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ON NON-LOCAL PROBLEMS FOR

THIRD ORDER EQUATION WITH

CAPUTO OPERATOR AND

NON-LINEAR LOADED PART

B.I. ISLOMOV, O.KH. ABDULLAEV

Abstract. This paper is devoted to proving the unique solvability of nonlocal problems

with an integral conjugate condition for one class of third-order equations with a parabolic-

hyperbolic operator including the Caputo fractional derivative and a nonlinear term con-

taining the trace of the solution 𝑢(𝑥, 0). Since the considered equation is of the third order,

in which a first order differential operator with coefficients 𝑎, 𝑏 and 𝑐 acts on a parabolic-

hyperbolic second order operator, the coefficients 𝑎, 𝑏 and 𝑐 influence essentially a well-

defined formulation of boundary value problems. This is why, before providing complete

formulation of the studied problems, we present the boundary conditions in their formula-

tion for various cases of the behavior of the coefficients 𝑎, 𝑏 and 𝑐.

In the first part of the paper we formulate a nonlocal Problem I with an integral conju-

gate condition in the case 0 < 𝑏/𝑎 6 1. This problem is equivalently reduced to a Volterra

type nonlinear integral equation and we prove its unique solvability by the successive ap-

proximations method.

The second part of the work is devoted to well-posed formulation and to studying other

nonlocal problems, the formulations of which are related with other possible cases of 𝑎 and

𝑏. We provide a detailed study of Problem II. Then as remarks we described the way of

studying other formulated problems.
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term, integral conjugate condition, nonlinear integral equation.

Mathematics Subject Classification: 35M10, 34K37, 35R11

1. Introduction

Let Ω be a simply connected domain enveloped in the half-plane 𝑦 > 0 by the segments 𝐵𝐵0,
𝐵0𝐴0, 𝐴0𝐴 located respectively on the straight lines 𝑥 = 1, 𝑦 = ℎ, 𝑥 = 0 and, in the half-plane
𝑦 < 0, by the characteristics

𝐴𝐶 : 𝑥+ 𝑦 = 0,

𝐵𝐶 : 𝑥− 𝑦 = 1

of the equation (︂
𝑎
𝜕

𝜕𝑥
+ 𝑏

𝜕

𝜕𝑦
+ 𝑐

)︂
𝐿𝑢 = 0, (1.1)
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where 𝐶
(︀
1
2
,−1

2

)︀
; 𝑎, 𝑏 and 𝑐 are real constants and 𝑎2 + 𝑏2 ̸= 0,

𝐿𝑢 ≡

⎧⎪⎪⎨⎪⎪⎩
𝐿1𝑢 =

𝜕2𝑢

𝜕𝑥2
− 𝑐𝐷

𝛼
0𝑦𝑢+ 𝑓1(𝑥, 𝑦;𝑢(𝑥, 0)), (𝑥, 𝑦) ∈ Ω1,

𝐿2𝑢 =
𝜕2𝑢

𝜕𝑥2
− 𝜕2𝑢

𝜕𝑦2
+ 𝑓2(𝑥, 𝑦;𝑢(𝑥, 0)), (𝑥, 𝑦) ∈ Ω2,

𝑐𝐷
𝛼
𝑎𝑦 is a Caputo differential operator of order 0 < 𝛼 < 1 [1], [2]:

𝑐𝐷
𝛼
0𝑦𝑓 =

1

Γ(1 − 𝛼)

𝑦∫︁
0

(𝑦 − 𝑡)−𝛼𝑓 ′(𝑡)𝑑𝑡 (1.2)

and

Ω1 = Ω ∩ {𝑦 > 0} , Ω2 = Ω ∩ {𝑦 < 0} .

It is well-known that local problems for equation (1.1) with continuous and discontinuous
conjugate conditions as 𝑓𝑖(𝑥, 𝑦;𝑢(𝑥, 0)) = 0 and 𝛼 = 1, were studied in work [3]. For a third
order equation with a parabolic-hyperbolic operator of an integer order involving linear loaded
parts, only local problems were studied with continuous conjugate condition, see [4], [5]. It
should be noted by the methods employed in works by T.D. Dzhuraev [3] and U.I. Baltaeva [4],
[5] are insufficient for equation (1.1) as 𝑓𝑖(𝑥, 𝑦;𝑢(𝑥, 0)) ̸= 0 and 0 < 𝛼 < 1. This is mostly
related with the fractional differential operator, which is the Caputo operator in our case, and
the arising integral equations and the methods for studying them are related with a nonlinear
part of the considered equation.
Local and nonlocal problems with continuous and integral conjugate conditions for loaded

parabolic hyperbolic second order equations involving various operator like Caputo operator,
Riemann-Liouville operator and others, were studied in works [6]–[8].
We note that the aforementioned equations describe some problems of optimal control, gov-

erning of ground water, the moisture of soil, problems on underground liquids, problems in gas
dynamics, mathematical biology, economics, ecology and fundamental mathematics [9]–[12].
Moreover, boundary value problems for differential and integral-differential equations with non-
local boundary conditions arise in various fields of mechanics, physics, biology, biotechnology
and others, see [13]–[15].
First we provide some conditions necessary for formulation of problems related with possible

cases of choice of the coefficients 𝑎, 𝑏 :

𝑢(0, 𝑦) =𝜙1(𝑦), 𝑢(1, 𝑦) = 𝜙2(𝑦), 0 6 𝑦 6 ℎ, (1.3)

𝑢𝑥𝑥(0, 𝑦) =𝜙3(𝑦), 0 6 𝑦 6 ℎ, (1.4)

𝑢𝑥𝑥(1, 𝑦) =𝜙4(𝑦), 0 6 𝑦 6 ℎ, (1.5)

𝑑

𝑑𝑥
𝑢 (𝜃(𝑥)) =𝑎1(𝑥)𝑢𝑦(𝑥,−0) + 𝑎2(𝑥)𝑢𝑥(𝑥,−0) + 𝑎3(𝑥)𝑢(𝑥, 0) + 𝑎4(𝑥), 0 6 𝑥 < 1, (1.6)

𝜕𝑢

𝜕𝑛
|𝐴𝐶 =𝜓1(𝑥), 0 6 𝑥 6

1

2
, (1.7)

𝜕𝑢

𝜕𝑛
|𝐵𝐶 =𝜓2(𝑥),

1

2
6 𝑥 6 1, (1.8)

where 𝑛 is an inward normal, 𝜃(𝑥) = 𝜃
(︀
𝑥
2
,−𝑥

2

)︀
, 𝜙𝑗(𝑦), 𝑎𝑗(𝑥), 𝑗 = 1, 4, 𝜓𝑖(𝑥), 𝑖 = 1, 2, are given

functions.
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2. Formulation of problem

Definition 2.1. A function 𝑢(𝑥, 𝑦) is called a regular solution of equation (1.1) if it possesses
continuous derivatives involved in the operator 𝐿𝑢 and 𝐿𝑢 ∈ 𝐶1(Ω ∖ 𝐴𝐵).

Problem I. Find a regular solution 𝑢(𝑥, 𝑦) of equation (1.1) in the domain Ω∖𝐴𝐵 possessing
the following properties:
1) 𝑢(𝑥, 𝑦) ∈ 𝐶(Ω) ∩ 𝐶1(Ω2 ∖𝐵𝐶), 𝑢𝑥𝑥 ∈ 𝐶(Ω1 ∪ 𝐴𝐴0);
2) 𝑢(𝑥, 𝑦) satisfies boundary conditions (1.3), (1.4), (1.6) and (1.7);
3) an integral conjugate condition

lim
𝑦→+0

𝑐𝐷
𝛼
0𝑦𝑢(𝑥, 𝑦) =𝜆1(𝑥)𝑢𝑦(𝑥,−0) + 𝜆2(𝑥)𝑢𝑥(𝑥,−0) + 𝜆3(𝑥)𝑢(𝑥,−0)

+ 𝜆4(𝑥)

𝑥∫︁
0

𝑟(𝑡)𝑢(𝑡, 0)𝑑𝑡+ 𝜆5(𝑥)
(2.1)

is satisfied, where 𝜆𝑖(𝑥), 𝑖 = 1, 5, are given functions and

4∑︁
𝑖=1

𝜆2𝑖 (𝑥) ̸= 0.

3. Study of problem I.

We denote:

𝑢(𝑥, 𝑦) =

{︃
𝑢1(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω1,

𝑢2(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω2.

Then equation (1.1) can be rewritten as two systems:{︃
𝑢1𝑥𝑥 − 𝑐𝐷

𝛼
0𝑦𝑢1 + 𝑓1(𝑥, 𝑦;𝑢1(𝑥, 0)) =𝜐1(𝑥, 𝑦),

𝑎𝜐1𝑥 + 𝑏𝜐1𝑦 + 𝑐𝜐1 =0,
(𝑥, 𝑦) ∈ Ω1 (3.1)

and {︃
𝑢2𝑥𝑥 − 𝑢2𝑦𝑦 + 𝑓2(𝑥, 𝑦;𝑢2(𝑥, 0)) =𝜐2(𝑥, 𝑦),

𝑎𝜐2𝑥 + 𝑏𝜐2𝑦 + 𝑐𝜐2 =0,
(𝑥, 𝑦) ∈ Ω2, (3.2)

where 𝜐𝑖(𝑥, 𝑦) ∈ 𝐶1 (Ω𝑖) , 𝑖 = 1, 2, are sufficiently smooth functions.
Let 0 < 𝑏/𝑎 6 1, then, assuming that 𝑎 > 0, 𝑏 > 0, we obtain:

0 < 𝑏 6
𝑏+ 𝑎

2
, 0 6 𝑏𝑥− 𝑎𝑦 6

𝑏+ 𝑎

2
, (𝑥, 𝑦) ∈ Ω2.

We note that a general solution to the equation

𝑎𝜐𝑖𝑥 + 𝑏𝜐𝑖𝑦 + 𝑐𝜐𝑖 = 0, (𝑖 = 1, 2)

reads as

𝜐𝑖(𝑥, 𝑦) = 𝑤𝑖(𝑏𝑥− 𝑎𝑦) exp
[︁
− 𝑐

2𝑎𝑏
(𝑏𝑥+ 𝑎𝑦)

]︁
, (3.3)

where 𝑤𝑖(𝑏𝑥− 𝑎𝑦), 𝑖 = 1, 2, are arbitrary continuously differentiable functions.
On the base of (3.3), (3.1) and (3.2), we consider the following equations:

𝑢1𝑥𝑥 − 𝑐𝐷
𝛼
0𝑦𝑢1 + 𝑓1(𝑥, 𝑦;𝑢1(𝑥, 0)) = 𝑤1(𝑏𝑥− 𝑎𝑦) exp

(︁
− 𝑐

2𝑎𝑏
(𝑏𝑥+ 𝑎𝑦)

)︁
, (3.4)

𝑢2𝑥𝑥 − 𝑢2𝑦𝑦 + 𝑓2(𝑥, 𝑦;𝑢2(𝑥, 0)) = 𝑤2(𝑏𝑥− 𝑎𝑦) exp
(︁
− 𝑐

2𝑎𝑏
(𝑏𝑥+ 𝑎𝑦)

)︁
. (3.5)
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It is easy to observe that the solution to the Cauchy problem for equation (3.5) with initial
conditions 𝑢(𝑥,−0) = 𝜏(𝑥), 𝑢𝑦(𝑥,−0) = 𝜈−(𝑥) in the domain Ω2 reads as

𝑢2(𝑥, 𝑦) =
𝜏(𝑥+ 𝑦) + 𝜏(𝑥− 𝑦)

2
+

1

2

𝑥+𝑦∫︁
𝑥−𝑦

𝜈−(𝑡)𝑑𝑡

− 1

4

𝑥−𝑦∫︁
𝑥+𝑦

𝑑𝜉

𝑥−𝑦∫︁
𝜉

𝑓2

(︂
𝜉 + 𝜂

2
,
𝜉 − 𝜂

2
; 𝜏

(︂
𝜉 + 𝜂

2

)︂)︂
𝑑𝜂

+
1

4

𝑥−𝑦∫︁
𝑥+𝑦

𝑑𝜉

𝑥−𝑦∫︁
𝜉

𝑤2

(︂
𝑏− 𝑎

2
𝜉 +

𝑏+ 𝑎

2
𝜂

)︂
exp

(︂
−𝑐
2𝑎𝑏

(︂
𝑏+ 𝑎

2
𝜉 +

𝑏− 𝑎

2
𝜂

)︂)︂
𝑑𝜂.

(3.6)

Taking into consideration that (𝑢𝑥 + 𝑢𝑦)|𝐴𝐶 =
√

2𝜓1(𝑥) and employing conditions (1.6) and
(1.7), by (3.6) we find:

(2𝑎1(𝑥) + 1)𝜈−(𝑥) =(1 − 2𝑎2(𝑥))𝜏 ′(𝑥) − 1

2

𝑥∫︁
0

𝑓2

(︂
𝜉 + 𝑥

2
,
𝜉 − 𝑥

2
; 𝜏

(︂
𝜉 + 𝑥

2

)︂)︂
𝑑𝜉 − 2𝑎3(𝑥)𝜏(𝑥)

+
1

2

𝑥∫︁
0

𝑤2

(︂
𝑏− 𝑎

2
𝜉 +

𝑏+ 𝑎

2
𝑥

)︂
𝑒

−𝑐
2𝑎𝑏(

𝑏+𝑎
2

𝜉+ 𝑏−𝑎
2

𝑥)𝑑𝜉 − 2𝑎4(𝑥)

(3.7)

and

𝑤2(𝑥) =

(︂
𝑓2

(︂
𝑥

𝑎+ 𝑏
,− 𝑥

𝑎+ 𝑏
; 𝜏

(︂
𝑥

𝑎+ 𝑏

)︂)︂
−
√

2𝜓′
1

(︂
𝑥

𝑎+ 𝑏

)︂)︂
𝑒

𝑐(𝑏−𝑎)𝑥
2𝑎𝑏(𝑎+𝑏) . (3.8)

On the other hand, by (1.4) and

𝑐𝐷
𝛼
0𝑦𝑢1 (0, 𝑦) = 𝑐𝐷

𝛼
0𝑦𝜙1(𝑦), 𝜏(0) = 𝜙1(0)

as 𝑥→ +0, it follows from (3.4) that

𝑤1 (−𝑎𝑦) =
[︀
𝜙3 (𝑦) − 𝑐𝐷

𝛼
𝑜𝑦𝜙1(𝑦) + 𝑓1(0, 𝑦;𝜙1(0))

]︀
exp

(︁𝑐𝑦
2𝑏

)︁
,

that is,

𝑤1(𝑦) =

(︂
𝜙3

(︂
−𝑦
𝑎

)︂
− 𝑐𝐷

𝛼
𝑜𝑦𝜙1

(︂
−𝑦
𝑎

)︂
+ 𝑓1(0,−

𝑦

𝑎
;𝜙1(0))

)︂
exp

(︁
− 𝑐𝑦

2𝑎𝑏

)︁
. (3.9)

3.1. Main result.

Theorem 3.1. If conditions

𝜙1(𝑦) ∈𝐶2(0, ℎ) ∩ 𝐶1[0, ℎ], 𝜙2(𝑦), 𝜙3(𝑦) ∈ 𝐶1(0, ℎ) ∩ 𝐶[0, ℎ]; (3.10)

𝑎𝑗(𝑥) ∈𝐶 [0, 1] ∩ 𝐶2 (0, 1) , 𝜆𝑗(𝑥), 𝜆5(𝑥) ∈ 𝐶 [0, 1] ∩ 𝐶1 (0, 1) , 𝑗 = 1, 4; (3.11)

𝜓1(𝑥) ∈𝐶2

(︂
0,

1

2

)︂
∩ 𝐶1

[︂
0,

1

2

]︂
, 𝑓𝑖(𝑥, 𝑦;𝑢(𝑥, 0)) ∈ 𝐶(Ω𝑖) ∩ 𝐶1(Ω𝑖), 𝑖 = 1, 2; (3.12)

|𝑓𝑖(𝑥, 𝑦; 𝜏1(𝑥)) − 𝑓𝑖(𝑥, 𝑦; 𝜏2(𝑥))| 6 𝐿𝑖|𝜏1(𝑥) − 𝜏2(𝑥)|, 𝑖 = 1, 2, (3.13)

are satisfied, where 𝐿𝑖 = 𝑐𝑜𝑛𝑠𝑡 > 0, 𝑖 = 1, 2, then a solution to Problem I exists and is unique.
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Proof. In view of our notations,

𝑢(𝑥,− 0) = 𝑢(𝑥,+ 0) = 𝜏(𝑥), 𝑢𝑦(𝑥, 0) = 𝜈−(𝑥), lim
𝑦→+0

𝑐𝐷
𝛼
0𝑦𝑢 = 𝜈+(𝑥) (3.14)

as 𝑦 → +0, by (3.4) and conjugate condition (2.1) we have that

𝜏 ′′(𝑥) − 𝜆1(𝑥)𝜈−(𝑥) − 𝜆2(𝑥)𝜏 ′(𝑥) − 𝜆3(𝑥)𝜏(𝑥) − 𝜆4(𝑥)

𝑥∫︁
0

𝑟(𝑡)𝜏(𝑡)𝑑𝑡

+ 𝑓1(𝑥, 0; 𝜏(𝑥)) = 𝑤1(𝑏𝑥)𝑒−
𝑐𝑥
2𝑎 + 𝜆5(𝑥).

(3.15)

Employing (3.7) and (3.15), after simplifications, as 2𝑎1(𝑥) + 1 ̸= 0 we get:

𝜏 ′′(𝑥) + 𝐴1(𝑥)𝜏 ′(𝑥) +𝐵1(𝑥)𝜏(𝑥)+𝐶1(𝑥)

𝑥∫︁
0

𝑓2

(︂
𝜉 + 𝑥

2
,
𝜉 − 𝑥

2
; 𝜏

(︂
𝜉 + 𝑥

2

)︂)︂
𝑑𝜉

+𝑓1(𝑥, 0; 𝜏(𝑥)) + 𝜆4(𝑥)

𝑥∫︁
0

𝑟(𝑡)𝜏(𝑡)𝑑𝑡 = 𝑓(𝑥),

(3.16)

where

𝐴1(𝑥) = −2𝐶1(𝑥)(2𝑎2(𝑥) − 1) + 𝜆2(𝑥),

𝐵1(𝑥) = −4𝐶1(𝑥)𝑎3(𝑥) + 𝜆3(𝑥),

𝐶1(𝑥) =
−𝜆1(𝑥)

2(1 + 2𝑎1(𝑥))
,

𝑓(𝑥) = − 𝜆1(𝑥)

2(1 + 2𝑎1(𝑥))

𝑥∫︁
0

𝑤2

(︂
𝑏− 𝑎

2
𝜉 +

𝑏+ 𝑎

2
𝑥

)︂
𝑒

−𝑐
2𝑎𝑏(

𝑏+𝑎
2

𝜉+ 𝑏−𝑎
2

𝑥)𝑑𝜉

− 𝜆1(𝑥)𝑎4(𝑥)

1 + 2𝑎1(𝑥)
+ 𝑤1(𝑏𝑥)𝑒

−𝑐𝑥
2𝑎 + 𝜆5(𝑥).

(3.17)

Assuming 𝑎 ̸= 𝑏 and making the change 𝑏−𝑎
2
𝜉 + 𝑏+𝑎

2
𝑥 = 𝑡, we can rewrite the function 𝑓(𝑥) in

the form:

𝑓(𝑥) =
𝜆1(𝑥)

(𝑎− 𝑏)(1 + 2𝑎1(𝑥))

𝑏𝑥∫︁
𝑏+𝑎
2

𝑥

𝑤2(𝑡)𝑒
𝑐(𝑎+𝑏)

2𝑎𝑏(𝑎−𝑏)
𝑡+ 𝑐

𝑏−𝑎
𝑥𝑑𝑡

− 𝜆1(𝑥)𝑎4(𝑥)

1 + 2𝑎1(𝑥)
+ 𝑤1(𝑏𝑥)𝑒

−𝑐𝑥
2𝑎 + 𝜆5(𝑥).

Then in view of (3.8), after some simplifications we finally find:

𝑓(𝑥) =
(𝑎+ 𝑏)𝜆1(𝑥)

(𝑎− 𝑏)(1 + 2𝑎1(𝑥))

𝑏𝑥
𝑎+𝑏∫︁
𝑥
2

𝑒
𝑐(2𝑡−𝑥)
(𝑎−𝑏)

(︁
𝑓2(𝑡,−𝑡; 𝜏(𝑡)) −

√
2𝜓′

1(𝑡)
)︁
𝑑𝑡

− 𝜆1(𝑥)𝑎4(𝑥)

1 + 2𝑎1(𝑥)
+ 𝑤1(𝑏𝑥)𝑒

−𝑐𝑥
2𝑎 + 𝜆5(𝑥).

Taking into consideration that

𝜏(0) = 𝜙1(0), 𝜏 ′(0) =
√

2𝜓1(0) − 𝜙′
1(0) (3.18)
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and integrating twice (3.16) with respect to 𝑥 from 0 to 𝑥, we obtain:

𝜏(𝑥)+

𝑥∫︁
0

[(𝑥− 𝑡)(𝐵1(𝑡) − 𝐴′
1(𝑡)) + 𝐴1(𝑡)]𝜏(𝑡)𝑑𝑡+

𝑥∫︁
0

𝜏(𝑡)𝑑𝑡

𝑥∫︁
𝑡

𝑟(𝑡)(𝑥− 𝑧)𝜆4(𝑧)𝑑𝑧

+

𝑥∫︁
0

(𝑥− 𝑡)𝑓1(𝑡, 0; 𝜏(𝑡))𝑑𝑡+ 2

𝑥∫︁
0

(𝑥− 𝑡)𝐶1(𝑡)𝑑𝑡

𝑡∫︁
𝑡/2

𝑓2(𝑠, 𝑠− 𝑡; 𝜏(𝑠))𝑑𝑠

−2(𝑎+ 𝑏)

𝑎− 𝑏

𝑥∫︁
0

(𝑥− 𝑡)𝐶1(𝑡)𝑑𝑡

𝑏𝑡
𝑎+𝑏∫︁

𝑡/2

𝑒
𝑐(2𝑠−𝑡)
𝑎−𝑏 𝑓2(𝑠,−𝑠; 𝜏(𝑠))𝑑𝑠 =

𝑥∫︁
0

(𝑥− 𝑡)
(︁
𝑤1(𝑏𝑡)𝑒

− 𝑐𝑡
2𝑎 + 𝜆5(𝑡)

)︁
𝑑𝑡

−2
√

2(𝑎+ 𝑏)

𝑎− 𝑏

𝑥∫︁
0

(𝑥− 𝑡)𝐶1(𝑡)𝑑𝑡

𝑏𝑡
𝑎+𝑏∫︁

𝑡/2

𝑒
𝑐(2𝑠−𝑡)
𝑎−𝑏 𝜓′

1(𝑠)𝑑𝑠+ 𝑥(𝜙1(0)𝐴1(0) +
√

2𝜓1(0) − 𝜙′
1(0))

+𝜓1(0) −
𝑥∫︁

0

(𝑥− 𝑡)
𝜆1(𝑡)𝑎4(𝑡)

1 + 2𝑎2(𝑡)
𝑑𝑡.

Thus, we have obtained a Volterra type nonlinear integral equation:

𝜏(𝑥) =2

𝑥∫︁
0

(𝑥− 𝑡)

⎛⎜⎝(𝑎+ 𝑏)

𝑎− 𝑏

𝑏𝑡
𝑎+𝑏∫︁
𝑡
2

𝑒
𝑐(2𝑠−𝑡)
𝑎−𝑏 𝑓2(𝑠,−𝑠; 𝜏(𝑠))𝑑𝑠−

𝑡∫︁
𝑡
2

𝑓2(𝑠, 𝑠− 𝑡; 𝜏(𝑠))𝑑𝑠

⎞⎟⎠𝐶1(𝑡)𝑑𝑡

−
𝑥∫︁

0

𝐾1(𝑥, 𝑡)𝜏(𝑡)𝑑𝑡−
𝑥∫︁

0

(𝑥− 𝑡)𝑓1(𝑡, 0; 𝜏(𝑡))𝑑𝑡+ 𝑓 *(𝑥),

(3.19)

where

𝐾1(𝑥, 𝑡) =(𝑥− 𝑡)(𝐵1(𝑡) − 𝐴′
1(𝑡)) + 𝐴1(𝑡) + 𝑟(𝑡)

𝑥∫︁
𝑡

(𝑥− 𝑧)𝜆4(𝑧)𝑑𝑧,

𝑓 *(𝑥) =

𝑥∫︁
0

(𝑥− 𝑡)

(︂
𝑤1(𝑏𝑡)𝑒

− 𝑐𝑡
2𝑎 − 𝜆1(𝑡)𝑎4(𝑡)

1 + 2𝑎2(𝑡)
+ 𝜆5(𝑡)

)︂
𝑑𝑡+ 𝑥(𝜙1(0)𝐴1(0) +

√
2𝜓1(0) − 𝜙′

1(0))

− 2
√

2(𝑎+ 𝑏)

𝑎− 𝑏

𝑥∫︁
0

(𝑥− 𝑡)𝐶1(𝑡)𝑑𝑡

𝑏𝑡
𝑎+𝑏∫︁

𝑡/2

𝑒
𝑐(2𝑠−𝑡)
𝑎−𝑏 𝜓′

1(𝑠)𝑑𝑠+ 𝜓1(0).

By (3.10)–(3.12) we hence get:

‖𝐾1(𝑥, 𝑡)‖𝐶 6𝑀, 0 6 𝑡 6 𝑥 6 1; ‖𝑓 *(𝑥)‖𝐶 6 𝑓0, 0 6 𝑥 6 1, (3.20)

wnere 𝑀, 𝑓0 = 𝑐𝑜𝑛𝑠𝑡 > 0. In view of inequalities

‖𝑓𝑖(𝑥, 𝑦; 𝜏(𝑥))‖𝐶 6 𝑓0𝑖, ‖𝐶1(𝑥)‖𝐶 6 𝑐0
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and assuming 𝜏0(𝑥) = 𝑓 *(𝑥), by

𝜏𝑛(𝑥) =
2(𝑎+ 𝑏)

𝑎− 𝑏

𝑥∫︁
0

(𝑥− 𝑡)𝐶1(𝑡)𝑑𝑡

𝑏𝑡
𝑎+𝑏∫︁
𝑡
2

𝑒
𝑐(2𝑠−𝑡)
𝑎−𝑏 𝑓2(𝑠,−𝑠; 𝜏𝑛−1(𝑠))𝑑𝑠

− 2

𝑥∫︁
0

(𝑥− 𝑡)𝐶1(𝑡)𝑑𝑡

𝑡∫︁
𝑡
2

𝑓2(𝑠, 𝑠− 𝑡; 𝜏𝑛−1(𝑠))𝑑𝑠

−
𝑥∫︁

0

𝐾1(𝑥, 𝑡)𝜏𝑛−1(𝑡)𝑑𝑡−
𝑥∫︁

0

(𝑥− 𝑡)𝑓1(𝑡, 0; 𝜏𝑛−1(𝑡))𝑑𝑡+ 𝑓 *(𝑥),

(3.21)

we obtain:

‖𝜏1(𝑥) − 𝜏0(𝑥)‖𝐶 6 𝑥 · 𝑐01, (3.22)

where 𝑓0, 𝑐0, 𝑐01 = 𝑐𝑜𝑛𝑠𝑡 > 0, and

𝑐01 =
1

4
· max

{︂
(𝑎+ 𝑏)𝑐0𝑓02

𝑎− 𝑏
;
𝑐0𝑓02

3
;𝑀𝑓0;

𝑓01
2

}︂
.

Then by (3.13), (3.22), (3.21) we find:

‖𝜏2(𝑥) − 𝜏1(𝑥)‖𝐶 6 𝑥2 · 𝑐11 + 𝑥3 · 𝑐12 + 𝑥4 · 𝑐13 6
𝑥2

2!
· 𝑐01𝑚;

‖𝜏3(𝑥) − 𝜏2(𝑥)‖𝐶 6
𝑥3

3!
· 𝑐21 +

𝑥4

4!
· 𝑐22 +

𝑥5

5!
· 𝑐23 6

𝑥3

3!
· 𝑐01𝑚2,

where

𝑐11 =𝑐01 ·
𝑀

2
, 𝑐12 = 𝑐01 ·

𝐿1

6
, 𝑐13 = 𝑐01 ·

𝑐0𝐿2(2𝑎+ 𝑏)

𝑎− 𝑏
,

𝑐21 =𝑚 · 𝑐11, 𝑐22 = 𝑚 · 𝑐12, 𝑐23 = 𝑚 · 𝑐13,

𝑚 =
1

3
· max

{︂
𝑀

2
;
𝐿1

6
;
𝑐0𝐿2(2𝑎+ 2)

𝑎− 𝑏

}︂
.

Thus, we finally have:

‖𝜏𝑛(𝑥) − 𝜏𝑛−1(𝑥)‖𝐶 6 𝑐01𝑚
𝑛−1 · 𝑥

𝑛

𝑛!
. (3.23)

Due to (3.23) we conclude that equation (3.19) involves a contracting operator and there
exists a unique fixed point of this operator. Therefore, a nonlinear integral equation (3.19)
possesses a unique solution in the class 𝐶[0, 1] ∩ 𝐶2(0, 1).

Remark 3.1. If 𝑎 = 𝑏, then we take into consideration that by (3.17) we have

𝑓(𝑥) =
𝑎𝜆1(𝑥)

𝑐(1 + 2𝑎1(𝑥))
𝑤2 (𝑎𝑥)

(︁
𝑒

−𝑐𝑥
2𝑎 − 1

)︁
− 𝜆1(𝑥)𝑎4(𝑥)

1 + 2𝑎1(𝑥)
+ 𝑤1(𝑎𝑥)𝑒

−𝑐𝑥
2𝑎 + 𝜆5(𝑥)

and

𝑤2(𝑥) = 𝑓2

(︁ 𝑥

2𝑎
,− 𝑥

2𝑎
; 𝜏

(︁ 𝑥

2𝑎

)︁)︁
−
√

2𝜓′
1

(︁ 𝑥

2𝑎

)︁
,
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by (3.16) we similarly obtain a nonlinear integral Volterra equation:

𝜏(𝑥) =
4𝑎

𝑐

𝑥
2∫︁

0

(𝑥− 2𝑡)𝐶1(2𝑡)
(︁
𝑒

−𝑐𝑡
𝑎 − 1

)︁
𝑓2(𝑡,−𝑡; 𝜏(𝑡))𝑑𝑡− 2

𝑥∫︁
0

(𝑥− 𝑡)𝐶1(𝑡)𝑑𝑡

𝑡∫︁
𝑡/2

𝑓2(𝑠, 𝑠− 𝑡; 𝜏(𝑠))𝑑𝑠

−
𝑥∫︁

0

𝐾1(𝑥, 𝑡)𝜏(𝑡)𝑑𝑡−
𝑥∫︁

0

(𝑥− 𝑡)𝑓1(𝑡, 0; 𝜏(𝑡))𝑑𝑡+ 𝑓 *
1 (𝑥),

where

𝑓 *
1 (𝑥) =𝑥(𝜙1(0)𝐴1(0) +

√
2𝜓3(0) − 𝜙′

1(0)) +

𝑥∫︁
0

(𝑥− 𝑡)

(︂
𝑤1(𝑏𝑡)𝑒

− 𝑐𝑡
2𝑎 + 𝜆5(𝑡) −

𝜆1(𝑡)𝑎4(𝑡)

1 + 2𝑎2(𝑡)

)︂
𝑑𝑡

− 4
√

2𝑎

𝑐

𝑥
2∫︁

0

(𝑥− 2𝑡)𝐶1(2𝑡)
(︁
𝑒

−𝑐𝑡
𝑎 − 1

)︁
𝜓′
1(𝑡)𝑑𝑡+ 𝜓1(0).

Then 𝜈−(𝑥) can be found by (3.7) and hence, a solution of the considered problem in the domain
Ω2 is recovered as a solution of a Cauchy problem, see (3.6).

Remark 3.2. In the cases 2𝑎1(𝑥) + 1 = 0, 2𝑎2(𝑥)− 1 ̸= 0 and 2𝑎1(𝑥) + 1 = 0, 𝑎3(𝑥) ̸= 0 the
unknown function 𝜏(𝑥) is determined as a solution to a nonlinear integral Volterra equation,
which is implied by (3.7).

The solutions of the studied problem in the domain Ω2 is recovered in the same way, see
(3.6), while in the domain Ω1 it is found a solution to the Dirichlet problem for equation (3.4)
[16]:

𝑢1(𝑥, 𝑦) =

𝑦∫︁
0

𝐺𝜉(𝑥, 𝑦, 0, 𝜂)𝜙1(𝜂)𝑑𝜂 −
𝑦∫︁

0

𝐺𝜉(𝑥, 𝑦, 1, 𝜂)𝜙2(𝜂)𝑑𝜂 +

1∫︁
0

𝐺0(𝑥, 𝜉, 𝑦)𝜏(𝜉)𝑑𝜉

−
𝑦∫︁

0

1∫︁
0

𝐺(𝑥, 𝑦, 𝜉, 𝜂)
(︁
𝜔1(𝑏𝜉 − 𝑎𝜂)𝑒−

𝑐(𝑏𝜉+𝑎𝜂)
2𝑎𝑏 − 𝑓1(𝜉, 𝜂; 𝜏(𝜉))

)︁
𝑑𝜉𝑑𝜂,

(3.24)

where 𝜔1( · ) is determined by (3.9) and

𝐺0(𝑥, 𝜉, 𝑦) =
1

Γ(1 − 𝛼)

𝑦∫︁
0

𝜂−𝛼𝐺(𝑥, 𝑦, 𝜉, 𝜂)𝑑𝜂,

𝐺(𝑥, 𝑦, 𝜉, 𝜂) =
(𝑦 − 𝜂)

𝛼
2

2

∞∑︁
𝑛=−∞

[︂
𝑒
1,𝛼

2

1,𝛼
2

(︂
−|𝑥− 𝜉 + 2𝑛|

(𝑦 − 𝜂)
𝛼
2

)︂
− 𝑒

1,𝛼
2

1,𝛼
2

(︂
−|𝑥+ 𝜉 + 2𝑛|

(𝑦 − 𝜂)
𝛼
2

)︂]︂
is the Green function of the Dirichlet problem,

𝑒1,𝛿1,𝛿 =
∞∑︁
𝑛=0

𝑧𝑛

𝑛!Γ(𝛿 − 𝛿𝑛)

is a Wright type function [16].
It should be noted that in the cases 2𝑎1(𝑥) + 1 = 0, 2𝑎2(𝑥) − 1 ̸= 0 and 2𝑎1(𝑥) + 1 = 0,

𝑎3(𝑥) ̸= 0 we first find 𝜈+(𝑥) via a solution to the Dirichlet problem, see (3.24), and then we
employ the conjugate conditions to find 𝜈−(𝑥) as 𝜆1(𝑥) ̸= 0.
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4. Other problems related with conditions on 𝑎 and 𝑏

Problme II. Find a regular solution 𝑢(𝑥, 𝑦) of equation (1.1) in the domain Ω∖𝐴𝐵 with the
following properties:
1) 𝑢(𝑥, 𝑦) ∈ 𝐶(Ω) ∩ 𝐶1(Ω2), 𝑢𝑥𝑥 ∈ 𝐶(Ω1 ∪ 𝐴𝐴0);

2) 𝑢(𝑥, 𝑦) satisfies all conditions of Problem I and (1.8) for 1 < 𝑏/𝑎 < +∞.

Remark 4.1. For a well-posed formulation of the problem we find appropriate conditions for
determining an unknown function 𝑤𝑖(𝑏𝑥− 𝑎𝑦), 𝑖 = 1, 2, the domain of which covers completely
the considered domain under approrpriate conditions for the coefficients 𝑎 and 𝑏. In order to
be able to do this, Problem II involves additional condition (1.8).

Problem III. Find a regular solution 𝑢(𝑥, 𝑦) ∈ 𝐶(Ω) ∩ 𝐶1(Ω2), 𝑢𝑥𝑥 ∈ 𝐶(Ω1 ∪𝐵𝐵0) for (1.1)
in the domain Ω ∖ 𝐴𝐵 satisfying all conditions of Problem II, when (1.4) is replaced by (1.5)
for −∞ < 𝑏/𝑎 < −1.

Problem IV. Find a regular solution

𝑢(𝑥, 𝑦) ∈ 𝐶(Ω) ∩ 𝐶1(Ω2 ∖ 𝐴𝐶), 𝑢𝑥𝑥 ∈ 𝐶(Ω1 ∪𝐵𝐵0)

to equation (1.1) in the domain Ω ∖𝐴𝐵 satisfying all conditions of Problem III except for (1.7)
as −1 6 𝑏/𝑎 < 0.

Remark 4.2. In view of the conditions for the coefficients 𝑎 and 𝑏, for a well-posed for-
mulation of Problems III and IV, in contrast to Problems I and II, a condition for determining
unknown functions 𝑤𝑖(𝑏𝑥− 𝑎𝑦), 𝑖 = 1, 2, is posed on the segment 𝑥 = 1.

4.1. Study of Problem II. Let 1 < 𝑏/𝑎 < +∞, then, assuming 𝑎 > 0 and 𝑏 > 0, we have
𝑏 > (𝑎+ 𝑏)/2 and therefore,

0 6 𝑏𝑥− 𝑎𝑦 6
𝑏+ 𝑎

2
, (𝑥, 𝑦) ∈ Ω21, (4.1)

𝑏+ 𝑎

2
6 𝑏𝑥− 𝑎𝑦 6 𝑏, (𝑥, 𝑦) ∈ Ω22. (4.2)

Here Ω21 and Ω22 are the characteristic triangles 𝐴𝐵𝐸 and 𝐵𝐶𝐸, respectively, where 𝐸 =
𝐸
(︀
𝑏+𝑎
2𝑏
, 0
)︀
, and Ω21 ∪ 𝐶𝐸 ∪ Ω22 = Ω2.

Assume that inequality (4.1) holds, then, applying (1.6) and (1.7), from the solution (3.6)
we find functional relation (3.7) and 𝜔21(𝑥), see (3.8):

𝑤21 ((𝑎+ 𝑏)𝑥) = 𝑒
𝑐(𝑏−𝑎)𝑥

2𝑎𝑏

(︁
𝑓2 (𝑥,−𝑥; 𝜏(𝑥)) −

√
2𝜓′

1(𝑥)
)︁
. (4.3)

In case (4.2) we employ condition (1.8) and (𝑢𝑦 − 𝑢𝑥)|𝐵𝐶 =
√

2𝜓2(𝑥) from (3.6) to find 𝑤22(𝑥) :

𝑤22 ((𝑏− 𝑎)𝑥+ 𝑎) = 𝑒
𝑐

2𝑎𝑏
((𝑏+𝑎)𝑥−𝑎)

(︁√
2𝜓′

2(𝑥) + 𝑓2 (𝑥, 𝑥− 1; 𝜏(𝑥))
)︁
. (4.4)

It should be noted that the function

𝑤2(𝑥) =

⎧⎪⎨⎪⎩
𝑤21(𝑥), 0 6 𝑥 6

𝑎+ 𝑏

2
;

𝑤22(𝑥),
𝑎+ 𝑏

2
6 𝑥 6 𝑏

(4.5)
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should be continuous for all 0 < 𝑥 < 𝑏. It is easy to confirm that

𝑤21

(︂
𝑎+ 𝑏

2

)︂
= 𝑤22

(︂
𝑎+ 𝑏

2

)︂
as

𝜓′
1

(︂
1

2

)︂
= −𝜓′

2

(︂
1

2

)︂
.

By (4.5), (3.7) and (3.15) we find:

𝜏(𝑥) =Φ(𝑥, 𝜏(𝑥)) − 2

𝑥∫︁
0

(𝑥− 𝑡)𝐶1(𝑡)𝑑𝑡

𝑡∫︁
𝑡/2

𝑓2(𝑠, 𝑠− 𝑡; 𝜏(𝑠))𝑑𝑠

−
𝑥∫︁

0

𝐾1(𝑥, 𝑡)𝜏(𝑡)𝑑𝑡−
𝑥∫︁

0

(𝑥− 𝑡)𝑓1(𝑡, 0; 𝜏(𝑡))𝑑𝑡+ 𝑔*(𝑥),

(4.6)

where

Φ(𝑥, 𝜏(𝑥)) =
2

𝑎− 𝑏

𝑎+𝑏
2∫︁

0

𝑤21(𝑧)𝐾2(𝑥, 𝑧)𝑑𝑧

+
2

𝑎− 𝑏

𝑏𝑥∫︁
𝑎+𝑏
2

𝑤22(𝑧)𝑒−
𝑐(𝑎+𝑏)𝑧
2𝑎𝑏(𝑏−𝑎)𝑑𝑧

𝑥∫︁
𝑧/2

(𝑥− 𝑡)𝐶1(𝑡)𝑒
𝑐𝑡

2(𝑏−𝑎)𝑑𝑡,

(4.7)

𝐾2(𝑥, 𝑧) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑒−
𝑐(𝑎+𝑏)𝑧
2𝑎𝑏(𝑏−𝑎)

2𝑧
𝑏+𝑎∫︁
𝑧
2

(𝑥− 𝑡)𝐶1(𝑡)𝑒
𝑐𝑡

2(𝑏−𝑎)𝑑𝑡, 0 6 𝑧 6
𝑎+ 𝑏

2
𝑥;

𝑒−
𝑐(𝑎+𝑏)𝑧
2𝑎𝑏(𝑏−𝑎)

𝑥∫︁
𝑧/2

(𝑥− 𝑡)𝐶1(𝑡)𝑒
𝑐𝑡

2(𝑏−𝑎)𝑑𝑡,
𝑎+ 𝑏

2
𝑥 6 𝑧 6

𝑎+ 𝑏

2
,

𝑔*(𝑥) =

𝑥∫︁
0

(𝑥− 𝑡)

(︂
𝑤1(𝑏𝑡)𝑒

− 𝑐𝑡
2𝑎 + 𝜆5(𝑡) −

𝜆1(𝑡)𝑎4(𝑡)

1 + 2𝑎2(𝑡)

)︂
𝑑𝑡

+ 𝑥(𝜙1(0)𝐴1(0) +
√

2𝜓3(0) − 𝜙′
1(0)) + 𝜓1(0).

Substituting (4.3) and (4.4) into (4.7), we obtain:

Φ(𝑥, 𝜏(𝑥)) =
2

𝑎− 𝑏

𝑎+𝑏
2∫︁

0

𝑒
𝑐(𝑏−𝑎)𝑧
2𝑎𝑏(𝑎+𝑏)𝑓2

(︂
𝑧

𝑎+ 𝑏
,− 𝑧

𝑎+ 𝑏
; 𝜏

(︂
𝑧

𝑎+ 𝑏

)︂)︂
𝐾2(𝑥, 𝑧)𝑑𝑧

+
2

𝑎− 𝑏

𝑏𝑥∫︁
𝑎+𝑏
2

𝑒
−𝑐
𝑏−𝑎𝑓2

(︂
𝑧 − 𝑎

𝑏− 𝑎
,
𝑧 − 𝑎

𝑏− 𝑎
− 1; 𝜏

(︂
𝑧 − 𝑎

𝑏− 𝑎

)︂)︂
𝑑𝑧

𝑥∫︁
𝑧/2

(𝑥− 𝑡)𝐶1(𝑡)𝑒
𝑐𝑡

2(𝑏−𝑎)𝑑𝑡

=
2(𝑎+ 𝑏)

𝑎− 𝑏

1
2∫︁

0

𝑒
𝑐(𝑏−𝑎)𝑧

2𝑎𝑏 𝑓2 (𝑧,−𝑧; 𝜏(𝑧))𝐾2(𝑥, 𝑧(𝑎+ 𝑏))𝑑𝑧
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− 2𝑒
−𝑐
𝑏−𝑎

𝑏𝑥−𝑎
𝑏−𝑎∫︁
1
2

𝑓2 (𝑧, 𝑧 − 1; 𝜏(𝑧)) 𝑑𝑧

𝑥∫︁
𝑧(𝑏−𝑎)+𝑎

2

(𝑥− 𝑡)𝐶1(𝑡)𝑒
𝑐𝑡

2(𝑏−𝑎)𝑑𝑡.

Moreover, taking into consideration that⃦⃦⃦⃦
⃦⃦⃦⃦ 𝑥∫︁
𝑧(𝑏−𝑎)+𝑎

2

(𝑥− 𝑡)𝐶1(𝑡)𝑒
𝑐𝑡

2(𝑏−𝑎)𝑑𝑡

⃦⃦⃦⃦
⃦⃦⃦⃦
𝐶

6 𝑐𝑜𝑛𝑠𝑡 and ‖𝐾2(𝑥, 𝑧)‖𝐶 6 𝑐𝑜𝑛𝑠𝑡,

we conclude that

‖Φ(𝑥, 𝜏(𝑥))‖𝐶 6 𝑚1

⃦⃦⃦⃦
⃦⃦⃦

1
2∫︁

0

𝑓2 (𝑧,−𝑧; 𝜏(𝑧)) 𝑑𝑧

⃦⃦⃦⃦
⃦⃦⃦
𝐶

+𝑚2

⃦⃦⃦⃦
⃦⃦⃦

𝑏𝑥−𝑎
𝑏−𝑎∫︁
1
2

𝑓2 (𝑧, 𝑧 − 1; 𝜏(𝑧)) 𝑑𝑧

⃦⃦⃦⃦
⃦⃦⃦
𝐶

,

where 𝑚1,𝑚2 = 𝑐𝑜𝑛𝑠𝑡 > 0.
By (3.13) and the second condition in (3.12), assuming that 𝑚0 = 𝑚𝑎𝑥{𝑚1,𝑚2}, we get:

‖Φ(𝑥, 𝜏(𝑥)) ‖𝐶 6
𝑏𝑥− 𝑎

𝑏− 𝑎
· 𝑐𝑜𝑛𝑠𝑡;

‖Φ(𝑥, 𝜏𝑛−1(𝑥)) − Φ(𝑥, 𝜏𝑛−2(𝑥))‖𝐶 6 𝑚𝐿2

⃦⃦⃦⃦
⃦⃦⃦

𝑏𝑥−𝑎
𝑏−𝑎∫︁
0

|𝜏𝑛−1(𝑧) − 𝜏𝑛−2(𝑧)|𝑑𝑧

⃦⃦⃦⃦
⃦⃦⃦
𝐶

6
𝑚0𝐿2

𝑛!

(︂
𝑏𝑥− 𝑎

𝑏− 𝑎

)︂𝑛

· 𝑐𝑜𝑛𝑠𝑡.

Using the inequality 𝑥 < 𝑏𝑥−𝑎
𝑏−𝑎

as 𝑏 > 𝑎, by similar arguing for equation (4.6) we get:

‖𝜏𝑛(𝑥) − 𝜏𝑛−1(𝑥)‖𝐶 6
(𝑏𝑥− 𝑎)𝑛

(𝑏− 𝑎)𝑛𝑛!
· 𝑐𝑜𝑛𝑠𝑡.

Thus, we conclude that equation (4.6) is uniquely solvable as a Volterra nonlinear integral
equation.
The following theorem holds.

Theorem 4.1. If the assumptions of Theorem 3.1 and

𝜓2(𝑥) ∈ 𝐶2

(︂
1

2
, 1

)︂
∩ 𝐶1

[︂
1

2
, 1

]︂
,

then Problem II is uniquely solvable.

Remark 4.3. While studying Problem II, the unknown function 𝜏(𝑥) can be determined as
a solution to the nonlinear integral equation as 2𝑎1(𝑥)+1 = 0, 2𝑎2(𝑥)−1 ̸= 0, or 2𝑎1(𝑥)+1 = 0,
𝑎3(𝑥) ̸= 0, in the same way as in Problem I.

Remark 4.4. Problems III and IV are reduced to the Cauchy problem for equation (3.16)
with initial conditions 𝜏(1) = 𝜙2(0), 𝜏 ′(1) = 𝜙′

2(0) −
√

2𝜓2(0).

Let −1 6 𝑏
𝑎
< 0, then the unknown function 𝑤2(𝑥) is determined by condition (1.8) and is

given by 4.4). In the other case, that is, as −∞ < 𝑏
𝑎
< −1, the function 𝑤2(𝑥) is determined by

(4.5). It should be noted that in these case we obtain a linear integral Fredholm type equation
as 𝑓𝑖(𝑥, 𝑦; 𝜏(𝑥)) = 0 and 𝜆4(𝑥) ̸= 0. Therefore, we need to prove independently the uniqueness
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of solution to the problem or to impose additional conditions for the given functions ensuring
the unique solvability of the corresponding linear integral Fredhold type equation. But since
𝑓𝑖(𝑥, 𝑦; 𝜏(𝑥)) ̸= 0, 𝑖 = 1, 2, we obtain a nonlinear integral equation with Fredholm and Volterra
operators.
On the other hand, if we replace the integral term in conjugate condition (2.1) by

𝜆4(𝑥)

1∫︁
𝑥

𝑟(𝑡)𝜏(𝑡)𝑑𝑡,

and the corresponding nonlocal condition, see (1.6), is imposed on the characteristics 𝐵𝐶, then
we again obtain a nonlinear Volterra type integral equation.

Remark 4.5. Similar problems for (1.1) as 𝑏 = 0, 𝑎, 𝑐 ̸= 0 can be studied by a similar
method.

Such problems were studied in work [17] as

𝑓𝑖(𝑥, 𝑦;𝑢(𝑥, 0)) =
𝑛∑︁

𝑘=1

𝑝𝑘𝐼
𝛽𝑖𝑘
0𝑥 𝑢(𝑥; 0), 𝑖 = 1, 2.

As we know, boundary value problems for equation (1.1) with 𝑎 = 0, 𝑏, 𝑐 ̸= 0 were not studied
even as 𝑓𝑖(𝑥, 𝑦;𝑢(𝑥, 0)) = 0. We note that the methods used in work [3] for 𝑎 = 0, 𝑏, 𝑐 ̸= 0, are
not applicable for such equations involving fractional differential operators.
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