑛 by open subsets Ω𝑗 ,
formed by finitely many cubes with sides parallel to the coordinate planes. Earlier, we proposed such
approach for proving some Hardy type inequality of form (1.2), see, for instance, [3], [10].

Let 𝑢 ∈ 𝐶1
0 (Ω) be a real-valued function and 𝑢 ̸≡ 0. By 𝐾 ⊂ Ω we denote the support of this

function. In what follows we suppose that the function 𝑢 ∈ 𝐶1
0 (Ω) is fixed. Then we construct an

approximation of the domain Ω ⊂ R𝑛, Ω ̸= R𝑛.
Let ℎ ∈ (0, 1). We consider a covering of the Euclidean space R𝑛 by the following cubes

𝐾(𝑧, ℎ) = {𝑥 ∈ R𝑛 : 𝑥 = ℎ𝑧 + 𝑦, 𝑦 ∈ [0, ℎ]𝑛}, 𝑧 ∈ Z𝑛.

Then we define a set Ω(ℎ) as a subset Ω consisting of internal points of the union of all cubes lying in
Ω ∩ {𝑥 ∈ R𝑛 : |𝑥| < 1/ℎ}. Then the set

Ω(ℎ) ⊂ Ω ∩ {𝑥 ∈ R𝑛 : |𝑥| < 1/ℎ}
consists of finitely many cubes. We suppose that the number ℎ ∈ (0, 1) is chosen small enough so that
the compact set 𝐾 is contained in one of the components of Ω(ℎ).

We define a sequence Ω𝑗 (𝑗 ∈ N) letting Ω𝑗 := Ω(ℎ𝑗), where ℎ𝑗 = ℎ/2𝑗−1, 𝑗 ∈ N. We have:

Ω = ∪∞
𝑗=1Ω𝑗 , 𝐾 ⊂ Ω𝑗 ⊂ Ω𝑗+1 (∀𝑗 ∈ N).
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The boundary 𝜕Ω𝑗 of an open set Ω𝑗 is the union of finitely many (𝑛− 1)-dimensional sides of the
cubes 𝐾(𝑧, ℎ𝑗). Then we define a special partition Ω𝑗 for each fixed number 𝑗 following paper [10].

It is obvious that the boundary 𝜕Ω𝑗 contains cubic sides of dimension 𝑘 for 𝑘 ∈ {0, 1, . . . , 𝑛 − 1}.
Let 𝐺𝑗𝑚 ⊂ 𝜕Ω𝑗 be a 𝑘-dimemsional side of one of the cubes forming Ω𝑗 . We also mention that the

singular set 𝑆(Ω𝑗) consists of the points 𝑥 ∈ Ω𝑗 , for which there exist cubic sides, where 𝐺𝑗𝑚 ̸= 𝐺𝑗𝑚′ ,
such that

𝑃 (𝑥,Ω𝑗) ∩𝐺𝑗𝑚 ̸= ∅, 𝑃 (𝑥,Ω𝑗) ∩𝐺𝑗𝑚′ ̸= ∅.
As it was pointed out in [10], the set of the points 𝑥 ∈ Ω𝑗 located at the same distance from two sides

𝐺𝑗𝑚 ̸= 𝐺𝑗𝑚′ of dimension 𝑘 ∈ {0, 1, . . . , 𝑛 − 1} and 𝑘′ ∈ {0, 1, . . . , 𝑛 − 1}, is a bounded subset of a
(𝑛− 1)-dimensional plane or some (𝑛− 1)-dimensional surface of second order.

Since the boundary set 𝜕Ω𝑗 consists of finitely many cubic sides, then mes𝑛 𝑆(Ω𝑗) = mes𝑛 𝑆(Ω𝑗) = 0,

where 𝑆(Ω𝑗) stands for the closure of the set 𝑆(Ω𝑗) in the domain Ω𝑗 . We define the sets 𝐺𝑗𝑚 as follows.
If dim𝐺𝑗𝑚 = 0, that is, this side is a point and is one of the vertices of some cube 𝐾(𝑧, ℎ𝑗), we

let 𝐺𝑗𝑚 := 𝐺𝑗𝑚; if dim𝐺𝑗𝑚 = 𝑘 ∈ {1, . . . , 𝑛 − 1}, then up to a rotation and translation the set 𝐺𝑗𝑚

coincides with the set (0, ℎ)𝑘 and 𝐺𝑗𝑚 ⊂ 𝐺𝑗𝑚, and the closure of 𝐺𝑗𝑚 is a side 𝐺𝑗𝑚 ⊂ 𝜕Ω𝑗 .
By construction, we have finitely many sets 𝐺𝑗𝑚, 𝑚 ∈ {1, 2, . . . ,𝑚𝑗}, such that 𝐺𝑗𝑚 ̸= 𝐺𝑗𝑚′ for

𝑚 ̸= 𝑚′ and 𝜕Ω𝑗 = ∪𝑚𝑗

𝑚=1𝐺𝑗𝑚.
We define the following subset of Ω𝑗 :

𝑊 (𝐺𝑗𝑚) = {𝑥 ∈ Ω𝑗 ∖ 𝑆(Ω𝑗) : 𝑃 (𝑥,Ω𝑗) = {𝑦}, 𝑦 ∈ 𝐺𝑗𝑚}.

For each continuous function 𝐹 ∈ 𝐶(Ω𝑗) we can use the formula∫︁
Ω𝑗

𝐹 (𝑥)𝑑𝑥 =

𝑚𝑗∑︁
𝑚=1

∫︁
𝑊 (𝐺𝑗𝑚)

𝐹 (𝑥)𝑑𝑥.

We introduce several new notations. Let 𝑆𝑛−𝑘
+ := {𝑡 ∈ R𝑛−𝑘

+ : |𝑡| = 1}, where

R𝑛−𝑘
+ := {(𝑡1, . . . , 𝑡𝑛−𝑘) ∈ R𝑛−𝑘 : 𝑡1 > 0, . . . , 𝑡𝑛−𝑘 > 0}.

Let 𝐺𝑗𝑚 be a cubic side of dimension 𝑘 ∈ {0, 1, . . . , 𝑛− 1}. Assume that mes𝑛𝑊 (𝐺𝑗𝑚) > 0. Up to
an Euclidean motion, the set 𝑊 (𝐺𝑗𝑚) can be represented as follows:

𝑊 (𝐺𝑗𝑚) =
{︀
𝑦 + 𝑟𝜔 : 𝑦 ∈ 𝐺𝑗𝑚, 𝜔 ∈ 𝑆𝑛−𝑘

+ , 0 < 𝑟 < 𝜙𝑘(𝑦, 𝜔;𝐺𝑗𝑚,Ω𝑗)
}︀
,

where 𝜙𝑘 is some continuous function satisfying the condition:

0 6 𝜙𝑘(𝑦, 𝜔;𝐺𝑗𝑚,Ω𝑗) 6 𝜌(Ω𝑗).

While integrating over the set 𝑊 (𝐺𝑗𝑚), the quantity 𝑟 = 𝜌(𝑥, 𝜕Ω𝑗) will serve as one of the inte-
gration variables, and this is we shall need three types of coordinate systems: spherical coordinates,
several cylindrical coordinates and a Cartesian coordinate system. Passing from multiple to reiterated
integrals, we obtain several 𝑛 different formulae depending on the choice of the coordinate system.

We shall make use of the notations 𝜙𝑘(𝑦, 𝜔) = 𝜙𝑘(𝑦, 𝜔;𝐺𝑗𝑚,Ω𝑗) ∈ [0, 𝜌(Ω𝑗)] and of the following
formulae from paper [10]:

– if dim(𝐺𝑗𝑚) = 𝑛− 1, then∫︁
𝑊 (𝐺𝑗𝑚)

𝐹 (𝑥)𝑑𝑥 =

∫︁
𝐺𝑗𝑚

𝑑𝑦

∫︁ 𝜙𝑛−1(𝑦, 𝜔0)

0
𝐹 (𝑦 + 𝑟𝜔0)𝑑𝑟;

– if dim(𝐺𝑗𝑚) = 𝑛− 𝑘, mes𝑛𝑊 (𝐺𝑗𝑚) > 0 and 2 6 𝑘 6 𝑛− 1, then∫︁
𝑊 (𝐺𝑗𝑚)

𝐹 (𝑥)𝑑𝑥 =

∫︁
𝐺𝑗𝑚

𝑑𝑦

∫︁
𝑆𝑘
+

𝑑𝜔

∫︁ 𝜙𝑛−𝑘(𝑦, 𝜔)

0
𝐹 (𝑦 + 𝑟𝜔)𝑟𝑘−1𝑑𝑟;

– if dim(Gjm) = 0, i.e. 𝐺𝑗𝑚 = {𝑥0}, and mes𝑛𝑊 (𝐺𝑗𝑚) > 0, then∫︁
𝑊 (𝐺𝑗𝑚)

𝐹 (𝑥)𝑑𝑥 =

∫︁
𝑆𝑛
+

𝑑𝜔

∫︁ 𝜙0(𝑥0, 𝜔)

0
𝐹 (𝑥0 + 𝑟𝜔)𝑟𝑛−1𝑑𝑟.
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Letting 𝐹 (𝑥) = |𝑢(𝑥)|𝑟−𝑠 (1 + 𝑟𝑠/((𝑠− 1)𝑏𝑠)) and applying the inequality from Lemma 3.2 with the
parameters

𝑎 = 𝜙𝑛−𝑘(𝑦, 𝜔), 𝑏 = 𝜌(Ω) > 𝜌(Ω𝑗) > 𝑎

for internal integrals, we obtain the inequalities

𝜙𝑛−1(𝑦, 𝜔0)∫︁
0

|𝑢(𝑥)|
𝑟𝑠

(︂
1 +

𝑟𝑠

(𝑠− 1)𝑏𝑠

)︂
𝑑𝑟 6

1

𝑠− 𝑛

𝜙𝑛−1(𝑦, 𝜔0)∫︁
0

|𝑢′𝑟(𝑥)|
𝑟𝑠−1

(︂
1 − 𝑟𝑠

𝑏𝑠

)︂
𝑑𝑟,

𝜙𝑛−𝑘(𝑦, 𝜔)∫︁
0

|𝑢(𝑥)|
𝑟𝑠−𝑘+1

(︂
1 +

𝑟𝑠

(𝑠− 1)𝑏𝑠

)︂
𝑑𝑟 6

1

𝑠− 𝑛

𝜙𝑛−𝑘(𝑦, 𝜔)∫︁
0

|𝑢′𝑟(𝑥)|
𝑟𝑠−𝑘

(︂
1 − 𝑟𝑠

𝑏𝑠

)︂
𝑑𝑟,

𝜙0(𝑥0, 𝜔)∫︁
0

|𝑢(𝑥)|
𝑟𝑠−𝑛+1

(︂
1 +

𝑟𝑠

(𝑠− 1)𝑏𝑠

)︂
𝑑𝑟 6

1

𝑠− 𝑛

𝜙0(𝑥0, 𝜔)∫︁
0

|𝑢′𝑟(𝑥)|
𝑟𝑠−𝑛

(︂
1 − 𝑟𝑠

𝑏𝑠

)︂
𝑑𝑟

for the case 𝑘 = 1, 2 6 𝑘 6 𝑛− 1 and 𝑘 = 𝑛, respectively. Integrating these inequalities with respect
to external variables and taking into consideration the identities 𝑟 = 𝜌(𝑥, 𝜕Ω𝑗) and⃒⃒⃒⃒

𝜕𝑢(𝑥)

𝜕𝑟

⃒⃒⃒⃒
= |∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω𝑗)| , (3.6)

we get:∫︁
𝑊 (𝐺𝑗𝑚)

|𝑢(𝑥)|
𝜌𝑠(𝑥, 𝜕Ω𝑗)

(︂
1 +

𝜌𝑠(𝑥, 𝜕Ω𝑗)

(𝑠− 1)𝜌𝑠(Ω𝑗)

)︂
𝑑𝑥 6

1

𝑠− 𝑛

∫︁
𝑊 (𝐺𝑗𝑚)

|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω𝑗)|
𝜌𝑠−1(𝑥, 𝜕Ω𝑗)

(︂
1 − 𝜌𝑠(𝑥, 𝜕Ω𝑗)

𝜌𝑠(Ω)

)︂
𝑑𝑥.

Summing up these inequalities over 𝑚 ∈ {1, 2, . . . ,𝑚𝑗}, we get:∫︁
Ω𝑗

|𝑢(𝑥)|
𝜌𝑠(𝑥, 𝜕Ω𝑗)

(︂
1 +

𝜌𝑠(𝑥, 𝜕Ω𝑗)

(𝑠− 1)𝜌𝑠(Ω)

)︂
𝑑𝑥 6

1

𝑠− 𝑛

∫︁
Ω𝑗

|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω𝑗)|
𝜌𝑠−1(𝑥, 𝜕Ω𝑗)

(︂
1 − 𝜌𝑠(𝑥, 𝜕Ω𝑗)

𝜌𝑠(Ω)

)︂
𝑑𝑥.

Finally, passing to the limit as 𝑗 → ∞ in this inequality and using Theorem 2.1 and Lebesgue theorem
on dominated convergence, we arrive at the inequality∫︁

Ω

|𝑢(𝑥)|
𝜌𝑠(𝑥, 𝜕Ω)

(︂
1 +

𝜌𝑠(𝑥, 𝜕Ω)

(𝑠− 1)𝜌𝑠(Ω)

)︂
𝑑𝑥 6

1

𝑠− 𝑛

∫︁
Ω

|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω)|
𝜌𝑠−1(𝑥, 𝜕Ω)

(︂
1 − 𝜌𝑠(𝑥, 𝜕Ω)

𝜌𝑠(Ω)

)︂
𝑑𝑥,

which is equivalent to (3.2). This completes the proof.

Proof of Theorem 3.2. We let

𝐽(𝑢) =
𝜌−𝑠(Ω)

𝑠− 1

∫︁
Ω

|𝑢(𝑥)|𝑑𝑥, 𝑐 =
1

𝑠− 𝑛
,

𝑤1(𝑥) =
1

𝜌𝑠(𝑥, 𝜕Ω)
, 𝑤2(𝑥) =

1

𝜌𝑠−1(𝑥, 𝜕Ω)

(︂
1 − 𝜌𝑠(𝑥, 𝜕Ω)

𝜌𝑠(Ω)

)︂
.

Applying the last inequality from the proof of Theorem 3.1 and Lemma 3.1, we obtain the following
statement: for each real-valued function 𝑢 ∈ 𝐶1

0 (Ω) the inequality∫︁
Ω

|𝑢(𝑥)|𝑝

𝜌𝑠(𝑥, 𝜕Ω)

(︂
1 +

𝑝𝜌𝑠(𝑥, 𝜕Ω)

(𝑠− 1)𝜌𝑠(Ω)

)︂
𝑑𝑥 6

𝑝𝑝

(𝑠− 𝑛)𝑝

∫︁
Ω

|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω)|𝑝

𝜌𝑠−𝑝(𝑥, 𝜕Ω)

(︂
1 − 𝜌𝑠(𝑥, 𝜕Ω)

𝜌𝑠(Ω)

)︂𝑝

𝑑𝑥

holds. This implies inequality (3.3) of Theorem 3.2 since 𝑝 > 1, 𝑠 > 𝑛 and(︂
1 − 𝜌𝑠(𝑥, 𝜕Ω)

𝜌𝑠(Ω)

)︂𝑝

6 1 − 𝜌𝑠𝑝(𝑥, 𝜕Ω)

𝜌𝑠𝑝(Ω)
, ∀𝑥 ∈ Ω.



HARDY TYPE INEQUALITIES . . . 13

The latter inequality is reduced to an elementary inequality (1 − 𝑡)𝑝 6 1 − 𝑡𝑝 for 𝑡 ∈ [0, 1], since

0 < 𝑡 :=
𝜌𝑠(𝑥, 𝜕Ω)

𝜌𝑠(Ω)
6 1

for each point 𝑥 ∈ Ω.

Proof of Theorem 3.3. We shall need geometric constructions given in the proof of Theorem 3.1.
Namely, we choose a real-valued function 𝑢 ∈ 𝐶1

0 (Ω) with a compact support 𝐾 ⊂ Ω, construct a
sequence of open sets Ω𝑗 formed by the cubes such that

Ω𝑗 := Ω(ℎ𝑗),

where ℎ𝑗 = ℎ/2𝑗−1, 𝑗 ∈ N, and

Ω =
∞⋃︁
𝑗=1

Ω𝑗 , 𝐾 ⊂ Ω𝑗 ⊂ Ω𝑗+1 (∀𝑗 ∈ N).

Then, for a fixed 𝑗, we consider a partition of the sets 𝜕Ω𝑗 and Ω𝑗 into subsets 𝐺𝑗𝑚 and 𝑊 (𝐺𝑗𝑚).
In the proof of Theorem 3.1 we obtained 𝑛 different formulae for the integrals over the sets 𝑊 (𝐺𝑗𝑚)
depending on the choice of the coordinate system. Employing these formulae for the integrals over
the sets 𝑊 (𝐺𝑗𝑚) in the case 𝐹 (𝑥) = |𝑢(𝑥)|𝑟−𝑛 and applying the inequality from Lemma 3.3 with
𝑎 = 𝜙𝑛−𝑘(𝑦, 𝜔), 𝑏 = 𝜌(Ω) > 𝜌(Ω𝑗) > 𝑎, for internal integrals we obtain the inequalities

𝜙𝑛−1(𝑦, 𝜔0)∫︁
0

|𝑢(𝑥)|
𝑟𝑛

𝑑𝑟 6

𝜙𝑛−1(𝑦, 𝜔0)∫︁
0

|𝑢′𝑟(𝑥)|
𝑟𝑠−1

ln

(︂
𝜌(Ω)

𝑟

)︂
𝑑𝑟,

𝜙𝑛−𝑘(𝑦, 𝜔)∫︁
0

|𝑢(𝑥)|
𝑟𝑛−𝑘+1

𝑑𝑟 6

𝜙𝑛−𝑘(𝑦, 𝜔)∫︁
0

|𝑢′𝑟(𝑥)|
𝑟𝑛−𝑘

ln

(︂
𝜌(Ω)

𝑟

)︂
𝑑𝑟,

𝜙0(𝑥0, 𝜔)∫︁
0

|𝑢(𝑥)|
𝑟

𝑑𝑟 6

𝜙0(𝑥0, 𝜔)∫︁
0

|𝑢′𝑟(𝑥)| ln
(︂
𝜌(Ω)

𝑟

)︂
𝑑𝑟

in the cases 𝑘 = 1, 2 6 𝑘 6 𝑛 − 1, 𝑘 = 𝑛, respectively. Integrating with respect to external variables
and taking into consideration identities 𝑟 = 𝜌(𝑥, 𝜕Ω𝑗) and (3.6), we obtain∫︁

𝑊 (𝐺𝑗𝑚)

|𝑢(𝑥)|
𝜌𝑛(𝑥, 𝜕Ω𝑗)

𝑑𝑥 6
∫︁

𝑊 (𝐺𝑗𝑚)

|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω𝑗)|
𝜌𝑛−1(𝑥, 𝜕Ω𝑗)

ln

(︂
𝜌(Ω)

𝜌(𝑥, 𝜕Ω𝑗)

)︂
𝑑𝑥.

Summing up these inequalities over 𝑚 ∈ {1, 2, . . . ,𝑚𝑗}, we get:∫︁
Ω𝑗

|𝑢(𝑥)|
𝜌𝑛(𝑥, 𝜕Ω𝑗)

𝑑𝑥 6
∫︁
Ω𝑗

|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω𝑗)|
𝜌𝑛−1(𝑥, 𝜕Ω𝑗)

ln

(︂
𝜌(Ω)

𝜌(𝑥, 𝜕Ω𝑗)

)︂
𝑑𝑥.

We pass to the limit as 𝑗 → ∞ in this inequality and use Theorem 2.1 and Lebesgue theorem on
dominated convergence. Then we get the desired inequality (3.4) for the case 𝑝 = 1. Applying
Lemma 3.1, we arrive at the inequality (3.4) for the case 𝑝 > 1. The proof is complete.

Proof of Theorem 3.4. We again use geometric constructions made in the proof of Theorem 3.1.
We fix a real-valued function 𝑢 ∈ 𝐶1

0 (Ω) with a compact support 𝐾 ⊂ Ω and we construct a
sequence of open sets Ω𝑗 formed by the cubes. Then we employ the formulae for the integrals over the
sets 𝑊 (𝐺𝑗𝑚) depending on the choice of the coordinate system for the case

𝐹 (𝑥) = |𝑢(𝑥)|𝑟−𝑛 ln−2 𝑏𝑒

𝑟
.

We apply the inequality of Lemma 3.4 with

𝑎 = 𝜙𝑛−𝑘(𝑦, 𝜔), 𝑏 = 𝜌(Ω) > 𝜌(Ω𝑗) > 𝑎
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for the corresponding internal integrals. Then we arrive at the inequalities

𝜙𝑛−1(𝑦, 𝜔0)∫︁
0

|𝑢(𝑥)|
𝑟𝑛 ln2 𝑒𝜌(Ω)

𝑟

𝑑𝑟 6

𝜙𝑛−1(𝑦, 𝜔0)∫︁
0

|𝑢′𝑟(𝑥)|
𝑟𝑛−1

𝑑𝑟,

𝜙𝑛−𝑘(𝑦, 𝜔)∫︁
0

|𝑢(𝑥)|
𝑟𝑛−𝑘+1 ln2 𝑒𝜌(Ω)

𝑟

𝑑𝑟 6

𝜙𝑛−𝑘(𝑦, 𝜔)∫︁
0

|𝑢′𝑟(𝑥)|
𝑟𝑛−𝑘

𝑑𝑟,

𝜙0(𝑥0, 𝜔)∫︁
0

|𝑢(𝑥)|
𝑟 ln2 𝑒𝜌(Ω)

𝑟

𝑑𝑟 6

𝜙0(𝑥0, 𝜔)∫︁
0

|𝑢′𝑟(𝑥)|𝑑𝑟,

corresponding to the cases 𝑘 = 1, 2 6 𝑘 6 𝑛 − 1, 𝑘 = 𝑛. Integrating with respect to the external
variables and taking into consideration the identity 𝑟 = 𝜌(𝑥, 𝜕Ω𝑗) and (3.6), we obtain:∫︁

𝑊 (𝐺𝑗𝑚)

|𝑢(𝑥)|
𝜌𝑛(𝑥, 𝜕Ω𝑗) ln2 𝑒𝜌(Ω)

𝜌(𝑥,𝜕Ω𝑗)

𝑑𝑥 6
∫︁

𝑊 (𝐺𝑗𝑚)

|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω𝑗)|
𝜌𝑛−1(𝑥, 𝜕Ω𝑗)

𝑑𝑥.

Summing up these inequalities in 𝑚 ∈ {1, 2, . . . ,𝑚𝑗}, we get:∫︁
Ω𝑗

|𝑢(𝑥)|
𝜌𝑛(𝑥, 𝜕Ω𝑗) ln2 𝑒𝜌(Ω)

𝜌(𝑥,𝜕Ω𝑗)

𝑑𝑥 6
∫︁
Ω𝑗

|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω𝑗)|
𝜌𝑛−1(𝑥, 𝜕Ω𝑗)

𝑑𝑥.

We pass to the limit as 𝑗 → ∞ in this inequality employing Theorem 2.1 and Lebesgue theorem
on dominated convergence. Then we obtain desired inequality (3.5) for the case 𝑝 = 1. Applying
Lemma 3.1, we arrive at inequality (3.5) for the case 𝑝 > 1. This completes the proof of the theorem.

4. Example and open problem

Let 𝑐𝑝(𝑠,Ω) and 𝑐*𝑝(𝑠,Ω) be the constants in inequalities (1.2) and (1.3) defined by formulae (1.4)
and (1.5), respectively.

For each convex domain Ω ⊂ R𝑛, Ω ̸= R𝑛, the identities

𝑐𝑝(𝑠,Ω) = 𝑐*𝑝(𝑠,Ω) =
(𝑠− 1)𝑝

𝑝𝑝

hold due to Theorem 2.2, the estimate 𝑐𝑝(𝑠,Ω) 6 (𝑠−1)𝑝/𝑝𝑝 from paper [14] and the estimate 𝑐*𝑝(𝑠,Ω) 6
𝑐𝑝(𝑠,Ω). In particular, we have:

𝑐2(2,Ω) = 𝑐*2(2,Ω) =
1

4
.

Let us adduce an example, which shows that these identities are true for some non-convex domain.
We consider a circular annulus

𝐴 = 𝐴(𝑟,𝑅) = {𝑧 ∈ C : 𝑟 < |𝑧| < 𝑅}, 0 < 𝑟 < 𝑅 < ∞,

with the conformal modulus 𝑀(𝐴) = (2𝜋)−1 ln 𝑅
𝑟 . By Lemma 1 in [15] and formula (3.6), the identity

holds:
𝑐2(2, 𝐴) = 𝑐*2(2, 𝐴) for 𝐴 = 𝐴(𝑟,𝑅).

In [15], the exact values of 𝑐2(2, 𝐴) were calculated depending on the modulus 𝑀(𝐴). It turned out
that

lim
𝑀(𝐴)→∞

𝑐2(2, 𝐴) = 0, 𝑐2(2, 𝐴) =
1

4
for the case 𝑀(𝐴) ∈ (0,𝑀*],

0 < 𝑐2(2, 𝐴) <
1

4
for the case 𝑀(𝐴) ∈ (𝑀*,∞),

where the critical values of the modulus is 𝑀* ≈ 0.57298.
We note that

𝑀* = (2𝜋)−1 ln

(︂
2

𝑞*
− 1

)︂
.
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The number 𝑞* ≈ 0.05318 is determined as follows. We consider the Gauss hypergeometric function

𝐹 (𝛼, 𝛽, 1; 𝜁) = 1 +
∞∑︁
𝑘=1

𝜁𝑘

(𝑘!)2

𝑘−1∏︁
𝑗=0

(𝛼 + 𝑗)(𝛽 + 𝑗), |𝜁| < 1,

and its analytic continuation in the domain C ∖ [1,∞). As it was shown in [15], the formula

𝐹

(︂
1 + 𝑖

2
,
1 − 𝑖

2
, 1; 𝜁

)︂
=

2 cosh 𝜋
2

𝜋

∞∫︁
0

cos 𝑡 𝑑𝑡

(cosh2 𝑡− 𝜁)
1
2

, 𝜁 ∈ C ∖ [1,∞),

holds true and the equation

𝑋(𝑞) :=
𝐹 ′

(︁
1+𝑖
2 , 1−𝑖

2 , 1;−1−𝑞
𝑞

)︁
𝑞 𝐹

(︁
1+𝑖
2 , 1−𝑖

2 , 1;−1−𝑞
𝑞

)︁ −
𝐹 ′

(︁
1+𝑖
2 , 1−𝑖

2 , 1; 1−𝑞
2−𝑞

)︁
(2 − 𝑞)𝐹

(︁
1+𝑖
2 , 1−𝑖

2 , 1; 1−𝑞
2−𝑞

)︁ =
1

1 − 𝑞

has a root 𝑞 = 𝑞* ∈ (0, 1) such that

𝑞* = min
𝑞∈(0,1)

{𝑞 : 𝑋(𝑞)(1 − 𝑞) = 1 and 𝑋(𝑡)(1 − 𝑡) 6 1 ∀𝑡 ∈ [𝑞, 1)} ≈ 0.05318.

It is easy to find that the critical value of the modulus 𝑀* corresponds to an easily remembered critical
value of the quotient of the radii:

𝑐* = (𝑅/𝑟)* = exp(2𝜋𝑀*) ≈ 36.6.

Therefore, the following proposition is true.

Proposition 4.1. Let 𝐴(𝑟,𝑅) = {𝑧 ∈ C : 𝑟 < |𝑧| < 𝑅}. If

1 <
𝑅

𝑟
6 𝑐* ≈ 36.6,

then 𝑐2(2, 𝐴(𝑟,𝑅)) = 𝑐*2(2, 𝐴(𝑟,𝑅)) = 1/4.

In conclusion we mention one of open problems.

Problem. Assume that Ω ⊂ R2 is an arbitrary simply-connected domain obeying the only condition

Ω ̸= R2. Whether there exists a constant 𝐶*
2 > 0 such that the inequality∫︁

Ω

|∇𝑢(𝑥) · ∇𝜌(𝑥, 𝜕Ω)|2 𝑑𝑥 > 𝐶*
2

∫︁
Ω

|𝑢(𝑥)|2 𝑑𝑥
𝜌2(𝑥, 𝜕Ω)

holds for all 𝑢 ∈ 𝐶1
0 (Ω)?

If the answer to the above question is positive, then the next step to obtain similar inequalities in
domains Ω ⊂ R2 with uniformly perfect boundaries.
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