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DIRICHLET BOUNDARY VALUE PROBLEM FOR EQUATIONS

DESCRIBING FLOWS OF A NONLINEAR VISCOELASTIC

FLUID IN A BOUNDED DOMAIN

M.A. ARTEMOV, YU.N. BABKINA

Abstract. We consider a boundary value problem for a mathematical model describing a
stationary isotermic flow of a nonlinear viscoelastic liquid with a varying viscosity depending
on the shear rate in a bounded three- or two-dimensional domain with a sufficiently smooth
boundary. We assume that the viscosity function is continuous and bounded. The consid-
ered model is a system of strongly nonlinear third order partial differential equations. The
boundary of the flow region is subject to the homogeneous Dirichlet boundary condition,
which corresponds to the standard condition of adhesion on the solid walls of a vessel. This
boundary value problem is considered in a weak (generalized) sense. A weak solution is a
pair of functions “velocity-pressure” satisfying the equations of motion in the distribution
sense. Using the regularization method via introducing terms with an additional viscosity
into the equations, we construct a family of auxiliary approximating problems. We provide
an interpretation of the problems of this family in the form of operator equation with a
continuous nonlinearoperator satisfying the 𝛼-monotonicity condition. On the base of a
solvability theorem for equations with 𝛼-operators, we prove the existence of at least one
solution for each positive value of the additional viscosity. We obtain estimates for the
norms of solutions independent of the additional viscosity parameter. The solution to the
original boundary value problem is obtained as the limit of the sequence of solutions to
approximating problems as the additional viscosity tends to zero. The passage to the limit
is carried out on the base of well-known results on the compactness of the embedding of
Sobolev spaces and Lebesgue theorem on dominated convergence. In addition, we establish
an energy-type estimate for the vector velocity function.

Keywords: Dirichlet boundary value problem, existence theorem, weak solution, 𝛼-
operator, regularization method, additional viscosity, nonlinear viscoelastic fluid, polymer
solution.
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1. Introduction

It is commonly believed that the following system of equations describes well isothermal flows
of low-concentrated water solutions of polymers [1]:

𝜕𝑣

𝜕𝑡
+

𝑛∑︁
𝑖=1

𝑣𝑖
𝜕𝑣

𝜕𝑥𝑖

− divx

[︂
𝜈ℰ(𝑣) + 𝜅

𝜕ℰ(𝑣)

𝜕𝑡
+ 𝜅

𝑛∑︁
𝑖=1

𝑣𝑖
𝜕ℰ(𝑣)

𝜕𝑥𝑖

]︂
+ ∇x𝜋 = 𝑓 , (1.1)

divx 𝑣 :=
𝑛∑︁

𝑖=1

𝜕𝑣𝑖
𝜕𝑥𝑖

= 0, (1.2)

M.A. Artemov, Yu.N. Babkina, Dirichlet boundary value problem for equations describing

flows of a nonlinear viscoelastic fluid in a bounded domain.

© Artemov M.A., Babkina Yu.N. 2021.

Submitted July 19, 2020.

17

https://doi.org/10.13108/2021-13-3-17


18 M.A. ARTEMOV, YU.N. BABKINA

where 𝑛 is the dimension of the space, 𝑛 = 2, 3; 𝑥1, . . . , 𝑥𝑛 are spatial coordinates; 𝑡 is the
time; 𝑣 is a shear rate; 𝜋 is a pressure; 𝑓 is a density of external forces; ℰ(𝑣) = (ℰ𝑖,𝑗(𝑣)) is a

strain velocity tensor, ℰ𝑖,𝑗(𝑣) = 1
2
( 𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗
𝜕𝑥𝑖

); 𝜈 is a kinematic viscousity coefficient, 𝜈 > 0; 𝜅 is

a viscosity relaxation coefficient, 𝜅 > 0.
The first results on solvability of the motion model of an incompressible viscous medium with

polymer additives were obtained by A.P. Oskolkov [2]-[4] under the condition of adhesion at the
boundary of the flow region. The case of a weakly compressible polymer fluid was investigated
by G.A. Sviridyuk [5]. The case when the flow domain can be unbounded was considered in [6].
The existence and uniqueness of a 𝑘-weak solution to the initial-boundary value problem for
model (1.1), (1.2) under the Navier slip boundary condition were studied in [7]. Existence
theorems for other types of inhomogeneous boundary value problems were also proved [8]-[11]
for various simplified versions of the motion equations (1.1). The boundary value problem
describing heat transfer in a flow of polymer solution was studied in [12].
In the present paper we consider a generalization of the model of water polymer solutions.

In contrast to the above works, the viscosity 𝜈 is assumed to be not a constant, but depending
on the shear rate: 𝜈 = 𝜈(|𝒫ℰ(𝑣)|), where 𝒫 is some operator. If 𝒫 coincides with the identity
mapping, then we obtain a classical nonlinear viscoelastic liquid [13]. In the case when 𝒫 is an
averaging operator, we get a model of nonlocal type [14].
We dwell on the case of a stationary flow, that is, as the quantities 𝑣, 𝜋 and 𝑓 are independent

of the time 𝑡 and we assume that the liquid flows inside a bounded domain Ω ⊂ R𝑛. Then we
arrive at the following system of equations in Ω:

𝑛∑︁
𝑖=1

𝑣𝑖
𝜕𝑣

𝜕𝑥𝑖

− divx

[︂
𝜈(|𝒫ℰ(𝑣)|)ℰ(𝑣) + 𝜅

𝑛∑︁
𝑖=1

𝑣𝑖
𝜕ℰ(𝑣)

𝜕𝑥𝑖

]︂
+ ∇x𝜋 = 𝑓 , divx 𝑣 = 0. (1.3)

On the boundary of Ω, the Dirichlet condition is imposed and this corresponds to the standard
adhesion condition on solid walls of a vessel:

𝑣 = 0 on 𝜕Ω. (1.4)

The main aim of this work is to find conditions ensuring the solvability of boundary value
problem (1.3), (1.4). With the help of the regularization method based on introducing “van-
ishing viscosity” [4], the theorem on the solvability of equations with 𝛼-operators [15] and the
passage to the limit, we prove that this problem has at least one weak solution (𝑣, 𝜋) in the
Cartesian product H1(Ω)×D′(Ω) under the assumption that the viscosity function is continu-
ous and bounded, the operator 𝒫ℰ is strongly continuous, and the boundary of the domain Ω
has the smoothness 𝒞3.
We mention that in work [16], on base of Cosserat theory, there was studied a one-dimensional

version of a model of a non-stationary flow of a nonlinear viscoelastic liquid of this type.

2. Weak solutions of boundary value problem (1.3), (1.4)
and main result of work

We begin with introducing notations, operators and functional spaces.
As usually, N := {1, 2, . . . }, R := (−∞,+∞) and R+ := [0,+∞).
By 𝑋 : 𝑌 we denote the scalar product of real 𝑛 × 𝑛-matrices 𝑋 = (𝑋𝑖,𝑗) and 𝑌 = (𝑌𝑖,𝑗),

that is,

𝑋 : 𝑌 :=
𝑛∑︁

𝑖,𝑗=1

𝑋𝑖,𝑗𝑌𝑖,𝑗.
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Depending on the context, the symbol | · | denotes either an absolute value of a real number
or the Euclidean norm of a vector or matrix; in particular,

|𝑋| := (𝑋 : 𝑋)1/2.

We define differential operators:

∇x :=

(︂
𝜕

𝜕𝑥1

, · · · , 𝜕

𝜕𝑥𝑛

)︂
, ∇2

x := ∇x · ∇x = ∆x =
𝑛∑︁

𝑖=1

𝜕2

𝜕𝑥2
𝑖

,

∇3
x := ∇x(∇2

x) =

(︂
𝜕

𝜕𝑥1

∇2
x, . . . ,

𝜕

𝜕𝑥𝑛

∇2
x

)︂
, . . . , ∇𝑚

x := ∇x(∇𝑚−1
x ).

Let
D(Ω) := {𝜑 : Ω → R | 𝜑 ∈ 𝐶∞(Ω), supp𝜑 ⊂ Ω}.

By D′(Ω) we denote the space of distributions on Ω.
We shall employ usual notations for the Lebesgue spaces 𝐿𝑝(Ω), 𝑝 ∈ [1,∞), and for Sobolev

spaces 𝐻𝑚(Ω), 𝐻𝑚
0 (Ω), 𝑚 ∈ N, of functions defined on the domain Ω. The norms in these

spaces are defined in a standard way [17]. The spaces of vector functions are always denoted
by a bold font: L𝑝(Ω), H𝑚(Ω), etc. The dual space for 𝐻𝑚

0 (Ω) is denoted by 𝐻−1(Ω).
Let

𝒱(Ω) := {𝜑 : Ω → R𝑛 | 𝜑 ∈ 𝐶∞(Ω), supp𝜑 ⊂ Ω, divx𝜑 = 0}.
The closure of the set of vector functions 𝒱(Ω) in the Sobolev spaces H1(Ω), H2(Ω) and H3(Ω)
gives three main spaces which will be employed in studying boundary value problem (1.3),
(1.4); we denote them respectively by V1(Ω), V2(Ω) and V3(Ω).
In the space V1(Ω) we introduce a scalar product and a norm:

(𝑣,𝑤)V1(Ω) :=

∫︁
Ω

ℰ(𝑣) : ℰ(𝑤)𝑑𝑥, ‖𝑣‖V1(Ω) :=

(︂∫︁
Ω

|ℰ(𝑣)|2 𝑑𝑥
)︂1/2

.

The Korn inequality [13, Ch. I, Sect. 2.2]

‖𝑣‖H1(Ω) 6 𝐶‖ℰ(𝑣)‖L2(Ω), 𝐶 = const, ∀𝑣 ∈ H1
0(Ω),

playing a fundamental role in many problems of plasticity and elasticity, implies that the above
introduced norm ‖ · ‖V1(Ω) is equivalent to the norm ‖ · ‖H1(Ω).
In the space V3(Ω) we introduce a scalar product and a norm by the following identities:

(𝑣,𝑤)V3(Ω) :=

∫︁
Ω

∇3
x𝑣 : ∇3

x𝑤𝑑𝑥+

∫︁
Ω

∇2
x𝑣 · ∇2

x𝑤𝑑𝑥,

‖𝑣‖V3(Ω) :=

(︂∫︁
Ω

|∇3
x𝑣|2 𝑑𝑥+

∫︁
Ω

|∇2
x𝑣|2 𝑑𝑥

)︂1/2

.

Lemma 2.1. Let 𝜕Ω ∈ 𝒞3. Then the norms ‖ · ‖V3(Ω) and ‖ · ‖H3(Ω) are equivalent, that is,
there exist positive constants 𝐾1 and 𝐾2 such that

𝐾1‖𝑣‖H3(Ω) 6 ‖𝑣‖V3(Ω) 6 𝐾2‖𝑣‖H3(Ω), ∀𝑣 ∈ V3(Ω). (2.1)

Proof. The right inequality in (2.1) is obviously implied by the definition of the norm in the
Sobolev space H3(Ω).
We note that by classical results on properties of solutions to stationary Stokes equations

subject to the Dirichlet condition, see, for instance, [18, Ch. I, Sect. 2], the following estimate
holds:

‖𝑣‖H3(Ω) 6 ̃︀𝐾1‖PL(∆x𝑣)‖H1(Ω), ∀𝑣 ∈ V3(Ω), (2.2)
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where PL is the Leray projector, ̃︀𝐾1 is a positive constant.
Since

PL(∆x𝜑) = ∆x𝜑

for each vector function 𝜑 ∈ 𝒱(Ω), then inequality (2.2) implies that

‖𝜑‖H3(Ω) 6 ̃︀𝐾1‖∆x𝜑‖H1(Ω), ∀𝜑 ∈ 𝒱(Ω).

The latter inequality is extended by continuity on the closure 𝒱(Ω) in H3(Ω) that leads us to
the relation

‖𝑣‖H3(Ω) 6 ̃︀𝐾1‖∆x𝑣‖H1(Ω), ∀𝑣 ∈ V3(Ω).

This implies the left inequality in (2.1) with 𝐾1 = 1/ ̃︀𝐾1. The proof is complete.

Let us describe conditions imposed for the data of model (1.3). We assume that

(i) the surface 𝜕Ω has the smoothness of class 𝒞3;

(ii) the inclusion holds 𝑓 ∈ H−1(Ω);

(iii) the viscosity 𝜈 : R+ → R+ is continuous and there exist “limiting Newton viscosities” 𝜈0
and 𝜈1, that is, 0 < 𝜈0 6 𝜈(𝜏) 6 𝜈1 for each 𝜏 ∈ R+;

(iv) the operator 𝒫ℰ : V1(Ω) → L2(Ω) is strongly continuous, that is, the weak convergence
𝑢𝑘 ⇀ 𝑢0 in the space V1(Ω) implies the strong convergence 𝒫ℰ(𝑢𝑘) → 𝒫ℰ(𝑢0) in L2(Ω)
as 𝑘 → ∞.

Remark 2.1. As an example of the operator 𝒫 obeying property (iv), we can take the av-
eraging operator [19, Ch. I, Sect. 1]; the usage of this operator in hydrodynamical models goes
back to works by O.A. Ladyzhenskaya.

Definition 2.1. A weak solution of boundary value problem (1.3), (1.4) is a pair (𝑣, 𝜋) ∈
V1(Ω) ×D′(Ω) satisfying the first equation in (1.3) in the sense of distributions, that is,

−
𝑛∑︁

𝑖=1

∫︁
Ω

𝑣𝑖𝑣 · 𝜕𝜙
𝜕𝑥𝑖

𝑑𝑥+

∫︁
Ω

𝜈(|𝒫ℰ(𝑣)|)ℰ(𝑣) : ℰ(𝜙)𝑑𝑥− 𝜅
𝑛∑︁

𝑖=1

∫︁
Ω

𝑣𝑖ℰ(𝑣) :
𝜕ℰ(𝜙)

𝜕𝑥𝑖

𝑑𝑥

− ⟨𝜋, divx𝜙⟩D′(Ω)×D(Ω) = ⟨𝑓 , 𝜙⟩H−1(Ω)×H1
0(Ω)

for each vector function 𝜙 ∈ D(Ω).

The main result of the present work is formulated as the following existence theorem.

Theorem 2.1. Under Conditions (i)–(iv), problem (1.3), (1.4) possesses at least one weak
solution (𝑣, 𝜋) ∈ V1(Ω) ×D′(Ω) and∫︁

Ω

𝜈(|𝒫ℰ(𝑣)|)|ℰ(𝑣)|2 𝑑𝑥 6 ⟨𝑓 , 𝑣⟩H−1(Ω)×H1
0(Ω). (2.3)

The proof of this theorem is given in Section 5.

3. Solvability of solutions with 𝛼-operators

Following [15, Ch. 2], we recall some preliminaries on 𝛼-operators. The content of this
section plays an important role in the proof of Theorem 2.1.
Let E be a real reflexive separable Banach space with the norm ‖ · ‖E and E* be a dual space

for E.
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Definition 3.1. An operator A : E → E* satisfies 𝛼-condition if for an arbitrary sequence
{u𝑘}∞𝑘=1 ⊂ E, the weak convergence u𝑘 ⇀ u0 and the inequality

lim
𝑘→∞

⟨A(u𝑘),u𝑘 − u0⟩E*×E 6 0

implies the strong convergence u𝑘 → u0 in the norm of E.

For the sake of brevity, an operator obeying 𝛼-condition will be sometimes called 𝛼-operator.

Lemma 3.1. If A : E → E* is an 𝛼-operator, K : E → E* is a strongly continuous operator,
then the sum A + K satisfies 𝛼-condition.

Lemma 3.2. If Q : E → E* is a strongly monotone operator, that is,

⟨Q(u) −Q(v),u− v⟩E*×E > 𝐶‖u− v‖2E, 𝐶 = const ∀u,v ∈ E,

then Q is an 𝛼-operator.

Theorem 3.1 (Acute angle theorem). Let D be an open bounded subset E and 0 ∈ D.
If the mapping A : D ⊂ E → E* is demi-continuous and bounded, satisfies 𝛼-condition and the
inequality

⟨A(u) − h,u⟩E*×E > 0, ∀u ∈ 𝜕D,

holds, then the equation A(u) = h has at least one solution uh ∈ D.

4. Solvability of family of regularized problems

Following the lines of [4], see also [6], we consider a one-parameter family of regularized
problem: for a given 𝑚 ∈ N, we need to find a vector function 𝑣𝑚 ∈ V3(Ω) such that

1

𝑚

∫︁
Ω

∇3
x𝑣𝑚 : ∇3

x𝑤𝑑𝑥+
1

𝑚

∫︁
Ω

∇2
x𝑣𝑚 · ∇2

x𝑤𝑑𝑥−
𝑛∑︁

𝑖=1

∫︁
Ω

𝑣𝑚𝑖𝑣𝑚 · 𝜕𝑤
𝜕𝑥𝑖

𝑑𝑥

+

∫︁
Ω

𝜈(|𝒫ℰ(𝑣𝑚)|)ℰ(𝑣𝑚) : ℰ(𝑤)𝑑𝑥

− 𝜅

𝑛∑︁
𝑖=1

∫︁
Ω

𝑣𝑚𝑖ℰ(𝑣𝑚) :
𝜕ℰ(𝑤)

𝜕𝑥𝑖

𝑑𝑥 = ⟨𝑓 , 𝑤⟩H−1(Ω)×H1
0(Ω)

(4.1)

for each 𝑤 ∈ V3(Ω).

Lemma 4.1. Under Conditions (i)–(iv), problem (4.1) has at least one solution 𝑣𝑚 ∈ V3(Ω)
and the inequality

1

𝑚
‖𝑣𝑚‖2V3(Ω) + 𝜈0‖𝑣𝑚‖2V1(Ω) 6 ⟨𝑓 ,𝑣𝑚⟩H−1(Ω)×H1

0(Ω) (4.2)

holds.
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Proof. We introduce operators A𝑚, B1, B2, B3, B and J:

A𝑚 : V3(Ω) → V*
3(Ω),

⟨A𝑚(𝑣),𝑤⟩V*
3(Ω)×V3(Ω) :=

1

𝑚

∫︁
Ω

∇3
x𝑣 : ∇3

x𝑤𝑑𝑥+
1

𝑚

∫︁
Ω

∇2
x𝑣 · ∇2

x𝑤𝑑𝑥,

B1 : V2(Ω) → V*
3(Ω), ⟨B1(𝑣),𝑤⟩V*

3(Ω)×V3(Ω) := −
𝑛∑︁

𝑖=1

∫︁
Ω

𝑣𝑖𝑣 · 𝜕𝑤
𝜕𝑥𝑖

𝑑𝑥,

B2 : V2(Ω) → V*
3(Ω), ⟨B2(𝑣),𝑤⟩V*

3(Ω)×V3(Ω) :=

∫︁
Ω

𝜈(|𝒫ℰ(𝑣)|)ℰ(𝑣) : ℰ(𝑤)𝑑𝑥,

B3 : V2(Ω) → V*
3(Ω), ⟨B3(𝑣),𝑤⟩V*

3(Ω)×V3(Ω) := −𝜅

𝑛∑︁
𝑖=1

∫︁
Ω

𝑣𝑖ℰ(𝑣) :
𝜕ℰ(𝑤)

𝜕𝑥𝑖

𝑑𝑥,

B : V2(Ω) → V*
3(Ω), B := B1 + B2 + B3,

J : V3(Ω) → V2(Ω), J(𝑣) := 𝑣

and rewrite problem (4.1) in an equivalent form:

A𝑚(𝑣𝑚) + B ∘ J(𝑣𝑚) = 𝑓 . (4.3)

It is clear that the operator A𝑚 is continuous and the identities holds:

⟨A𝑚(𝑣) −A𝑚(𝑢),𝑣 − 𝑢⟩ =
1

𝑚

∫︁
Ω

|∇3
x(𝑣 − 𝑢)|2 𝑑𝑥+

1

𝑚

∫︁
Ω

|∇2
x(𝑣 − 𝑢)|2 𝑑𝑥

=
1

𝑚
‖𝑣 − 𝑢‖2V3(Ω).

Then, according to Lemma 3.2, this operator satisfies 𝛼-condition.
Since the embedding 𝐻3(Ω) ⊂ 𝐻2(Ω) is compact, the same is true for the embedding

V3(Ω) ⊂ V2(Ω). This is why the operator J is strongly continuous.
We are going to show that the operator B is continuous. First we consider the first term B1.

We choose a sequence of vector functions {𝑢ℓ}∞ℓ=1 such that 𝑢ℓ → 𝑢0 strongly in V2(Ω) as
ℓ → ∞. In particular this implies that 𝑢ℓ → 𝑢0 in the norm of the space L4(Ω), see [17, Ch.
6]. We need to establish that B1(𝑢ℓ) → B1(𝑢0) strongly in V*

3(Ω) as ℓ → ∞. Let 𝑤 be an
arbitrary vector function in the space V3(Ω). Since

⟨B1(𝑢ℓ) −B1(𝑢0),𝑤⟩V*
3(Ω)×V3(Ω) = −

𝑛∑︁
𝑖=1

∫︁
Ω

𝑢ℓ𝑖𝑢ℓ ·
𝜕𝑤

𝜕𝑥𝑖

𝑑𝑥+
𝑛∑︁

𝑖=1

∫︁
Ω

𝑢0𝑖𝑢0 ·
𝜕𝑤

𝜕𝑥𝑖

𝑑𝑥

=
𝑛∑︁

𝑖=1

∫︁
Ω

(𝑢0𝑖 − 𝑢ℓ𝑖)𝑢ℓ ·
𝜕𝑤

𝜕𝑥𝑖

𝑑𝑥

+
𝑛∑︁

𝑖=1

∫︁
Ω

𝑢0𝑖(𝑢0 − 𝑢ℓ) ·
𝜕𝑤

𝜕𝑥𝑖

𝑑𝑥,

by Hölder inequality we get the following estimate:

|⟨B1(𝑢ℓ) −B1(𝑢0),𝑤⟩V*
3(Ω)×V3(Ω)| 6 𝐶‖𝑢ℓ − 𝑢0‖L4(Ω) max{‖𝑢𝑘‖L4(Ω) : 𝑘 = 0, 1, 2, . . . }‖𝑤‖V3(Ω),

with some constant 𝐶 independent of the index ℓ. Therefore,

‖B1(𝑢ℓ) −B1(𝑢0)‖V*
3(Ω) 6 𝐶‖𝑢ℓ − 𝑢0‖L4(Ω) max{‖𝑢𝑘‖L4(Ω) : 𝑘 = 0, 1, 2, . . . } → 0

as ℓ → ∞, that is, we have the strong convergence B1(𝑢ℓ) → B1(𝑢0) in V*
3(Ω).
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By similar arguing one can establish the continuity of the operators B2 and B3.
Thus, the sum of the operators B = B1 + B2 + B3 is continuous and the composition B∘J is

strongly continuous. Applying Lemma 3.1, we conclude that the mapping A𝑚 + B ∘ J satisfies
𝛼-condition.
We note that

⟨A𝑚(𝑣),𝑣⟩V*
3(Ω)×V3(Ω) =

1

𝑚
‖𝑣‖2V3(Ω). (4.4)

Integrating by parts, we also obtain that
𝑛∑︁

𝑖=1

∫︁
Ω

𝑣𝑖𝑣 · 𝜕𝑣
𝜕𝑥𝑖

𝑑𝑥 =
1

2

𝑛∑︁
𝑖=1

∫︁
Ω

𝑣𝑖
𝜕|𝑣|2

𝜕𝑥𝑖

𝑑𝑥

=
1

2

∫︁
𝜕Ω

(𝑣 · n)|𝑣|2 𝑑𝑥− 1

2

∫︁
Ω

(divx𝑣)|𝑣|2 𝑑𝑥 = 0,

(4.5)

𝑛∑︁
𝑖=1

∫︁
Ω

𝑣𝑖ℰ(𝑣) :
𝜕ℰ(𝑣)

𝜕𝑥𝑖

𝑑𝑥 =
1

2

𝑛∑︁
𝑖=1

∫︁
Ω

𝑣𝑖
𝜕|ℰ(𝑣)|2

𝜕𝑥𝑖

𝑑𝑥

=
1

2

∫︁
𝜕Ω

(𝑣 · n)|ℰ(𝑣)|2 𝑑𝑥− 1

2

∫︁
Ω

(divx𝑣)|ℰ(𝑣)|2 𝑑𝑥 = 0,

(4.6)

where the symbol n denotes the outward normal to the surface 𝜕Ω. This is why by Condi-
tion (iii) we get the estimate:

⟨B ∘ J(𝑣),𝑣⟩V*
3(Ω)×V3(Ω) > 𝜈0‖𝑣‖2V1(Ω). (4.7)

It follows from relations (4.4) and (4.7) that

⟨A𝑚(𝑣) + B ∘ J(𝑣),𝑣⟩V*
3(Ω)×V3(Ω) >

1

𝑚
‖𝑣‖2V3(Ω).

This easily implies the estimate

⟨A𝑚(𝑣) + B ∘ J(𝑣) − 𝑓 ,𝑣⟩V*
3(Ω)×V3(Ω) >

1

𝑚
‖𝑣‖2V3(Ω) − ⟨𝑓 ,𝑣⟩V*

3(Ω)×V3(Ω)

>
(︁ 1

𝑚
‖𝑣‖V3(Ω) − ‖𝑓‖V*

3(Ω)

)︁
‖𝑣‖V3(Ω) > 0

under the condition that
‖𝑣‖V3(Ω) > 𝑚‖𝑓‖V*

3(Ω).

Applying Theorem 3.1 to (4.3), we confirm that problem (4.1) has a solution 𝑣𝑚 in the ball
B𝑅 ⊂ V3(Ω) of radius 𝑅 for each 𝑅 > 𝑚‖𝑓‖V*

3(Ω) and centered as 0. Estimate (4.2) is obtained
by substituting 𝑤 = 𝑣𝑚 into (4.1) and taking into consideration identities (4.5) and (4.6) with
𝑣 = 𝑣𝑚. The proof is complete.

5. Proof of Theorem 2.1

We consider a sequence {𝑣𝑚}∞𝑚=1 of solutions of problems (4.1). It follows from estimate (4.2)
that

𝜈0‖𝑣𝑚‖2V1(Ω) 6 ‖𝑓‖H−1(Ω)‖𝑣𝑚‖H1
0(Ω) 6 𝐶‖𝑓‖H−1(Ω)‖𝑣𝑚‖V1(Ω), 𝐶 = const,

and hence,
‖𝑣𝑚‖V1(Ω) 6 𝐶𝜈−1

0 ‖𝑓‖H−1(Ω).

This is why, without loss of generality, we can assume that

𝑣𝑚 ⇀ 𝑣 weakly in V1(Ω) as 𝑚 → ∞, (5.1)

𝑣𝑚 → 𝑣 in the norm of L2(Ω) as 𝑚 → ∞ (5.2)
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for some vector function 𝑣 in the space V1(Ω). Here we have employed the compactness of the
embedding H1(Ω) ⊂ L2(Ω), see [17, Ch. 6].
In view of Condition (iv), we obtain:

𝒫ℰ(𝑣𝑚) → 𝒫ℰ(𝑣) in the norm of L2(Ω) as 𝑚 → ∞, (5.3)

which implies that
𝒫ℰ(𝑣𝑚𝑘

) → 𝒫ℰ(𝑣) a.e. in Ω as 𝑘 → ∞
for some subsequence {𝑚𝑘}∞𝑘=1. Without loss of generality we assume that

𝒫ℰ(𝑣𝑚) → 𝒫ℰ(𝑣) a.e. in Ω as 𝑚 → ∞.

Since the function 𝜈 is continuous, see Condition (iii), we have:

𝜈(|𝒫ℰ(𝑣𝑚)|) → 𝜈(|𝒫ℰ(𝑣)|) a.e. in Ω as 𝑚 → ∞
and therefore, ⃒⃒

𝜈(|𝒫ℰ(𝑣𝑚)|) − 𝜈(|𝒫ℰ(𝑣)|)
⃒⃒2 → 0 a.e. in Ω as 𝑚 → ∞. (5.4)

We observe that due to Condition (iii), the function 𝜈 is bounded. This is why we can apply
the Lebesgue theorem on dominated convergence to the sequence of functions

{︀⃒⃒
𝜈(|𝒫ℰ(𝑣𝑚)|)−

𝜈(|𝒫ℰ(𝑣)|)
⃒⃒2}︀∞

𝑚=1
. We then obtain that point-wise convergence (5.4) implies that

𝜈(|𝒫ℰ(𝑣𝑚)|) → 𝜈(|𝒫ℰ(𝑣)|) in the norm 𝐿2(Ω) as 𝑚 → ∞. (5.5)

Now we choose an arbitrary vector function 𝜓 ∈ 𝒱(Ω). Since 𝑣𝑚 is a solution of (4.1), we
see that

1

𝑚

∫︁
Ω

∇3
x𝑣𝑚 : ∇3

x𝜓𝑑𝑥+
1

𝑚

∫︁
Ω

∇2
x𝑣𝑚 · ∇2

x𝜓𝑑𝑥−
𝑛∑︁

𝑖=1

∫︁
Ω

𝑣𝑚𝑖𝑣𝑚 · 𝜕𝜓
𝜕𝑥𝑖

𝑑𝑥

+

∫︁
Ω

𝜈(|𝒫ℰ(𝑣𝑚)|)ℰ(𝑣𝑚) : ℰ(𝜓)𝑑𝑥

− 𝜅
𝑛∑︁

𝑖=1

∫︁
Ω

𝑣𝑚𝑖ℰ(𝑣𝑚) :
𝜕ℰ(𝜓)

𝜕𝑥𝑖

𝑑𝑥 = ⟨𝑓 , 𝜓⟩H−1(Ω)×H1
0(Ω).

After appropriated number of integration by parts in the first and second terms in the left hand
side of the above identity we find:

− 1

𝑚

∫︁
Ω

𝑣𝑚 · ∇6
x𝜓𝑑𝑥+

1

𝑚

∫︁
Ω

𝑣𝑚 · ∇4
x𝜓𝑑𝑥−

𝑛∑︁
𝑖=1

∫︁
Ω

𝑣𝑚𝑖𝑣𝑚 · 𝜕𝜓
𝜕𝑥𝑖

𝑑𝑥

+

∫︁
Ω

𝜈(|𝒫ℰ(𝑣𝑚)|)ℰ(𝑣𝑚) : ℰ(𝜓)𝑑𝑥

− 𝜅

𝑛∑︁
𝑖=1

∫︁
Ω

𝑣𝑚𝑖ℰ(𝑣𝑚) :
𝜕ℰ(𝜓)

𝜕𝑥𝑖

𝑑𝑥 = ⟨𝑓 , 𝜓⟩H−1(Ω)×H1
0(Ω).

(5.6)

Employing (5.1), (5.2) and (5.5), we pass to the limit as 𝑚 → ∞ in identity (5.6):

−
𝑛∑︁

𝑖=1

∫︁
Ω

𝑣𝑖𝑣 · 𝜕𝜓
𝜕𝑥𝑖

𝑑𝑥+

∫︁
Ω

𝜈(|𝒫ℰ(𝑣)|)ℰ(𝑣) : ℰ(𝜓)𝑑𝑥

− 𝜅
𝑛∑︁

𝑖=1

∫︁
Ω

𝑣𝑖ℰ(𝑣) :
𝜕ℰ(𝜓)

𝜕𝑥𝑖

𝑑𝑥 = ⟨𝑓 , 𝜓⟩H−1(Ω)×H1
0(Ω).

(5.7)
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By De Rham theorem, see [18, Ch. I, Sect. 1.4], identity (5.7) implies that there exists
𝜋 ∈ D′(Ω) such that the first equation in system (1.3) holds in the distribution sense. Hence,
we have established that the pair (𝑣, 𝜋) is a weak solution of boundary value problem (1.3),
(1.4).
We substitute 𝑤 = 𝑣𝑚 into (4.1). Since the third and fifth terms in the left hand side are

zero, we readily see that∫︁
Ω

𝜈(|𝒫ℰ(𝑣𝑚)|)|ℰ(𝑣𝑚)|2 𝑑𝑥 6 ⟨𝑓 ,𝑣𝑚⟩H−1(Ω)×H1
0(Ω).

Passing to the limit inferior as 𝑚 → ∞, we find that

lim
𝑚→∞

∫︁
Ω

𝜈(|𝒫ℰ(𝑣𝑚)|)|ℰ(𝑣𝑚)|2 𝑑𝑥 6 ⟨𝑓 ,𝑣⟩H−1(Ω)×H1
0(Ω). (5.8)

Now we consider a sequence of matrix-valued functions{︁√︀
𝜈(|𝒫ℰ(𝑣𝑚)|)ℰ(𝑣𝑚)

}︁∞

𝑚=1
.

It follows from (5.1) and (5.3) that√︀
𝜈(|𝒫ℰ(𝑣𝑚)|)ℰ(𝑣𝑚) ⇀

√︀
𝜈(|𝒫ℰ(𝑣)|)ℰ(𝑣) weakly in L2(Ω) as 𝑚 → ∞.

This is why the inequality holds:∫︁
Ω

𝜈(|𝒫ℰ(𝑣)|)|ℰ(𝑣)|2 𝑑𝑥 6 lim
𝑚→∞

∫︁
Ω

𝜈(|𝒫ℰ(𝑣𝑚)|)|ℰ(𝑣𝑚)|2 𝑑𝑥,

and together with (5.8), this obviously leads us to estimate (2.3). The proof of Theorem 2.1 is
complete.
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