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INTEGRALS AND CHARACTERISTIC LIE RINGS OF

SEMI-DISCRETE SYSTEMS OF EQUATIONS

A.V. ZHIBER, M.N. KUZNETSOVA

Abstract. The paper is devoted to studying systems of semi-discrete equations 𝑟𝑛+1,𝑥 =
ℎ̄(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, 𝑟𝑛,𝑥) within the framework of an approach based on the concept of a charac-
teristic Lie ring. Here 𝑟𝑛 = (𝑟1𝑛, 𝑟

2
𝑛, . . . , 𝑟

𝑁
𝑛 ), ℎ̄ = (ℎ1, ℎ2, . . . , ℎ𝑁 ), 𝑛 ∈ Z. Among integrable

nonlinear partial differential equations and systems, we find Darboux integrable nonlinear
hyperbolic equations and systems. A feature of such equations is the existence of integrals
along each characteristic direction, the so-called 𝑥- and 𝑦-integrals. This allows us to re-
duce the integration of a partial differential equation to integrating a system of ordinary
differential equations. Darboux integrable equations and systems can be efficiently studied
and classified by means of characteristic Lie rings. Papers by Leznov, Smirnov, Shabat,
Yamilov underlie an algebraic approach for studying nonlinear hyperbolic systems. Cur-
rently, the algebraic approach is extended to semi-discrete and discrete equations. In this
paper, we prove that the system has 𝑁 essentially independent 𝑥-integrals if and only if
the characteristic Lie ring corresponding to a continuous characteristic direction is finite-
dimensional.

Keywords:semi-discrete system of equations, characteristic ring, 𝑥-integral, Darboux in-
tegrable system.
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1. Introduction

This work is devoted to studying systems of semi-discrete equations

𝑟𝑛+1,𝑥 = ℎ̄(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, 𝑟𝑛,𝑥) (1.1)

in the framework of an approach based on the notion of the characteristic Lie ring. Here
𝑟𝑛 = (𝑟1𝑛, 𝑟

2
𝑛, . . . , 𝑟

𝑁
𝑛 ), ℎ̄ = (ℎ1, ℎ2, . . . , ℎ𝑁), 𝑛 ∈ Z.

We first of all give rigorous definitions and formulations of the results. We begin with
independent variables. Each identity is to hold identically on each solution of system (1.1).
This is why everywhere we replace 𝑟𝑛+1,𝑥 by the right hand side ℎ̄(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, 𝑟𝑛,𝑥), and 𝑟𝑛+2,𝑥

is replaced by ℎ̄(𝑥, 𝑛 + 1, 𝑟𝑛+1, 𝑟𝑛+2, ℎ̄(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, 𝑟𝑛,𝑥)) and so forth. Thus, the independent
variables are

. . . , 𝑟𝑖𝑛−𝑚, . . . , 𝑟
𝑖
𝑛−1, 𝑟

𝑖
𝑛, 𝑟

𝑖
𝑛+1, . . . , 𝑟

𝑖
𝑛+𝑘, . . . , 𝑟

𝑖
𝑛,𝑥, 𝑟

𝑖
𝑛,𝑥𝑥, 𝑟

𝑖
𝑛,𝑥𝑥𝑥, . . . . (1.2)

Hereafter we employ the notation 𝐷𝑥 for the operator of total differentiating in the variable 𝑥
and 𝐷 denotes the operator of the shift by one over 𝑛, that is,

𝐷𝑟(𝑛, 𝑥) = 𝑟(𝑛 + 1, 𝑥), 𝐷−1𝑟(𝑛, 𝑥) = 𝑟(𝑛− 1, 𝑥),

𝐷2𝑟(𝑛, 𝑥) = 𝑟(𝑛 + 2, 𝑥), 𝐷−2𝑟(𝑛, 𝑥) = 𝑟(𝑛− 2, 𝑥).
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The derivatives of the vector 𝑟𝑛 are denoted by 𝑟𝑛,𝑥 = (𝑟1𝑛,𝑥, 𝑟
2
𝑛,𝑥, . . . , 𝑟

𝑁
𝑛,𝑥), . . . ,

𝑟(𝑚)
𝑛 =

(︀
𝑟1,(𝑚)
𝑛 , . . . , 𝑟𝑁,(𝑚)

𝑛

)︀
=

(︂
𝜕𝑚𝑟1𝑛
𝜕𝑥𝑚

, . . . ,
𝜕𝑚𝑟𝑁𝑛
𝜕𝑥𝑚

)︂
.

Definition 1.1. A function

𝑊 = 𝑊 (𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝑠),
𝑁∑︁
𝑖=1

(︂
𝜕𝑊

𝜕𝑟𝑖𝑛+𝑠

)︂2

̸= 0

obeying a characteristic equation 𝐷𝑥𝑊 = 0 is called 𝑥-integral of system (1.1) and the numbers
𝑠 is its order.

Definition 1.2. A function

𝐼 = 𝐼(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛,𝑥, 𝑟𝑛,𝑥𝑥, . . . , 𝑟
(𝑚)
𝑛 ),

𝑁∑︁
𝑖=1

(︂
𝜕𝐼

𝜕𝑟
𝑖,(𝑚)
𝑛

)︂2

̸= 0

obeying equation 𝐷𝐼 = 𝐼 is called 𝑛-integral of system (1.1) and the number 𝑚 is its order.

System of equations (1.1) is called Darboux integrable if possesses a complete set of func-
tionally independent integrals, 𝑁 integrals in each characteristic direction.

Example 1.1. A chain

𝑡𝑛+1,𝑥 = 𝑡𝑛,𝑥 + 𝑐𝑒
𝑡𝑛+𝑡𝑛+1

2

is Darboux integrable since it admits an 𝑥-integral

𝑊 = 𝑒
𝑡𝑛+1−𝑡𝑛

2 + 𝑒
𝑡𝑛+1−𝑡𝑛+2

2

and an 𝑛-integral (see [3])

𝐼 = 𝑡𝑛,𝑥𝑥 −
𝑡2𝑛,𝑥
2

.

Darboux integrable equations and systems can be effectively studied and classified by means
of characteristic Lie rings.

The notion of a characteristic Lie algebra was introduced in work [1] for systems of hyperbolic
equations of form

𝑢𝑖
𝑥𝑦 = 𝐹 𝑖(𝑢), 𝑖 = 1, 2, . . . , 𝑛. (1.3)

In works [1], [2], a criterion for the Darboux integrability was proved for nonlinear hyperbolic
systems of equations. It was shown that system (1.3) possesses a complete set of integrals if and
only if its characteristic algebra is finite dimensional. In work [4], a criterion of the Darboux
integrability was obtained for nonlinear hyperbolic systems of equations of form

𝑢𝑥𝑦 = 𝐹 (𝑢, 𝑢𝑥, 𝑢𝑦) (𝑢𝑖
𝑥𝑦 = 𝐹 𝑖, 𝑖 = 1, 2, . . . , 𝑛).

In works [5], [6], a notion of a characteristic ring of a discrete equation was introduced and
by means of this notions, Darboux integrable differential-difference equations of form 𝑢𝑖+1,𝑥 =
𝑓(𝑢𝑖, 𝑢𝑖+1, 𝑢𝑖,𝑥) were classified. Works [7], [8] were devoted to constructing a complete set of
integrals for a hyperbolic system. In work [9] a conjecture was formulated: a system of equations
(1.1) possesses a complete set of 𝑥- and 𝑛-integrals if and only if the characteristic ring in each
characteristic direction is finite-dimensional.

In the present work we prove that system (1.1) possesses 𝑁 independent 𝑥-integrals if and
only if the characteristic ring in this characteristic direction is finite-dimensional.

The paper is organized as follows. Section 2 provides the proof of the main result formulated
in Theorem 2.1 for system (1.1) as 𝑁 = 2. In Section 3 we give a scheme of the proof of the
main result for an arbitrary 𝑁 (Theorem 3.1). In Conclusion we discuss the results.



24 A.V. ZHIBER, M.N. KUZNETSOVA

2. Characteristic rings. Case 𝑁 = 2

Here we study the case 𝑁 = 2:

𝑟𝑛+1,𝑥 = ℎ̄(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, 𝑟𝑛,𝑥), 𝑟𝑛 = (𝑟1𝑛, 𝑟
2
𝑛), ℎ̄ = (ℎ1, ℎ2), 𝑛 ∈ Z. (2.1)

Let us find Lie 𝑥-ring of system (2.1). On the set of locally-analytic functions depending on
the variables 𝑥, 𝑟𝑛,𝑥, 𝑟𝑛, 𝑟𝑛+1, . . . the operator of total differentiation in 𝑥 reads as

𝐷𝑥 =
𝜕

𝜕𝑥
+ 𝑟1𝑛,𝑥𝑥

𝜕

𝜕𝑟1𝑛,𝑥
+ 𝑟2𝑛,𝑥𝑥

𝜕

𝜕𝑟2𝑛,𝑥
+

∞∑︁
𝑘=0

(︂
𝑟1𝑛+𝑘,𝑥

𝜕

𝜕𝑟1𝑛+𝑘

+ 𝑟2𝑛+𝑘,𝑥

𝜕

𝜕𝑟2𝑛+𝑘

)︂
. (2.2)

By system of equations (2.1) we obtain the relations

𝑟𝑛+𝑘,𝑥 = ℎ̄𝑛+𝑘(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝑘, 𝑟𝑛,𝑥), 𝑘 = 1, 2, . . . (2.3)

We represent operator (2.2) as

𝐷𝑥 = 𝑟1𝑛,𝑥𝑥𝑌1 + 𝑟2𝑛,𝑥𝑥𝑌2 + 𝑌3, (2.4)

where

𝑌1 =
𝜕

𝜕𝑟1𝑛,𝑥
, 𝑌2 =

𝜕

𝜕𝑟2𝑛,𝑥
, 𝑌3 =

𝜕

𝜕𝑥
+

∞∑︁
𝑘=0

(︂
𝑟1𝑛+𝑘,𝑥

𝜕

𝜕𝑟1𝑛+𝑘

+ 𝑟2𝑛+𝑘,𝑥

𝜕

𝜕𝑟2𝑛+𝑘

)︂
.

According formulae (2.3), the vector field 𝑌3 can be represented as

𝑌3 =
𝜕

𝜕𝑥
+ 𝑟1𝑛,𝑥

𝜕

𝜕𝑟1𝑛
+ 𝑟2𝑛,𝑥

𝜕

𝜕𝑟2𝑛
+

∞∑︁
𝑘=1

(︂
𝛼𝑘

𝜕

𝜕𝑟1𝑛+𝑘

+ 𝛽𝑘
𝜕

𝜕𝑟2𝑛+𝑘

)︂
,

where ℎ̄𝑛+𝑘 = (𝛼𝑘, 𝛽𝑘). We note that

𝛼𝑘 = 𝛼𝑘(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝑘, 𝑟𝑛,𝑥), 𝛽𝑘 = 𝛽𝑘(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝑘, 𝑟𝑛,𝑥).

According (2.4), the characteristic equation

𝐷𝑊 (𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝑚) = 0 (2.5)

is equivalent to system

𝑌1𝑊 = 0, 𝑌2𝑊 = 0, 𝑌3𝑊 = 0. (2.6)

With equations (2.6), a Lie ring generated by the vectors fields 𝑌1, 𝑌2 and 𝑌3 is naturally
associated. We shall call this ring 𝒳 a characteristic Lie 𝑥-ring of system of equations (2.1).
Solutions of equations (2.5) will be called 𝑥-integrals.

The following statement holds.

Lemma 2.1. If system of equations (2.1) possesses two essentially independent 𝑥-integrals,
then the ring 𝒳 is finite-dimensional.

Proof. Assume that system (2.1) possesses a pair of essentially independent integrals of the
same order

𝜔(𝑥, 𝑛, 𝑟𝑛, . . . , 𝑟𝑛+𝑚), 𝑊 (𝑥, 𝑛, 𝑟𝑛, . . . , 𝑟𝑛+𝑚),

that is, ⃒⃒⃒⃒
⃒⃒⃒⃒ 𝜕𝜔

𝜕𝑟1𝑛+𝑚

𝜕𝜔

𝜕𝑟2𝑛+𝑚

𝜕𝑊

𝜕𝑟1𝑛+𝑚

𝜕𝑊

𝜕𝑟2𝑛+𝑚

⃒⃒⃒⃒
⃒⃒⃒⃒ ̸= 0.

Then the identity holds:

𝑟𝑛+𝑚 = 𝑎̄𝑛(𝜔,𝑊, 𝑥, 𝑛, 𝑟𝑛, . . . , 𝑟𝑛+𝑚−1). (2.7)
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We let 𝜔𝑛 = 𝜔, 𝑊𝑛 = 𝑊 . Then by (2.7) we obtain the relations

𝑟𝑛+𝑚+𝑘 = 𝐴𝑘(𝑥, 𝑛, 𝜔𝑛,𝑊𝑛, . . . , 𝜔𝑛+𝑘,𝑊𝑛+𝑘, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝑚−1), 𝑘 = 0, 1, 2, . . . . (2.8)

Thus, taking into consideration formulae (2.8), we can pass from independent variables

𝑟𝑛,𝑥, 𝑥, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝑠, . . . (2.9)

to new variables

𝑟𝑛,𝑥, 𝑥, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝑚−1, 𝜔𝑛,𝑊𝑛, . . . , 𝜔𝑛+𝑘,𝑊𝑛+𝑘, . . . . (2.10)

In new variables (2.10), the operator 𝑌3 is written as

𝑌3 =
𝜕

𝜕𝑥
+

𝑚−1∑︁
𝑘=0

(︂
𝑟1𝑛+𝑘,𝑥

𝜕

𝜕𝑟1𝑛+𝑘

+ 𝑟2𝑛+𝑘,𝑥

𝜕

𝜕𝑟2𝑛+𝑘

)︂
.

Under the change of variables, the relation [𝑋,𝑍] =
[︀
𝑋,𝑍

]︀
holds, where the bar means an

initial operator in new variables, and the Lie ring generated by the operators 𝑌1, 𝑌2 and 𝑌3 is
finite-dimensional. This is the initial Lie 𝑥-ring 𝒳 is finite-dimensional.

Let initial system (2.1) possesses a pair of essentially independent integrals of different min-
imal order

𝜔(𝑥, 𝑛, 𝑟𝑛, . . . , 𝑟𝑛+𝑙), 𝑊 (𝑥, 𝑛, 𝑟𝑛, . . . , 𝑟𝑛+𝑚), 𝑙 < 𝑚. (2.11)

The latter means that the integrals

𝜔(𝑥, 𝑛 + 𝑚− 𝑙, 𝑟𝑛+𝑚−𝑙, . . . , 𝑟𝑛+𝑚), 𝑊 (𝑥, 𝑛, 𝑟𝑛, . . . , 𝑟𝑛+𝑚)

are essentially independent. Passing then from variables (2.9) to the variables

𝑟𝑛,𝑥, 𝑥, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝑚−1, 𝜔𝑛+𝑚−𝑙, 𝜔𝑛+𝑚−𝑙+1, . . . ,𝑊𝑛,𝑊𝑛+1, . . . ,

as above, we obtain that the ring 𝒳 is finite dimensional. The proof is complete.

Let us consider the issue on essentially independence of two integrals. Suppose that integrals
(2.11) are essentially dependent. This means that the identity holds:

𝑊 (𝑥, 𝑛, 𝑟𝑚, . . . , 𝑟𝑛+𝑚) = 𝐹 (𝑥, 𝑛, 𝑟𝑛, . . . , 𝑟𝑛+𝑚−1, 𝜔(𝑥, 𝑛 + 𝑚− 𝑙, 𝑟𝑛+𝑚−𝑙, . . . , 𝑟𝑛+𝑚)).

Hence,

𝑊 =
∞∑︁
𝑘=0

𝐹𝑘(𝑥, 𝑛, 𝑟𝑛, . . . , 𝑟𝑛+𝑚−1)(𝜔 − 𝜔0)𝑘.

Since 𝜔 and 𝑊 are integrals of minimal order we obtain that

𝐹𝑘 = Φ𝑘 (𝑥, 𝑛, 𝜔(𝑥, 𝑛, 𝑟𝑛, . . . , 𝑟𝑛+𝑙), . . . , 𝜔(𝑥, 𝑛 + 𝑚− 𝑙, 𝑟𝑛+𝑚−𝑙, . . . , 𝑟𝑛+𝑚−1)) .

Thus,
𝑊 = Φ(𝑥, 𝑛, 𝜔𝑛, 𝜔𝑛+1, . . . , 𝜔𝑛+𝑚−𝑙)

and initial system (1.1) possesses just one 𝑥-integrals.
We proceed to inverse problem. Let the ring 𝒳 be finite-dimensional. It is clear that dim𝒳 >

5.
We consider the case dim𝒳 = 5. Then the basis of the ring 𝒳 is defined by the vector fields

𝑌1, 𝑌2, 𝑌3, 𝑌13 = [𝑌1, 𝑌3], 𝑌23 = [𝑌2, 𝑌3]. Since

𝑌3 =
𝜕

𝜕𝑥
+ 𝑟1𝑛,𝑥

𝜕

𝜕𝑟1𝑛
+ 𝑟2𝑛,𝑥

𝜕

𝜕𝑟2𝑛

+
∞∑︁
𝑘=1

(︂
𝛼𝑘(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝑘, 𝑟𝑛,𝑥)

𝜕

𝜕𝑟1𝑛+𝑘

+𝛽𝑘(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝑘, 𝑟𝑛,𝑥)
𝜕

𝜕𝑟2𝑛+𝑘

)︂
,

(2.12)
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we have

[𝑌1, 𝑌3] =
𝜕

𝜕𝑟1𝑛
+

∞∑︁
𝑘=1

(︂
𝜕𝛼𝑘

𝜕𝑟1𝑛,𝑥

𝜕

𝜕𝑟1𝑛+𝑘

+
𝜕𝛽𝑘

𝜕𝑟1𝑛,𝑥

𝜕

𝜕𝑟2𝑛+𝑘

)︂
,

[𝑌2, 𝑌3] =
𝜕

𝜕𝑟2𝑛
+

∞∑︁
𝑘=1

(︂
𝜕𝛼𝑘

𝜕𝑟2𝑛,𝑥

𝜕

𝜕𝑟1𝑛+𝑘

+
𝜕𝛽𝑘

𝜕𝑟2𝑛,𝑥

𝜕

𝜕𝑟2𝑛+𝑘

)︂
.

Then we replace vector field (2.12) by

𝑌3 = 𝑌3 − 𝑟1𝑛,𝑥𝑌13 − 𝑟2𝑛,𝑥𝑌23.

Thus, we have the following bases:

𝑌1 =
𝜕

𝜕𝑟1𝑛,𝑥
, 𝑌2 =

𝜕

𝜕𝑟2𝑛,𝑥
, 𝑌3 =

𝜕

𝜕𝑥
+

∞∑︁
𝑘=1

(︂
𝛼̃𝑘

𝜕

𝜕𝑟1𝑛+𝑘

+ 𝛽𝑘
𝜕

𝜕𝑟2𝑛+𝑘

)︂
,

𝑌13 =
𝜕

𝜕𝑟1𝑛
+

∞∑︁
𝑘=1

(︂
𝛾𝑘

𝜕

𝜕𝑟1𝑛+𝑘

+ 𝛿𝑘
𝜕

𝜕𝑟2𝑛+𝑘

)︂
, 𝑌23 =

𝜕

𝜕𝑟2𝑛
+

∞∑︁
𝑘=1

(︂
𝑝𝑘

𝜕

𝜕𝑟1𝑛+𝑘

+ 𝑞𝑘
𝜕

𝜕𝑟2𝑛+𝑘

)︂
.

(2.13)

It is easy to see that the coefficients 𝛼̃𝑘, 𝛽𝑘, 𝛾𝑘, 𝛿𝑘, 𝑝𝑘, 𝑞𝑘 are independent of the variables 𝑟1𝑛,𝑥
and 𝑟2𝑛,𝑥 and they are the functions on the variables 𝑥, 𝑛, 𝑟𝑛, . . . , 𝑟𝑛+𝑘 otherwise dim𝒳 > 5.
According (2.13), characteristic equation (2.5) for 𝑥-integral 𝑊 (𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1) is reduced to
system of equations (︂

𝜕

𝜕𝑥
+ 𝛼̃1

𝜕

𝜕𝑟1𝑛+1

+ 𝛽1
𝜕

𝜕𝑟2𝑛+1

)︂
𝑊 = 0,(︂

𝜕

𝜕𝑟1𝑛
+ 𝛾1

𝜕

𝜕𝑟1𝑛+1

+ 𝛿1
𝜕

𝜕𝑟2𝑛+1

)︂
𝑊 = 0, (2.14)(︂

𝜕

𝜕𝑟2𝑛
+ 𝑝1

𝜕

𝜕𝑟1𝑛+1

+ 𝑞1
𝜕

𝜕𝑟2𝑛+1

)︂
𝑊 = 0.

Since the number of the independent variables is equal to five: (𝑥, 𝑟1𝑛, 𝑟
2
𝑛, 𝑟

1
𝑛+1, 𝑟

2
𝑛+1), while the

number of the equations is three, then system (2.14) possesses two functionally independent
solutions 𝜔(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1) and 𝑊 (𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1) of first order.

Then we consider the ring 𝒳 of dimnension 6. Without loss of generality we can assume that
the base is generated by vector fields (2.13) and a field of form

𝑌4 =
𝜕

𝜕𝑟1𝑛+𝑘

+ 𝑠𝑘
𝜕

𝜕𝑟2𝑛+𝑘

+
∞∑︁

𝑙=𝑘+1

(︂
𝑠𝑙

𝜕

𝜕𝑟1𝑛+𝑙

+ 𝑑𝑙
𝜕

𝜕𝑟2𝑛+𝑙

)︂
, 𝑘 > 1. (2.15)

It is clear that the coefficients of the operator 𝑌4 are independent of the variables 𝑟1𝑛,𝑥 and 𝑟2𝑛,𝑥.
Otherwise the dimension of the ring would exceed 6.

In the same way, the coefficients of vector fields (2.13) are independent of 𝑟1𝑛,𝑥 and 𝑟2𝑛,𝑥.
If 𝑘 > 2, we arrive at system (2.14), which possesses two functionally independent solutions

of first order.
Let 𝑘 = 1. Characteristic equation (2.5) for 𝑥-integral of first order is reduced to a system

consisting of equations (2.14) and equation (see (2.15))(︂
𝜕

𝜕𝑟1𝑛+1

+ 𝑠1
𝜕

𝜕𝑟2𝑛+1

)︂
𝑊 = 0. (2.16)

Since the number of independent variables is equal to five: (𝑥, 𝑟1𝑛, 𝑟
2
𝑛, 𝑟

1
𝑛+1, 𝑟

2
𝑛+1), while the

number of equations is equal to four, system (2.14), (2.16) possesses one solution 𝜔(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1)
of first order.
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Now we consider equation (2.5) for 𝑥-integral of second order(︂
𝜕

𝜕𝑥
+ 𝛼̃1

𝜕

𝜕𝑟1𝑛+1

+ 𝛽1
𝜕

𝜕𝑟2𝑛+1

+ 𝛼̃2
𝜕

𝜕𝑟1𝑛+2

+ 𝛽2
𝜕

𝜕𝑟2𝑛+2

)︂
𝑊 = 0,(︂

𝜕

𝜕𝑟1𝑛
+ 𝛾1

𝜕

𝜕𝑟1𝑛+1

+ 𝛿1
𝜕

𝜕𝑟2𝑛+1

+ 𝛾2
𝜕

𝜕𝑟1𝑛+2

+ 𝛿2
𝜕

𝜕𝑟2𝑛+2

)︂
𝑊 = 0,(︂

𝜕

𝜕𝑟2𝑛
+ 𝑝1

𝜕

𝜕𝑟1𝑛+1

+ 𝑞1
𝜕

𝜕𝑟2𝑛+1

+ 𝑝2
𝜕

𝜕𝑟1𝑛+2

+ 𝑞2
𝜕

𝜕𝑟2𝑛+2

)︂
𝑊 = 0,(︂

𝜕

𝜕𝑟1𝑛+1

+ 𝑠1
𝜕

𝜕𝑟2𝑛+1

+ 𝑠2
𝜕

𝜕𝑟1𝑛+2

+ 𝑑2
𝜕

𝜕𝑟2𝑛+2

)︂
𝑊 = 0.

(2.17)

Since the number of independent variables is equal to seven: (𝑥, 𝑟𝑛, 𝑟𝑛+1, 𝑟𝑛+2), and the number
of the equations in system (2.17) is equal to four, the latter system possesses three functionally
independent solutions 𝜔(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1), 𝜔(𝑥, 𝑛+ 1, 𝑟𝑛+1, 𝑟𝑛+2) and 𝑊 (𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, 𝑟𝑛+2). Thus,
𝑥-integrals 𝜔 = 𝜔(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1) and 𝑊 (𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, 𝑟𝑛+2) define an entire family of solutions
to characteristic equation (2.5).

We proceed to the case dim𝒳 = 7. Here the basis of Lie ring 𝒳 is generated by the vector
fields, which, according to (2.13), (2.15), are of form:

𝑌1 =
𝜕

𝜕𝑥
+

∞∑︁
𝑘=1

(︂
𝛼𝑘

𝜕

𝜕𝑟1𝑛+𝑘

+ 𝛽𝑘
𝜕

𝜕𝑟2𝑛+𝑘

)︂
,

𝑌2 =
𝜕

𝜕𝑟1𝑛
+

∞∑︁
𝑘=1

(︂
𝛾𝑘

𝜕

𝜕𝑟1𝑛+𝑘

+ 𝛿𝑘
𝜕

𝜕𝑟2𝑛+𝑘

)︂
,

𝑌3 =
𝜕

𝜕𝑟2𝑛
+

∞∑︁
𝑘=1

(︂
𝑝𝑘

𝜕

𝜕𝑟1𝑛+𝑘

+ 𝑞𝑘
𝜕

𝜕𝑟2𝑛+𝑘

)︂
,

𝑌4 =
𝜕

𝜕𝑟1𝑛+𝑘

+ 𝑠𝑘
𝜕

𝜕𝑟2𝑛+𝑘

+
∞∑︁

𝑙=𝑘+1

(︂
𝑠𝑙

𝜕

𝜕𝑟1𝑛+𝑙

+ 𝑑𝑙
𝜕

𝜕𝑟2𝑛+𝑙

)︂
,

𝑌5 = 𝜅𝑙
𝜕

𝜕𝑟1𝑛+𝑙

+ 𝜇𝑙
𝜕

𝜕𝑟2𝑛+𝑙

+
∞∑︁

𝑠=𝑛+𝑙+1

(︂
𝜅𝑠

𝜕

𝜕𝑟1𝑛+𝑠

+ 𝜆𝑠
𝜕

𝜕𝑟2𝑛+𝑠

)︂
.

Here the coefficients of the vector fields 𝑌𝑖 are independent of the variables 𝑟1𝑛,𝑥, 𝑟2𝑛,𝑥 and 𝑙 > 𝑘.
As 𝑘 > 2, the system of equations

𝑌𝑖𝑊 = 0, 𝑖 = 1, 2, 3, 4, 5 (2.18)

possesses two functionally independent solutions of first order and any other solution is a
function of its shifts, that is,

𝑊 = 𝑊 (𝑥, 𝑛, 𝜔1, 𝜔2, 𝜔1
1, 𝜔

2
1, . . . , 𝜔

1
𝑠 , 𝜔

2
𝑠),

where
𝜔1 = 𝜔1(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1), 𝜔2 = 𝜔2(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1),

𝜔𝑚
𝑖 = 𝜔𝑚

𝑖 (𝑥, 𝑛 + 𝑖, 𝑟𝑛+𝑖, 𝑟𝑛+𝑖+1), 𝑚 = 1, 2, 𝑖 = 1, 2, . . . , 𝑠.

We consider the case 𝑘 = 1. If 𝑙 > 3, then we arrive at system (2.17). Thus, we have an
𝑥-integral of the first order and an 𝑥-integral of the second order. They define an entire family
of solutions to system (2.18).

Let 𝑙 = 2. Then, as above, it is easy to show that sytem (2.18) possesses two solutions
𝜔1(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1) and 𝜔2(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, 𝑟𝑛+2), which define all solutions of characteristic equation
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(2.5). It remains to consider the case 𝑙 = 1 (as 𝑘 = 1). If a determinant vanishes:⃒⃒⃒⃒
1 𝑠1

𝜅1 𝜇1

⃒⃒⃒⃒
= 0,

then we replace the operator 𝑌5 by ˜̃𝑌5 = 𝑌5 − 𝜅1𝑌4. The latter reads as

˜̃𝑌5 = 𝜅𝑙
𝜕

𝜕𝑟1𝑛+𝑙

+ 𝜇𝑙
𝜕

𝜕𝑟2𝑛+𝑙

+
∞∑︁

𝑠=𝑛+1+𝑙

(︂
𝜅𝑠

𝜕

𝜕𝑟1𝑛+𝑠

+ 𝜇𝑠
𝜕

𝜕𝑟2𝑛+𝑠

)︂
,

where 𝑙 > 2. This case has been studied above.
If ⃒⃒⃒⃒

1 𝑠1

𝜅1 𝜇1

⃒⃒⃒⃒
̸= 0,

then we can replace the operators 𝑌4 and 𝑌5 by the following ones:

˜̃𝑌4 =
𝜕

𝜕𝑟1𝑛+1

+
∞∑︁
𝑙=2

(︂
𝑠𝑙

𝜕

𝜕𝑟1𝑛+𝑙

+ 𝑑𝑙
𝜕

𝜕𝑟2𝑛+𝑙

)︂
,

˜̃𝑌5 =
𝜕

𝜕𝑟2𝑛+1

+
∞∑︁
𝑙=2

(︂
𝜅𝑙

𝜕

𝜕𝑟1𝑛+𝑙

+ 𝜇𝑙
𝜕

𝜕𝑟2𝑛+𝑙

)︂
.

Thus, we have a system of equations

𝑌1𝑊 = 0, 𝑌2𝑊 = 0, 𝑌3𝑊 = 0, ˜̃𝑌4𝑊 = 0, ˜̃𝑌5𝑊 = 0. (2.19)

For second order solutions 𝑊 = 𝑊 (𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, 𝑟𝑛+2) the system contains seven independent
variables 𝑥, 𝑟𝑛, 𝑟𝑛+1, 𝑟𝑛+2, while the number of equations is five. Therefore, there exist two
independent integrals of second order.

It is clear that in this case system (2.19) possesses no integrals of the first order. In the same
way we consider the case when dim𝒳 > 7. Thus, we have proved the following statement.

Lemma 2.2. If the ring 𝒳 is finite-dimensional, there exist two independent integrals of
minimal order. Any other integral is a function of their shifts.

Lemmata 2.1, 2.2 now imply the following theorem.

Theorem 2.1. System of equations (2.1) possesses two essentially independent 𝑥-integrals
if and only if the ring 𝒳 is finite-dimensional.

3. Characteristic rings

Let us determine the characteristic ring in the direction 𝑥 for system (1.1). On the set of
locally analytic function functions depending on the variables 𝑥, 𝑟𝑛,𝑥, 𝑟𝑛, 𝑟𝑛+1, . . . the operator
of total differentiation in 𝑥 reads as

𝐷𝑥 =
𝜕

𝜕𝑥
+

𝑁∑︁
𝑖=1

𝑟𝑖𝑛,𝑥𝑥
𝜕

𝜕𝑟𝑖𝑛,𝑥
+

∞∑︁
𝑘=0

𝑁∑︁
𝑖=1

(︂
𝑟𝑖𝑛+𝑘,𝑥

𝜕

𝜕𝑟𝑖𝑛+𝑘

)︂
. (3.1)

System of equations (1.1) yield the relations

𝑟𝑛+𝑘,𝑥 = ℎ̄𝑛+𝑘(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝑘, 𝑟𝑛,𝑥), 𝑘 = 1, 2, . . . . (3.2)

We represent operator (3.1) as

𝐷𝑥 =
𝑁∑︁
𝑖=1

𝑟𝑖𝑛,𝑥𝑥𝑌𝑖 + 𝑌𝑁+1, (3.3)
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where

𝑌𝑖 =
𝜕

𝜕𝑟𝑖𝑛,𝑥
, 𝑌𝑁+1 =

𝜕

𝜕𝑥
+

∞∑︁
𝑘=0

(︂
𝑟1𝑛+𝑘,𝑥

𝜕

𝜕𝑟1𝑛+𝑘

+ · · · + 𝑟𝑁𝑛+𝑘,𝑥

𝜕

𝜕𝑟𝑁𝑛+𝑘

)︂
.

According to formulae (3.2), the vector field 𝑌𝑁+1 can be represented as

𝑌𝑁+1 =
𝜕

𝜕𝑥
+ 𝑟1𝑛,𝑥

𝜕

𝜕𝑟1𝑛
+ · · · + 𝑟𝑁𝑛,𝑥

𝜕

𝜕𝑟𝑁𝑛
+

∞∑︁
𝑘=1

(︂
𝛼1
𝑘

𝜕

𝜕𝑟1𝑛+𝑘

+ · · · + 𝛼𝑁
𝑘

𝜕

𝜕𝑟𝑁𝑛+𝑘

)︂
,

where ℎ̄𝑛+𝑘 = (𝛼1
𝑘, . . . , 𝛼

𝑁
𝑘 ). We note that

𝛼𝑖
𝑘 = 𝛼𝑖

𝑘(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝑘, 𝑟𝑛,𝑥).

According (3.3), the characteristic equation

𝐷𝑥𝑊 (𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝑚) = 0 (3.4)

is equivalent to the system

𝑌𝑖𝑊 = 0, 𝑖 = 1, 2, . . . , 𝑁,𝑁 + 1. (3.5)

With equations (3.5), a Lie ring 𝒳 generated by the vectors fields 𝑌𝑖, 𝑖 = 1, 2, . . . , 𝑁,𝑁 + 1 is
naturally associated. We shall call this ring 𝒳 a characteristic Lie 𝑥-ring of system of equations
(1.1). Solutions of equations (3.4) will be called 𝑥-integrals. The following statement holds.

Lemma 3.1. If system of equations (1.1) possesses 𝑁 essentially independent 𝑥-integrals,
then the ring 𝒳 is finite-dimensional.

Proof. Let system (1.1) admits 𝑁 essentially independent integrals of the same order
𝜔𝑖(𝑥, 𝑛, 𝑟𝑛, . . . , 𝑟𝑛+𝑚), that is, ⃒⃒⃒⃒

⃒⃒⃒⃒
⃒⃒⃒
𝜕𝜔1

𝜕𝑟1𝑛+𝑚

𝜕𝜔1

𝜕𝑟2𝑛+𝑚

· · · 𝜕𝜔1

𝜕𝑟𝑁𝑛+𝑚

· · · · · · · · · · · ·
𝜕𝜔𝑁

𝜕𝑟1𝑛+𝑚

𝜕𝜔𝑁

𝜕𝑟2𝑛+𝑚

· · · 𝜕𝜔𝑁

𝜕𝑟𝑁𝑛+𝑚

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒ ̸= 0.

Then the identity
𝑟𝑛+𝑚 = 𝑎̄𝑛(𝜔1, . . . , 𝜔𝑁 , 𝑥, 𝑛, 𝑟𝑛, . . . , 𝑟𝑛+𝑚−1) (3.6)

holds. We let 𝜔1
𝑛 = 𝜔1, . . . , 𝜔𝑁

𝑛 = 𝜔𝑁 . Then by (3.6) we obtain the relations

𝑟𝑛+𝑚+𝑘 = 𝐴𝑘(𝑥, 𝑛, 𝜔1
𝑛, . . . , 𝜔

𝑁
𝑛 , . . . , 𝜔1

𝑛+𝑘, . . . , 𝜔
𝑁
𝑛+𝑘, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝑚−1), (3.7)

𝑘 = 0, 1, 2, . . .. Thus, taking into consideration formulae (3.7), we pass from independent
variables

𝑟𝑛,𝑥, 𝑥, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝑠, . . . (3.8)

to new variables

𝑟𝑛,𝑥, 𝑥, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝑚−1, 𝜔
1
𝑛, . . . , 𝜔

𝑁
𝑛 , . . . , 𝜔1

𝑛+𝑘, . . . , 𝜔
𝑁
𝑛+𝑘. (3.9)

In new variables (3.9), the operator 𝑌𝑁+1 is written as

𝑌𝑁+1 =
𝜕

𝜕𝑥
+

𝑚−1∑︁
𝑘=0

(︂
𝑟1𝑛+𝑘,𝑥

𝜕

𝜕𝑟1𝑛+𝑘

+ · · · + 𝑟𝑁𝑛+𝑘,𝑥

𝜕

𝜕𝑟𝑁𝑛+𝑘

)︂
.

Under the change of variables, the relation holds: [𝑋,𝑍] =
[︀
𝑋,𝑍

]︀
, where the bar denotes

the initial operator in new variables and the characteristic ring generated by the operators
𝑌1, 𝑌2, . . . , 𝑌𝑁 , 𝑌𝑁+1 is finite-dimensional. This is why initial characteristic ring 𝒳 is finite-
dimensional.
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Let initial system of equations (1.1) possesses 𝑁 essentially independent integrals

𝜔1(𝑥, 𝑛, 𝑟𝑛, . . . , 𝑟𝑛+𝑙1), . . . , 𝜔
𝑁(𝑥, 𝑛, 𝑟𝑛, . . . , 𝑟𝑛+𝑙𝑁 ), (3.10)

of different minimal orders 𝑙1 6 𝑙2 6 . . . 6 𝑙𝑁 . The latter means that the integrals (we denote
𝑙𝑁 = 𝑀)

𝜔1(𝑥, 𝑛 + 𝑀 − 𝑙1, 𝑟𝑛+𝑀−𝑙1 , . . . , 𝑟𝑛+𝑀),

𝜔𝑖(𝑥, 𝑛 + 𝑀 − 𝑙𝑖, 𝑟𝑛+𝑀−𝑙𝑖 , . . . , 𝑟𝑛+𝑀), 𝑖 = 1, 2, . . . , 𝑁 − 1,

𝜔𝑁(𝑥, 𝑛, 𝑟𝑛, . . . , 𝑟𝑛+𝑀)

are essentially independent. Then, passing from variables (3.8) to the variables

𝑟𝑛,𝑥, 𝑥, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝑚−1, 𝜔
1
𝑛+𝑚−𝑙1

, 𝜔1
𝑛+𝑚−𝑙1+1, . . . , 𝜔

𝑁
𝑛 , 𝜔𝑁

𝑛+1,

as above we obtain that the characteristic ring 𝒳 is finite-dimensional. The proof is complete.

Now we consider an inverse problem. The following lemma holds.

Lemma 3.2. If the ring 𝒳 is finite-dimensional, then there exist 𝑁 independent 𝑥-integrals
of minimal order. Any other integral is a function of its shifts.

The scheme of the proof is as follows. Let the ring 𝒳 be finite-dimensional. It is clear that
dim𝒳 > 2𝑁 + 1. We consider the case dim𝒳 = 2𝑁 + 1. Then the basis of the ring 𝒳 is given
by the vector fields

𝑌1, 𝑌2, . . . , 𝑌𝑁 , 𝑌𝑁+1,

𝑌1,𝑁+1 = [𝑌1, 𝑌𝑁+1] , 𝑌2,𝑁+1 = [𝑌2, 𝑌𝑁+1] , . . . , 𝑌𝑁,𝑁+1 = [𝑌𝑁 , 𝑌𝑁+1] .

Since

𝑌𝑁+1 =
𝜕

𝜕𝑥
+

𝑁∑︁
𝑖=1

𝑟𝑖𝑛,𝑥
𝜕

𝜕𝑟𝑖𝑛
+

∞∑︁
𝑘=1

(︂
𝛼1
𝑘(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝑘, 𝑟𝑛,𝑥)

𝜕

𝜕𝑟1𝑛+𝑘

+ · · ·

· · · + 𝛼𝑁
𝑘 (𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝑘, 𝑟𝑛,𝑥)

𝜕

𝜕𝑟𝑁𝑛+𝑘

)︂
,

then

[𝑌1, 𝑌𝑁+1] =
𝜕

𝜕𝑟1𝑛
+

∞∑︁
𝑘=1

(︂
𝜕𝛼1

𝑘

𝜕𝑟1𝑛,𝑥

𝜕

𝜕𝑟1𝑛+𝑘

+ · · · +
𝜕𝛼𝑁

𝑘

𝜕𝑟1𝑛,𝑥

𝜕

𝜕𝑟𝑁𝑛+𝑘

)︂
,

[𝑌𝑖, 𝑌𝑁+1] =
𝜕

𝜕𝑟𝑖𝑛
+

∞∑︁
𝑘=1

(︂
𝜕𝛼1

𝑘

𝜕𝑟𝑖𝑛,𝑥

𝜕

𝜕𝑟1𝑛+𝑘

+ · · · +
𝜕𝛼𝑁

𝑘

𝜕𝑟𝑖𝑛,𝑥

𝜕

𝜕𝑟𝑁𝑛+𝑘

)︂
, 𝑖 = 1, 2, . . . , 𝑁.

We replace the vector field 𝑌𝑁+1 by

𝑌𝑁+1 = 𝑌𝑁+1 − 𝑟1𝑛,𝑥𝑌1,𝑁+1 − 𝑟2𝑛,𝑥𝑌2,𝑁+1 − · · · − 𝑟𝑁𝑛,𝑥𝑌𝑁,𝑁+1.
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Thus, we have the following basis:

𝑌1 =
𝜕

𝜕𝑟1𝑛,𝑥
, 𝑌2 =

𝜕

𝜕𝑟2𝑛,𝑥
, . . . , 𝑌𝑁 =

𝜕

𝜕𝑟𝑁𝑛,𝑥
,

𝑌𝑁+1 =
𝜕

𝜕𝑥
+

∞∑︁
𝑘=1

(︂
𝛼̃1
𝑘

𝜕

𝜕𝑟1𝑛+𝑘

+ · · · + 𝛼̃𝑁
𝑛+𝑘

)︂
,

𝑌1,𝑁+1 =
𝜕

𝜕𝑟1𝑛
+

∞∑︁
𝑘=1

(︂
𝑝11,𝑘

𝜕

𝜕𝑟1𝑛+𝑘

+ · · · + 𝑝𝑁1,𝑘
𝜕

𝜕𝑟𝑁𝑛+𝑘

)︂
,

𝑌2,𝑁+1 =
𝜕

𝜕𝑟2𝑛
+

∞∑︁
𝑘=1

(︂
𝑝12,𝑘

𝜕

𝜕𝑟1𝑛+𝑘

+ · · · + 𝑝𝑁2,𝑘
𝜕

𝜕𝑟𝑁𝑛+𝑘

)︂
,

. . .

𝑌𝑁,𝑁+1 =
𝜕

𝜕𝑟𝑁𝑛
+

∞∑︁
𝑘=1

(︂
𝑝1𝑁,𝑘

𝜕

𝜕𝑟1𝑛+𝑘

+ · · · + 𝑝𝑁𝑁,𝑘

𝜕

𝜕𝑟𝑁𝑛+𝑘

)︂
.

(3.11)

It is easy to see that the coefficients 𝑝𝑖𝑗,𝑘, 𝑖 = 1, 2, . . . , 𝑁 , 𝑗 = 1, 2, . . . , 𝑁 are independent of the
variables 𝑥, 𝑛, 𝑟𝑛, . . . , 𝑟𝑛+𝑘, otherwise dim𝒳 > 2𝑁 + 1.

According (3.11), characteristic equation (3.4) for 𝑥-integral 𝑊 (𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1) is reduced to
the system of equations(︂

𝜕

𝜕𝑥
+ 𝛼̃1

1

𝜕

𝜕𝑟1𝑛+1

+ · · · + 𝛼̃𝑁
1

𝜕

𝜕𝑟𝑁𝑛+1

)︂
𝑊 = 0,(︂

𝜕

𝜕𝑟1𝑛
+ 𝑝11,1

𝜕

𝜕𝑟1𝑛+1

+ · · · + 𝑝𝑁1,1
𝜕

𝜕𝑟𝑁𝑛+1

)︂
𝑊 = 0,

. . .(︂
𝜕

𝜕𝑟𝑁𝑛
+ 𝑝1𝑁,1

𝜕

𝜕𝑟1𝑛+1

+ · · · + 𝑝𝑁𝑁,1

𝜕

𝜕𝑟𝑁𝑛+1

)︂
𝑊 = 0.

(3.12)

Since the number of independent variables is equal to 2𝑁 + 1: 𝑥, 𝑟1𝑛, . . . , 𝑟
𝑁
𝑛 , 𝑟

1
𝑛+1, . . . , 𝑟

𝑁
𝑛+1,

and the number of equations is equal to 𝑁 + 1, then system (3.12) possesses 𝑁 functionally
independent solutions

𝜔1(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1), . . . , 𝜔
𝑁(𝑥, 𝑛, 𝑟𝑛, 𝑟𝑛+1)

of first order.
Similar to the proof Lemma 2.2 one can consider the cases dim𝒳 > 2𝑁 + 1.
Thus, Lemmata 3.1, 3.2 imply the following statement.

Theorem 3.1. System of equations (1.1) possesses 𝑁 essentially independent 𝑥-integrals if
and onyl if the ring 𝒳 is finite-dimensional.

4. Conclusion

Nowadays, the techniques based on characteristic Lie rings are an effective tool for studying
the integrability of nonlinear models, both continuous (equations and systems) [1], [2], [4], [7],
[8], and semi-discrete equations [5], [6]. The criterion of integrability of semi-discrete systems
considered in the present work seems to be as follows: system of equations (1.1) possesses
a complete set of integrals (𝑁 integrals in each characteristic direction) if and only if the
characteristic ring in each direction is finite-dimensional. In the work we have proved the first
part of this criterion concerning a continuous characteristic direction.
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