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DISCRETE RIEMANN-HILBERT PROBLEM

AND INTERPOLATION OF ENTIRE FUNCTIONS

V.YU. NOVOKSHENOV

Abstract. We consider two problems in complex analysis which were developed in Ufa
in 1970s years. These are a Riemann-Hilbert problem about jump of a piecewise-analytic
function on a contour and a problem of interpolation of entire functions on a countable set in
the complex plane. A progress in recent years led to comprehension that they have much
common in subject. The first problem arrives as an equivalent of the inverse scattering
problem applied for integrating nonlinear differential equations of mathematical physics.
The second problem is a natural generalization of Lagrange formula for polynomial with
given values on a finite set of points. It is shown that both problems can be united by gen-
eralization of the Riemann-Hilbert problem on a case of “discrete contour”, where a “jump”
of analytic function takes place. This formulation of the discrete matrix Riemann problem
can be applied now for various problems of exactly solvable difference equations as well as
estimates of spectrum of random matrices. In the paper we show how the discrete matrix
Riemann-Hilbert problem provides a way to integrate nonlinear difference equations such
as a discrete Painlevé equation. On the other hand, it is shown how assignment of residues
to meromorphic matrix functions is effectively reduced to an interpolation problem of en-
tire functions on a countable set in C with the only accumulation point at infinity. Other
application of discrete matrix Riemann-Hilbert problem includes calculation of Fredholm
determinants emerging in combinatorics and group representation theory.
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1. Introduction

Alexey Borisovich Shabat invented the method of the Riemann-Hilbert problem as equivalent of
the inverse scattering method in Ufa in 1975 [7], [8]. His idea was based on an adequate description
analytic properties of the matrix Ψ-function that satisfies the scattering problem

𝑑Ψ

𝑑𝑥
= (𝑖𝜆𝐴+ 𝑉 (𝑥)) Ψ, 𝑥 ∈ R, (1.1)

Ψ(𝑥, 𝜆) →

{︃
𝑒𝑖𝜆𝐴𝑥, 𝑥→ +∞,

𝑒𝑖𝜆𝐴𝑥𝑆(𝜆), 𝑥→ −∞,
(1.2)
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where Ψ ∈ Mat(𝑛,C),

𝐴 = diag (𝑎1, 𝑎2, . . . , 𝑎𝑛), 𝑎1 < 𝑎2 < . . . < 𝑎𝑛,

𝑉 (𝑥) ∈ Mat(𝑛,R), 𝑉𝑗𝑗 = 0, 𝑉𝑗𝑘 ∈ 𝐿1(R). (1.3)

The inverse scattering problem (ISP) is to recover the matrix Ψ(𝑥, 𝜆), for all 𝑥, 𝜆 ∈ R satisfying
conditions (1.1) by (1.2) by a given scattering matrix 𝑆(𝜆) and a constant matrix 𝐴. In this way one
recovers the potential 𝑉 (𝑥) in equation (1.1).

More precisely, we introduce a Wiener Banach algebra

𝒲 =
{︁
𝑓
⃒⃒⃒
𝑓(𝜆) =

∞∫︁
−∞

𝑓(𝑥)𝑒𝑖𝜆𝑥𝑑𝑥, 𝑓 ∈ 𝐿1(R)
}︁

and its two subalgebras 𝒲1 and 𝒲2

𝒲1 =
{︁
𝑓(𝜆) =

∞∫︁
0

𝑓(𝑥)𝑒𝑖𝜆𝑥𝑑𝑥,
}︁
, 𝒲2 =

{︁
𝑓(𝜆) =

0∫︁
−∞

𝑓(𝑥)𝑒𝑖𝜆𝑥𝑑𝑥,
}︁
,

with the norm

‖𝑓‖𝒲 =

∞∫︁
−∞

⃦⃦⃦
𝑓(𝑥)

⃦⃦⃦
𝑑𝑥.

It is easy to prove [8] that the scattering matrix 𝑆(𝜆) of equation (1.1) with conditions (1) possesses
the properties

1 − 𝑆 ∈ 𝒲,

1 − det𝑗𝑆 ∈ 𝒲1, 1 − det𝑗𝑆
−1 ∈ 𝒲2,

where det𝑗 𝑆 is the main 𝑗th minor of the matrix 𝑆, 𝑗 = 1, 2, . . . , 𝑛. These properties allow to pass
from the matrix 𝑆 to jump matrix 𝑄 determining the Riemann-Hilbert problem:

𝑆 = 𝑁1𝑀
−1
1 = 𝑁2𝑀

−1
2 ,

𝑄 = 𝑀2𝑀
−1
1 = 𝑁2𝑁

−1
2 , (1.4)

diag𝑀1 = {det1𝑆, . . . ,det𝑛𝑆}, diag𝑁2 = {det1𝑆
−1, . . . ,det𝑛𝑆

−1},
where 𝑀1, 𝑁2 are upper-triangle matrices and 𝑀2, 𝑁1 are lower-triangle ones.

Theorem 1.1. [7, 8] Assume that the following Riemann-Hilbert problem is solvable:

1) Φ±(𝑥, 𝜆) ∈ Mat(𝑛,C) are analytic in the upper (+) and lower (-) half-plane of 𝜆,

𝐼 − Φ+ ∈ 𝒲1, 𝐼 − Φ− ∈ 𝒲2, det Φ± = 1,

2) Φ±(𝑥, 𝜆) → 𝐼 as 𝜆→ ∞, Im 𝜆 ≷ 0,
3) Φ−(𝑥, 𝜆) = Φ+(𝑥, 𝜆)𝑄(𝑥, 𝜆), 𝜆 ∈ R, where 𝑄(𝑥, 𝜆) = 𝑒−𝑖𝑥𝜆𝐴𝑄(𝜆)𝑒−𝑖𝑥𝜆𝐴,

then the functions

Ψ1(𝑥, 𝜆) = Φ+(𝑥, 𝜆+ 𝑖0)𝑒𝑖𝑥𝜆𝐴, Ψ2(𝑥, 𝜆) = Φ−(𝑥, 𝜆− 𝑖0)𝑒𝑖𝑥𝜆𝐴 (1.5)

satisfy equations (1.1) with the potentials

𝑉 (𝑥) = lim
𝜆→∞

𝑖𝜆[Φ+, 𝐴]Φ−1
+ (𝑥, 𝜆)

and scattering condition (1.2) with the matrix 𝑆 defined by formulae (1).

In the soliton theory, the Ψ-function and the potential 𝑉 depend as a rule on an additional inde-
pendent variable 𝑡, while (1.1) is complemented by one more equation of form

𝑑Ψ

𝑑𝑡
=
(︀
𝑖𝜆𝑛𝐴+ 𝜆𝑛−1𝑉𝑛−1(𝑥, 𝑡) + . . .+ 𝑉 (𝑥, 𝑡)

)︀
Ψ.

The solvability condition of this equation (1.1) (Lax pair) provides a nonlinear partial differential
equation for the function 𝑉 (𝑥, 𝑡), while the scattering problem (1.1), (1.2) plays a role of a “Fourier
transform” for finding its solution [2].
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Theorem 1.1 by A.B. Shabat turned out to be extremely useful for the theory of solitons, just as the
Fourier analysis is useful for linear differential equations. In particular, the fact that in the Riemann-
Hilbert problem the variables 𝑥, 𝑡 and the potential 𝑉 (𝑥, 𝑡) appear as parameters, greatly simplified
the asymptotic analysis of solutions of the nonlinear equation, which is satisfied by 𝑉 (𝑥, 𝑡). Later
the formulation of the Riemann-Hilbert problem was extended to other exactly solvable nonlinear
equations, including various evolutionary equations with two spatial variables, difference equations,
systems of equations of classical mechanics, etc. At present, the inverse problem method is often
formulated only in the form of one or another Riemann-Hilbert problem.

Another large topic had been developing in Ufa in the 1970s, was the theory of entire functions
and, in particular, the problem of interpolating these functions in different spaces. In 1976, Alexey
Fedorovich Leontiev published his monograph [4], in which he considered various aspects of the theory
of Dirichlet series, equations in convolutions and other classical questions of the theory of entire
functions. Yet in 1948 A.F. Leontiev was the first to consider the interpolation problem in the space
of entire functions of finite nonzero order, which was later called the problem of free interpolation. The
notion “free interpolation” is related to the fact that on the values interpolating function, belonging
to a given space functions, the smallest restrictions are imposed, and each function from this space
should satisfy.

A classical interpolation problem is to find a function 𝐹 in a given class taking given values {𝑏𝑛}
at prescribed points {𝑎𝑛}, interpolation nodes:

𝐹 (𝑎𝑛) = 𝑏𝑛, 𝑛 ∈ N. (1.6)

In his work [5], A.F. Leontiev formulated the free interpolation problem as follows: to determine, what
conditions should be satisfied by a sequence of different points {𝑎𝑛} in the complex plane so that for
each sequence of numbers {𝑏𝑛} satisfying the inequality

lim
𝑛→∞

sup
ln+ ln+ |𝑏𝑛|

ln 𝑟
6 𝜌, 𝜌 > 0,

in order to construct an entire function 𝐹 (𝑧) in the class [𝜌,∞] satisfying identities (1.6). The class
[𝜌,∞] consists of entire functions possessing normal or minimal type under a given specified order 𝜌.

A function in the class [𝜌,∞] is constructed by means of a generalized Lagrange series

𝐹 (𝑧) =
∞∑︁
𝑛=1

𝑏𝑛 Φ(𝑧)𝜔(𝑧)

(𝑧 − 𝑎𝑛)Φ′(𝑎𝑛)𝜔(𝑎𝑛)
, (1.7)

where 𝜔(𝑧) is an entire function of order at most 𝜌 and

Φ(𝑧) =

∞∏︁
𝑛=1

(︂
1 − 𝑧

𝑎𝑛

)︂
𝑒𝑃𝑛(𝑧), 𝑃𝑛(𝑧) =

𝑧

𝑎𝑛
+

1

2

(︂
𝑧

𝑎𝑛

)︂2

+ . . .+
1

𝑞𝑛

(︂
𝑧

𝑎𝑛

)︂𝑞𝑛

is a canonical function of sequence {𝑎𝑛} and 𝑞𝑛 is a sequence of natural numbers ensuring the conver-
gence of series (1.7) in the space [𝜌,∞]). A.F. Leontiev proved the following theorem.

Theorem 1.2. [5] Problem (1.6) is solvable in the space [𝜌,∞], 𝜌 > 0, if and only if the condition

lim
𝑛→∞

sup
1

ln |𝑎𝑛|
ln+ ln

1

Φ′(𝑎𝑛)
6 𝜌

holds.

The two aforementioned problems of complex analysis seemed not to be related one with the other.
It seemed so for almost thirty years, till 2000s, when in the works of Alexei Mikhailovich Borodin
and Andrey Yuryevich Okunkov on a discrete version of the Riemann-Hilbert problem [9], [10], [11]
appeared. On the one hand, like the classical Riemann-Hilbert problem on contour in Theorem 1.1,
it was aimed on solving some nonlinear equation. On the other hand, as in Theorem 1.2, it was very
similar to the problem of free interpolation of an entire function on a countable set of nodes.

The specific features of the Riemann-Hilbert problems for the discrete case are to be mentioned.
Here the problem of adjoining the boundary values on a continuous contour in the complex plane is
replaced by specifying the residues of a meromorphic function on a discrete set of points. In the soliton
theory, an analogue of this problem is the recovering of the eigenfunctions by the discrete spectrum
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of a given operator, which is equivalent to solving the Riemann-Hilbert problem with a finite number
of zeros det Ψ± in the corresponding domains of analyticity. In the discrete case, the singular part
of the Ψ-function degenerates at countably many points. Below, in Section 2, this approach will be
illustrated by the example of integrating a discrete Painlevé equation of the second type and calculating
the Fredholm determinant of one integral operator arising in the theory of random matrices.

In the final Section 3 we discuss the solvability of the discrete matrix Riemann-Hilbert problem.
This problem turns out to be equivalent to an interpolation of an entire function on a countable set
of nodes. The Lagrange interpolation series (1.7) is modified in such a way as to serve the case of
matrix coefficients and the adjoining condition on a countable number of nodes. As an illustration,
an interpolation series is calculated for one exact solution of the discrete matrix Riemann-Hilbert
problem.

2. Discrete Riemann-Hilbert problem

Following works by A.M. Borodin [10], [11], we define a discrete matrix Riemann-Hilbert problem
(DMRH) as follows.

Let Σ be some countable set of points in the complex plane 𝜆 ∈ C with the only accumulation point
at infinity. Let 𝐻(𝑥) be a nilpotent matrix function on Σ, 𝐻 : Σ → Mat(𝑁,C), 𝐻2(𝑥) = 0.

We say that a matrix-valued function 𝑌 : C ∖Σ → Mat(𝑁,C) with simple poles at the points 𝑥 ∈ Σ
is a solution of the discrete Riemann-Hilbert problem (Σ, 𝐻) if the following conditions are satisfied:

1∘ 𝑌 (𝜆) is analytic in C ∖ Σ and has simple poles at the points Σ,

2∘ Res𝜆=𝑥 𝑌 (𝜆) = lim
𝜆→𝑥

(𝑌 (𝜆)𝐻(𝑥)) , 𝑥 ∈ Σ,

3∘ 𝑌 (𝜆) → 𝐼 as 𝜆→ ∞.

As above, 𝐻(𝜆) is called jump matrix.
We note that Condition 3∘ means that the function 𝑌 (𝜆) has an essential singularity at infinity.

Indeed, a function with poles accumulating to infinity cannot have regular asymptotics. In order
to the condition to be correct, we require, for example, an uniform asymptotics on a sequence of
circumferences |𝜆| = 𝑎𝑘, 𝑎𝑘 → +∞. Moreover, we shall assume that there exists a sequence of
expanding contours such that the distance from them to the set Σ is separated from zero, and we
suppose that the solution 𝑌 (𝜆) possesses the required asymptotics on these contours.

The issue on existence of solutions to matrix Riemann-Hilbert problem, both the classical one
(Theorem 1.1) and the discrete one 1∘−3∘, is rather complicated [12], [13]. We consider it in Section 3.
At the same time, the uniqueness of the solutions is proved in a rather simple way.

Theorem 2.1. Under the assumptions of Theorem 1.1, a solution of Riemann-Hilbert problem
Φ±(𝑥, 𝜆) is unique.

Proof. Assume that there exist two solutions Φ±(𝑥, 𝜆) and 𝜒±(𝑥, 𝜆). We consider matrix functions
Φ+(𝑥, 𝜆)𝜒−1

+ (𝑥, 𝜆) and Φ−(𝑥, 𝜆)𝜒−1
− (𝑥, 𝜆). By Condition 1), these functions are analytic in 𝜆 respec-

tively in the upper and lower half-plane, while on the real axis they coincide by Condition 3). At
infinity, they tend to the unit matrix due to Condition 2). Therefore, by the Liouville theorem, they
are identically unit and hence Φ±(𝑥, 𝜆) = 𝜒±(𝑥, 𝜆). The proof is complete.

The proof of the uniqueness of a solution to DMRH is a bit more complicated but it is also based
on the Liouville problem.

Theorem 2.2. [10] Solution of Riemann-Hilbert problem 𝑌 (𝜆) obeying Conditions 1∘−3∘ is unique.

Proof. First we are going to prove that the matrix 𝑌 (𝜆)
(︁
𝐼 + 𝐻(𝑥)

𝜆−𝑥

)︁
is analytic in the vicinity of the

point 𝑥. By Condition 1∘ we have:

𝑌 (𝜆) =
𝐴(𝑥)

𝜆− 𝑥
+𝐵(𝑥) +𝑂(𝜆− 𝑥), 𝜆→ 𝑥,

Res𝜆=𝑥 𝑌 (𝜆) = 𝐴(𝑥), 𝑌 (𝜆)𝐻(𝑥) =
𝐴(𝑥)𝐻(𝑥)

𝜆− 𝑥
+𝐵(𝑥)𝐻(𝑥) +𝑂(𝜆− 𝑥).
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Then by Condition 2∘, which states Res𝜆=𝑥 𝑌 (𝜆) = lim
𝜆→𝑥

(𝑌 (𝜆)𝐻(𝑥)), we get

𝐴(𝑥)𝐻(𝑥) = 0, 𝐴(𝑥) = lim
𝜆→𝑥

(𝑌 (𝜆)𝐻(𝑥)) = 𝐵(𝑥)𝐻(𝑥). (2.1)

Hence, taking into consideration the condition 𝐻2(𝑥) = 0, we obtain

𝑌 (𝜆)

(︂
𝐼 +

𝐻(𝑥)

𝜆− 𝑥

)︂
= 𝐵(𝑥) +𝑂(1), (2.2)

and this means the analyticity in the vicinity of 𝑥.
Assume that 𝑌1(𝜆) and 𝑌2(𝜆) are two different solutions of DMRH 1∘ − 3∘. Then the matrix

𝑌1(𝜆)𝑌 −1
2 (𝜆) =𝑌1(𝜆)

(︂
𝐼 +

𝐻(𝑥)

𝜆− 𝑥

)︂(︂
𝐼 +

𝐻(𝑥)

𝜆− 𝑥

)︂−1

𝑌 −1
2 (𝜆)

=𝑌1(𝜆)

(︂
𝐼 +

𝐻(𝑥)

𝜆− 𝑥

)︂(︂
𝑌2(𝜆)

(︂
𝐼 +

𝐻(𝑥)

𝜆− 𝑥

)︂)︂−1

(2.3)

is analytic in C since 𝑥 is an arbitrary point in Σ.
By Condition 3∘, we have 𝑌1(𝜆)𝑌 −1

2 (𝜆) → 𝐼 as 𝜆→ ∞, then by the Liouville theorem this function
is identically equal to the unit matrix. This completes the proof.

Now we give some examples of employing DMRH in nonlinear problems of mathematical physics.
We begin with obtaining the Lax pair for a nonlinear difference equation, which can be solved by

means of DMRH. As in the continuous case by A.B. Shabat, we need to obtain two linear matrix
equations in the variables 𝜆 and 𝑥, respectively. The compatibility condition of this Lax pair is the
sought nonlinear equation [14], [17].

We denote

Z′ = Z+
1

2
=

{︂
. . . ,−3

2
,−1

2
,
1

2
,
3

2
, . . .

}︂
= Z′

+ ∪Z′
−,

where Z′
+ =

{︀
1
2 ,

3
2 , . . .

}︀
and Z′

− =
{︀
. . . ,−3

2 ,−
1
2

}︀
.

We consider the construction of Lax pair for problem 1∘ – 3∘ in a particular case 𝑁 = 2 and Σ = Σ𝑘,
where

Σ𝑘 = {𝑘, 𝑘 + 1, 𝑘 + 2, . . .} , 𝑘 ∈ Z′,

𝐻(𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(︃
0 − κ2𝑥

Γ2(𝑥+ 1
2)

0 0

)︃
, 𝑥 ∈ Z′

+,(︃
0 0

− κ−2𝑥

Γ2(−𝑥+ 1
2)

0

)︃
, 𝑥 ∈ Z′

−.

(2.4)

Following [11] and [6], let us prove that for each 𝑛 ∈ Z𝑘 there exists a constant nilpotent matrix 𝐴𝑛,

𝐴𝑛 =

(︂
𝑝𝑛 𝑞𝑛
𝑟𝑛 −𝑝𝑛

)︂
, 𝑝2𝑛 = −𝑟𝑛𝑞𝑛, (2.5)

and the functions 𝑎𝑛, 𝑏𝑛, 𝑎𝑛𝑏𝑛 = 1 such that

𝑌𝑛+1(𝜆) =

(︂
𝐼 +

𝐴𝑛

𝜆− 𝑛

)︂
𝑌𝑛(𝜆), (2.6)

𝑌𝑛(𝜆− 1)

(︂
κ−1(𝜆− 1

2) 0
0 κ(𝜆− 1

2)−1

)︂
=

(︂
κ−1(𝜆− 1

2 − 𝑝𝑛) 𝑎𝑛
−𝑏𝑛 0

)︂
𝑌𝑛+1(𝜆). (2.7)

Indeed, since 𝐻 is independent of 𝑛, we see that 𝑌𝑛(𝜆) and 𝑌𝑛+1(𝜆) satisfy the same jump condition
on Σ𝑛. However, 𝑌𝑛+1 has an additional pole at the point {𝑛} = Σ𝑛+1 ∖ Σ𝑛. Therefore, the quotient
𝑌𝑛+1𝑌

−1
𝑛 possesses a single pole at the point 𝜆 = 𝑛. Denoting the residue at this point by 𝐴𝑛, we

conclude that the function

𝑌𝑛+1(𝜆)𝑌 −1
𝑛 (𝜆) − 𝐴𝑛

𝜆− 𝑛
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is entire. Calculating the asymptotics in the vicinity of 𝜆 = ∞, by the Liouville theorem we obtain
that this function is identically equal to 𝐼 and this proves the first equation.

Next, it follows from det𝑌𝑛 ≡ det𝑌𝑛+1 ≡ 1 that det(𝐼 + 𝐴𝑛/(𝜆− 𝑛)) ≡ 1. This implies that 𝐴𝑛 is
nilpotent.

The derivation of equation (2.7) is a bit more complicated. It follows from Condition 3∘ that

𝑌𝑛(𝜆) = 𝐼 +

(︂
𝛼𝑛 𝛽𝑛
𝛾𝑛 𝛿𝑛

)︂
𝜆−1 +𝑂(𝜆−2), 𝜆→ ∞, (2.8)

with some constants 𝛼𝑛, . . . , 𝛿𝑛.
We divide both sides of equation (2.7) from the left by the matrix 𝑌𝑛+1(𝜆) and let us prove that its

left hand side a polynomial in 𝜆.
By (2.8), the asymptotics as 𝜆→ ∞ is of the form(︂

𝐼 +

(︂
𝛼𝑛 𝛽𝑛
𝛾𝑛 𝛿𝑛

)︂
𝜆−1

)︂(︂
κ−1(𝜆− 1

2) 0
0 0

)︂(︂
𝐼 −

(︂
𝛼𝑛+1 𝛽𝑛+1

𝛾𝑛+1 𝛿𝑛+1

)︂
𝜆−1)

)︂
+𝑂(𝜆−1)

= κ−1

(︂
𝜆− 1

2 + 𝛼𝑛 − 𝛼𝑛+1 −𝛽𝑛+1

𝛾𝑛 0

)︂
+𝑂(𝜆−1). (2.9)

We denote 𝑎𝑛 = −κ−1𝛽𝑛+1, 𝑏𝑛 = −κ−1𝛾𝑛, 𝑐𝑛 = 𝛼𝑛+1 − 𝛼𝑛. Then it follows from the Liouville
theorem that expression (2) is equal to(︂

κ−1(𝜆− 1
2 − 𝑐𝑛) 𝑎𝑛

−𝑏𝑛 0

)︂
.

In conclusion, let us prove that 𝑐𝑛 = 𝑝𝑛 and 𝑎𝑛𝑏𝑛 = 1. The second identity is implied by the fact that
the determinant 𝑌𝑛(𝜆) is equal to 1. In order to prove that 𝑐𝑛 = 𝑝𝑛, we substitute (2.6) in the just
proven relation (2.7). We obtain:

𝑌𝑛(𝜆− 1)

(︂
κ−1(𝜆− 1

2) 0
0 κ(𝜆− 1

2)−1

)︂
=

(︂
κ−1(𝜆− 1

2 − 𝑐𝑛) 𝑎𝑛
−𝑏𝑛 0

)︂(︂
𝐼 + (𝜆− 𝑛)−1

(︂
𝑝𝑛 𝑞𝑛
𝑟𝑛 −𝑝𝑛

)︂)︂
𝑌𝑛(𝜆).

Comparing the asymptotics of the matrix entries ( · )11 in this identity, we see that 𝑐𝑛 = 𝑝𝑛. Thus,
we have proved the validity of the equations in Lax pair (2.6) and (2.7).

Theorem 2.3. The compatibility condition of the equations in Lax pair (2.6) and (2.7) is the
discrete Painlevé equation of second type (dPII)

𝑣𝑛+1 + 𝑣𝑛−1 =

(︀
𝑛+ 1

2

)︀
𝑣𝑛

κ(𝑣2𝑛 − 1)
, (2.10)

where 𝑣2𝑛 = κ−1𝑎𝑛𝑟𝑛.

Proof. Shifting 𝜆 by 1 in (2.7) and substituting the right side of (2.7) into that of (2.6), we obtain:

𝑌𝑛+1(𝜆) =

(︂
𝐼 +

𝐴𝑛

𝜆− 𝑛

)︂(︂
κ−1(𝜆+ 1

2 − 𝑝𝑛) 𝑎𝑛
−𝑏𝑛 0

)︂
𝑌𝑛+1(𝜆+ 1)

(︂
κ(𝜆+ 1

2)−1 0
0 κ−1(𝜆+ 1

2)

)︂
.

On the other hand, shifting 𝑛 and 𝜆 by 1 in (2.6) and (2.7) and substituting the right hand side of
(2.6) into that of (2.7), we obtain

𝑌𝑛+1(𝜆) =

(︂
κ−1(𝜆+ 1

2 − 𝑝𝑛+1) 𝑎𝑛+1

−𝑏𝑛+1 0

)︂(︂
𝐼 +

𝐴𝑛+1

𝜆− 𝑛

)︂
𝑌𝑛+1(𝜆+ 1)

(︂
κ(𝜆+ 1

2)−1 0
0 κ−1(𝜆+ 1

2)

)︂
.

Comparing these two relations, we obtain the compatibility condition for Lax pair (2.6), (2.7):(︂
𝐼 +

𝐴𝑛

𝜆− 𝑛

)︂(︂
κ−1(𝜆+ 1

2 − 𝑝𝑛) 𝑎𝑛
−𝑏𝑛 0

)︂
=

(︂
κ−1(𝜆+ 1

2 − 𝑝𝑛+1) 𝑎𝑛+1

−𝑏𝑛+1 0

)︂(︂
𝐼 +

𝐴𝑛+1

𝜆− 𝑛

)︂
. (2.11)

By matrix equation (2.11) we can easily obtain scalar equations for the variables 𝑝𝑛 and 𝑟𝑛. Namely,
calculating the asymptotics of the elements ( · )12 and ( · )21 in identity (2.11) as 𝜆→ ∞, we arrive at
the relations: {︃

𝑎𝑛 = 𝑎𝑛+1 + κ−1𝑞𝑛+1, 𝑏𝑛 = 𝑏𝑛+1 + κ−1𝑟𝑛,

𝑎𝑛𝑟𝑛 = −𝑏𝑛+1𝑞𝑛+1.
(2.12)
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The residues in a simple pole at 𝜆 = 𝑛 in identity (2.11) read as(︂
𝑝𝑛 𝑞𝑛
𝑟𝑛 −𝑝𝑛

)︂(︂
κ−1(𝑛+ 1

2 − 𝑝𝑛) 𝑎𝑛
−𝑏𝑛 0

)︂
=

(︂
κ−1(𝑛+ 1

2 − 𝑝𝑛+1) 𝑎𝑛+1

−𝑏𝑛+1 0

)︂(︂
𝑝𝑛+1 𝑞𝑛+1

𝑟𝑛+1 −𝑝𝑛+1

)︂
.

The entry ( · )22 in this identity coincide with identity (2.12), while the entry ( · )12 gives

𝑎𝑛𝑝𝑛 = κ−1(𝜆+ 1
2 − 𝑝𝑛+1)𝑞𝑛+1 − 𝑎𝑛+1𝑝𝑛+1.

Substituting both sides by 𝑏𝑛+1 and recalling that 𝑎𝑛+1𝑏𝑛+1 = 1, we obtain:

𝑏𝑛+1𝑎𝑛𝑝𝑛 = −κ−1(𝜆+ 1
2 − 𝑝𝑛+1)𝑎𝑛𝑟𝑛 − 𝑝𝑛+1. (2.13)

We denote

𝑠𝑛 = 𝑎𝑛𝑟𝑛,

then, multiplying the first relation in (2.12) by 𝑏𝑛+1, we see that 𝑎𝑛𝑏𝑛+1 = 1 − κ−1𝑠𝑛. Substituting
this expression into (2.13), we obtain

(𝑝𝑛 + 𝑝𝑛+1)(𝑠𝑛 − κ) =
(︀
𝑛+ 1

2

)︀
𝑠𝑛,

Employing the nilpotent property of the matrix 𝐴𝑛 (2.5), we find:

𝑝2𝑛+1 = −𝑞𝑛+1𝑟𝑛+1 = (−𝑏𝑛+1𝑞𝑛+1)(𝑎𝑛+1𝑟𝑛+1) = 𝑠𝑛𝑠𝑛+1.

Thus, for each 𝑛 ∈ Z𝑘 we obtain a system of scalar equations⎧⎪⎨⎪⎩(𝑝𝑛 + 𝑝𝑛+1)(𝑠𝑛 − κ) =

(︂
𝑛+

1

2

)︂
𝑠𝑛,

𝑝2𝑛+1 = 𝑠𝑛𝑠𝑛+1.

It is easy to exclude the variable 𝑝𝑛 from this system, namely, letting

𝑠𝑛 = κ𝑣2𝑛,

we obtain scalar difference equation (2.10).

We note that in works [16], [18], the discrete Painlevé equation dPII was derived by symmetry
arguing without using the technique of DMRH.

As another example of applying DMRH, the calculation of Fredholm determinants for integrals
operators serves. There determinants are related with the group representation theory and problems
in combinatorics. An example of the mentioned operator is an integral operator with a Bessel kernel
[13], [19]

𝑄(𝑥, 𝑦) = κ
𝐽𝑥− 1

2
(2κ)𝐽𝑦+ 1

2
(2κ) − 𝐽𝑦− 1

2
(2κ)𝐽𝑥+ 1

2
(2κ)

𝑥− 𝑦
, (2.14)

where κ is a parameter and 𝐽𝜈 is the Bessel 𝐽-function.
We let 𝑥, 𝑦 ∈ Z′ =

{︀
. . . ,−3

2 ,−
1
2 ,

1
2 ,

3
2 , . . .

}︀
and then we denote

Σ𝑘 = {𝑘, 𝑘 + 1, 𝑘 + 2 . . .} , 𝑘 ∈ Z′.

We define 𝑄𝑘 as the restriction of the operator 𝑄 on ℓ2(Σ𝑘)

𝑄𝑘𝑓(𝑥) =
∞∑︁
𝑦=𝑘

𝑄(𝑥, 𝑦)𝑓(𝑦), 𝑓 ∈ ℓ2(Σ𝑘).

The operator 𝑄𝑘 is nuclear and positive definite [11] and this is why its Fredholm determinant is
well-defined:

𝐷𝑘 = det(1 −𝑄𝑘), 𝐷𝑘 ̸= 0.

We let 𝑅𝑠 = 𝑄𝑘(1 − 𝑄𝑘)−1. This operator can be expressed by the solution to the following DMRH
[11]:

(a) 𝑌 (𝜆) is analytic in C ∖ Σ and has simple poles at the points Σ,

(b) Res𝜆=𝑥 𝑌 (𝜆) = lim
𝜆→𝑥

(𝑌 (𝜆)𝐻(𝑥)) , 𝑥 ∈ Σ𝑘, 𝐻2(𝑥) = 0,
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(c) det𝑌 (𝜆) ≡ 1,

where the jump matrix 𝐻 is determined by formula (2.4). We observe that problem 1∘ − 3∘ differs
from problem (a)–(c) the normalization condition (c), that is, we do not suppose the boundedness of
the solution 𝑌 (𝜆) at infinity like in 3∘.

Assume that there exists the solution of DMRH (a)–(c) of the form

𝑌 (𝜆) =

(︂
𝜑 𝜑

𝜓 𝜓

)︂
,

then the kernel of the operator 𝑅𝑘 is represented as

𝑅𝑘(𝑥, 𝑦) =

⎧⎨⎩
𝜑(𝑥)𝜓(𝑦) − 𝜑(𝑦)𝜓(𝑥)

𝑥− 𝑦
, 𝑥 ̸= 𝑦,

𝜓(𝑥)𝜓(𝑥) − 𝜑(𝑥)𝜑(𝑥), 𝑥 = 𝑦.
(2.15)

It turns out [11] that DNRP (a)–(c) admits an explicit solution

𝑌 (𝜆) =
√
κ

(︃
𝐽𝜆− 1

2
(2κ) 𝐽−𝜆+ 1

2
(2κ)

−𝐽𝜆+ 1
2
(2κ) 𝐽−𝜆− 1

2
(2κ)

)︃(︂
κ−𝜆Γ

(︀
𝜆+ 1

2

)︀
0

0 κ𝜆Γ
(︀
−𝜆+ 1

2

)︀)︂ , (2.16)

and

1 +𝑅𝑘 =
det(1 −𝑄𝑘+1)

det(1 −𝑄𝑘)
=
𝐷𝑘+1

𝐷𝑘
.

Theorem 2.4. [9] Let 𝑘 ∈ Z′ and 𝑣𝑘 be the solution of discrete Painlevé equation (2.10) with the
initial conditions

𝑣− 1
2

= −1, 𝑣 1
2

=
𝐼1(2κ)

𝐼0(2κ)
,

where 𝐼0 and 𝐼1 are the Bessel 𝐼-functions. Then for all 𝑘 ≥ 1
2 the relation holds

𝑣2𝑘 = 1 − 𝐷𝑘𝐷𝑘+2

𝐷2
𝑘+1

.

3. Existence of solution to DRMP and interpolation problem

In view of the applications of DRMP mentioned in Section 2, let us simplify the problem on finding
a meromorphic problem satisfying Conditions 1∘ − 3∘. We consider the set of simple poles 𝑥𝑛 ∈ Σ
distributed in C with the conditions

0 < Re𝑥1 6 Re𝑥2 6 . . . , 𝑥𝑛 =
𝑛+ 𝛼

𝜎
+𝑂(𝑛−1), 𝑛→ ∞, (3.1)

and 𝑥0 = 0 and 𝑥−𝑛 = −𝑥𝑛.
We define a canonical product as

Φ(𝜆) =
∞∏︁
𝑛=1

(︂
1 − 𝜆2

𝑥2𝑛

)︂
(3.2)

with the growth indicatrix

ℎ(𝜃) = lim
𝑟→∞

ln |Φ
(︀
𝑟𝑒𝑖𝜃

)︀
|

𝑟
= 𝜋𝜎| sin 𝜃|.

Conditions (3.1) of course satisfy Theorem 1.2 on interpolation nodes since the limit mentioned in
this theorem vanishes as 𝑎𝑛 = 𝑥𝑛. This is there exists an interpolation of an entire function 𝐹 (𝜆) with
nodes at the points 𝑥𝑛. However, in the present case we can apply a simpler theorem [3, Ch. II, Thm.
2.6.5 ].

Theorem 3.1. Let 𝐹 (𝜆) be an entire function obeying the condition

|𝐹 (𝜇+ 𝑖𝜈)| 6 |𝜇|𝛼+1𝛿(|𝜇|)𝑒(𝜋𝜎−𝜖)|𝜈|, 𝜖→ 0, 𝛿(𝜇) → 0, 𝜇→ ∞, (3.3)

and the sequence 𝑥𝑛 satisfies condition (3.1). Then

𝐹 (𝜆) =
∞∑︁

𝑛=−∞

𝐹 (𝑥𝑛)

Φ′(𝑥𝑛)

Φ(𝜆)

𝜆− 𝑥𝑛
.
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We are going to employ Theorem 3.1 for constructing the solution of DMRH by a given jump
matrix.

Assume that the nodes 𝑥𝑛 of solution of DMRH 1∘ − 3∘ satisfy conditions (3.1) and let us define
the canonical product by formula (3.2).

Let the entries of the matrices 𝐵(𝜆) and 𝐻(𝜆) be entire functions and satisfy estimates (3.3) and

|𝐵𝑖𝑗(𝜆)| 6 |𝜆|𝛼+1𝛿(|𝜆|)𝑒(𝜋𝜎−𝜖)|Im𝜆|,

|𝐻𝑖𝑗(𝜆)| 6 |𝜆|𝛼+1𝛿(|𝜆|)𝑒(𝜋𝜎−𝜖)|Im𝜆|, 𝛿(|𝜆|) → 0, 𝜆→ ∞.

By Theorem 3.1, there exists a solution of the interpolation problem

𝑌 (𝜆) =
∞∑︁

𝑛=−∞

(︂
𝐴(𝑥𝑛)

𝜆− 𝑥𝑛
+𝐵(𝑥𝑛)

)︂
Φ(𝜆)

Φ′(𝑥𝑛)(𝜆− 𝑥𝑛)
, (3.4)

where the growth order of 𝐴(𝑥) is at most 𝜋𝜎.
It is obvious that 𝑌 (𝜆) is a meromorphic matrix having simple poles at the nodes 𝑥𝑛 = 𝑥 and its

Laurent series is

𝑌 (𝜆) =
𝐴(𝑥)

𝜆− 𝑥
+

(︂
𝐴(𝑥)

Φ′′(𝑥)

2Φ′(𝑥)
+𝐵(𝑥)

)︂
+𝑂(𝜆− 𝑥), 𝜆→ 𝑥.

This expansion implies jump condition 2∘ in the form

Res
𝜆=𝑥

𝑌 (𝜆) = 𝐴(𝑥) = lim
𝜆→𝑥

𝑌 (𝜆)𝐻(𝜆) = lim
𝜆→𝑥

(︂
𝐴(𝑥)

Φ′′(𝑥)

2Φ′(𝑥)
+𝐵(𝑥)

)︂
𝐻(𝜆).

In order to fit this identity with (2.1), we apply the niplotent property of the matrix 𝐻(𝜆):

𝐴(𝑥)(𝐼 − 𝜑𝐻(𝑥)) = 𝐵(𝑥)𝐻(𝑥), (𝐼 − 𝜑𝐻(𝑥))(𝐼 + 𝜑𝐻(𝑥)) = 𝐼, 𝜑 =
Φ′′(𝑥)

2Φ′(𝑥)
.

We multiply the first identity from the right by (𝐼 + 𝜑𝐻(𝑥)) and apply again the nilpotent property
of 𝐻(𝑥). Then we obtain:

𝐴(𝑥) = 𝐵(𝑥)𝐻(𝑥). (3.5)

Thus, we have proved the following theorem.

Theorem 3.2. There exists a solution 𝑌 (𝜆) of DMRH 1∘, 2∘ (without normalization condition 3∘)
under the distribution of jump nodes (3.1) in the class of entire functions 𝑌 (𝜆)Φ(𝜆) of a finite order.

As it has been mentioned in Theorem 2.2, the solution of DMRH is unique if all three conditions
1∘− 3∘ are satisfied. This is why we need to find a way of achieving the normalization condition 3∘ at
infinity. For the sake of simplicity, we replace normalization condition 3∘ by condition (c) det𝑌 (𝜆) = 1,
which is present in DRMP (a)–(c) . In order to do this, we again employ the nilpotent property of
the leading terms in Laurent series (3.4).

According (3.4) and (3.5), at each node 𝜆 = 𝑥, the Laurent series reads as

𝑌 (𝜆) =

(︂
𝐴(𝑥)

𝜆− 𝑥
+𝐵(𝑥) +𝑂(𝜆− 𝑥)

)︂
= 𝐵(𝑥)

(︂
𝐻(𝑥)

𝜆− 𝑥
+ 𝐼 +𝑂(𝜆− 𝑥)

)︂
.

Since 𝐻2(𝑥) = 0, we have: (︂
𝐻(𝑥)

𝜆− 𝑥
+ 𝐼

)︂(︂
−𝐻(𝑥)

𝜆− 𝑥
+ 𝐼

)︂
= 𝐼,

that is, the matrix 𝐼 +𝐻(𝑥)/(𝜆− 𝑥) is non-degenerate and det𝑌 (𝜆) = det𝐵(𝑥) as 𝜆 = 𝑥.
We divide both sides of formula (3.4) by the scalar factor Φ(𝜆), which is canonical product (3.2).

This does not spoil the convergence of the series and it will be still a meromorphic function with poles
at the points 𝜆 = 𝑥𝑛

𝑌 (𝜆) =
∞∑︁

𝑛=−∞

𝐴(𝑥𝑛) +𝐵(𝑥𝑛)(𝜆− 𝑥𝑛)

Φ′(𝑥𝑛)(𝜆− 𝑥𝑛)
. (3.6)
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Then this function is bounded at infinity:

det𝑌 (𝜆) = det

∞∑︁
𝑛=−∞

𝐵(𝑥𝑛)

Φ′(𝑥𝑛)
, 𝜆→ ∞. (3.7)

Condition (b) becomes the system of equations

𝐴(𝑥𝑛) = Φ′(𝑥𝑛)
∑︁
𝑘 ̸=𝑛

𝐵(𝑥𝑘)𝐻(𝑥𝑛)

Φ′(𝑥𝑘)(𝑥𝑘 − 𝑥𝑛)
, 𝑛 ∈ Z. (3.8)

Thus, the solvability of DRMP (a)–(c) is implied by the solvability the solvability of system of
equations (3.7) and (3.8) for the matrices 𝐴(𝑥𝑛) and 𝐵(𝑥𝑛).

As an example we consider the application of interpolation series (3.6) for finding an exact solution
(2.16) of DMRH (a)–(c):

𝑌 (𝜆) =
√
κ

(︃
𝐽𝜆− 1

2
(2κ) 𝐽−𝜆+ 1

2
(2κ)

−𝐽𝜆+ 1
2
(2κ) 𝐽−𝜆− 1

2
(2κ)

)︃(︂
κ−𝜆Γ

(︀
𝜆+ 1

2

)︀
0

0 κ𝜆Γ
(︀
−𝜆+ 1

2

)︀)︂ .
We note that normalization condition (c) det𝑌 (𝜆) = 1 is implied by the known formulae for the
Gamma function and Bessel functions [1]

𝐽𝜆− 1
2
(2κ)𝐽−𝜆− 1

2
(2κ) + 𝐽−𝜆+ 1

2
(2κ)𝐽𝜆+ 1

2
(2κ) =

cos𝜋𝜆

𝜋κ
,

Γ

(︂
𝜆+

1

2

)︂
Γ

(︂
−𝜆+

1

2

)︂
=

𝜋

cos𝜋𝜆
.

Theorem 3.3. Let the matrix 𝑌 (𝜆) be a solution of DMRH (a)-(c) given by formula (2.16). Then
the entries of the matrix are represented by the interpolation series with nodes 𝑥𝑛 = 𝑛, 𝑛 ∈ Z

𝑌11(𝜆) =

(︂
𝜆− 1

2

)︂ ∞∑︁
𝑛=0

κ𝑛

𝑛!

𝐽𝑛(2κ)

𝑛+ 𝜆− 1
2

,

𝑌12(𝜆) = −
(︂
𝜆+

1

2

)︂ ∞∑︁
𝑛=0

κ𝑛

𝑛!

𝐽𝑛(2κ)

𝑛− 𝜆− 1
2

.

(3.9)

The matrix entries 𝑌21 and 𝑌22 satisfy similar representation.

Proof. According to (2.16), the matrix entries are of the form

𝑌11(𝜆) = κ−𝜆+ 1
2 Γ

(︂
𝜆+

1

2

)︂
𝐽𝜆− 1

2
(2κ), 𝑌12(𝜆) = κ𝜆+ 1

2 Γ

(︂
−𝜆+

1

2

)︂
𝐽−𝜆− 1

2
(2κ). (3.10)

We note that in problem (a)–(c) , the jump condition is given at the points 𝑥 ∈ Z′, that is, 𝜆 = 𝑥
corresponds to half-integer values, 𝜆± 1

2 = 𝑛, 𝑛 ∈ Z.
We employ a known Neumann series over Bessel functions with an integer index [1, Ch. 7.15, Eq.

(10)]:

Γ(𝜁 − 𝜇)𝐽𝜁(2κ) = Γ(𝜇+ 1)

∞∑︁
𝑛=0

(
Γ(𝜁 − 𝜇+ 𝑛)

Γ(𝜁 + 𝑛+ 1)𝑛!
κ𝜁−𝜇+𝑛𝐽𝑛+𝜇(2κ).

Letting 𝜇 = 0 and employing the relation Γ(𝜁 + 𝑛 + 1) = (𝜁 + 𝑛)Γ(𝜁 + 𝑛), the latter series can be
rewritten as

Γ(𝜁)𝐽𝜁(2κ) = κ𝜁
∞∑︁
𝑛=0

κ𝑛

𝑛!

𝐽𝑛(2κ)

𝜁 + 𝑛
.

Passing to the variable 𝜆− 1
2 = 𝜁 and employing once again the formula Γ

(︀
𝜆+ 1

2

)︀
=
(︀
𝜆− 1

2

)︀
Γ
(︀
𝜆− 1

2

)︀
,

we arrive at the first formula in (3.9). The second formula in (3.9) is obtained by the change 𝜆+ 1
2 = 𝜁.

The proof is complete.



80 V.YU. NOVOKSHENOV

BIBLIOGRAPHY
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