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Abstract. In the present paper we study characteristic algebras for exponential systems
corresponding to degenerate Cartan matrices. These systems generalize hyperbolic sine-
Gordon and Tzitzeica equations well-known in the theory of integrable systems. For such
systems, corresponding to Cartan matrices of rank 2, we describe explicitly characteristic
algebras in terms of generators and relations and we prove that they have linear growth.
We study the relations between the higher symmetries of these systems and the structure
of their characteristic algebras. We describe completely the higher symmetries of exponen-

tial systems corresponding to the Cartan matrix of affine Lie algebra 𝐴
(1)
2 . We also obtain

partial results on symmetries of such systems corresponding to other degenerate Cartan
matrices of rank 2. We propose a conjecture on the structure of higher symmetries of ar-
bitrary exponential system corresponding to a degenerate Cartan matrix. We study an
interesting combinatorics related to an operator generating a characteristic algebra in the
simplest case for a Darboux integrable Liouville equation. The found combinatorial proper-
ties can be very useful for proving the aforementioned conjecture on the structure of higher
symmetries. Moreover, in the present paper we give a rigorous meaning to the concept of a
characteristic algebra of a hyperbolic system used for a long time in the literature. We do
this by means of the notion of Lie-Rinehart algebra and at the examples we demonstrate
that such formalization is indeed needed.
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1. Introduction

In 1981, A.B. Shabat and R.I. Yamilov published preprint [1], in which they considered so-
called exponential type systems, that is, system of hyperbolic partial differential equations of
form

𝑤𝑗
𝑥𝑦 = exp

(︃
𝑟∑︁

𝑘=1

𝑎𝑗𝑘𝑤
𝑘

)︃
, 𝑗 = 1, 2, . . . , 𝑟, (1.1)

where 𝑎𝑗𝑘 are constant coefficients and the functions 𝑤𝑗 depend on variables 𝑥 and 𝑦. It is easy
to confirm that if the matrix 𝑀 = (𝑎𝑗𝑘) is a Cartan matrix of a simple Lie algebra of series 𝐴,
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then corresponding system (1.1) is reduced to a two-dimensional Toda chain

𝑞𝑗,𝑥𝑦 = exp(𝑞𝑗+1 − 𝑞𝑗)− exp(𝑞𝑗 − 𝑞𝑗−1), 𝑗 = 0, 1, . . . , 𝑟, (1.2)

with trivial boundary conditions 𝑞−1 ≡ ∞, 𝑞𝑟+1 ≡ −∞.
The study of systems of form (1.1) in [1] was based on investigating characteristic algebras,

i.e., Lie algebras generated by the operators 𝐷𝑦 of total differentiation with respect to the
variable 𝑦 by virtue of the system and 𝜕

𝜕𝑤𝑗 . Shabat and Yamilov formulated two important
conjectures on the integrability of exponential type systems. The first conjecture is that system
(1.1) is Darboux integrable, i.e., it admits complete sets of independent characteristic integrals
in both variables, if and only if it is a direct sum of several exponential type systems, the
matrix 𝑀 of which are Cartan matrices of simple Lie algebras. The second conjecture says
that systems of form (1.1), not Darboux integrable, but integrable by the inverse problem
method, correspond to slowly growing characteristic algebras. Despite the fact that the proof
of the main classification theorem in [1] contained some gaps that have not been eliminated up
to this day (which, apparently, was the reason that this text remained in the preprint status),
this work served as a starting point for a large number of studies and publications on exponential
systems. In particular, in [2], integrable exponential type systems with Cartan matrices of size
2 were studied, and in [3], systems corresponding to non-degenerate Cartan matrices and, in
particular, systems corresponding to Lie algebras of the series 𝐴, were integrated explicitly. We
also mention papers [4]-[6] by the Ufa school , in which reductions of exponential type systems
and their connection with higher symmetries were studied, and a series of papers [7]-[17], in
which discrete analogs of exponential type systems were studied.
Although the ideas related to the concept of characteristic algebra were implicitly used by

Goursat [18] in his attempts to classify Darboux integrable scalar hyperbolic equations, the
corresponding definition was introduced only in the last quarter of the twentieth century in
[19]. Later the concept of characteristic algebra was widely used in studying Darboux integrable
discrete and semi-discrete equations in works [20]-[30] of the Ufa school. A detailed survey of
the applications of characteristic algebras to the study of nonlinear equations is contained in
book [31]. The symmetries of the Klein-Gordon equations were studied in paper [32].
Characteristic algebras of integrable hyperbolic equations provide examples of graded infinite-

dimensional Lie algebras of linear growth. In paper [21], the characteristic algebra of the sine-
Gordon equation, having a growth rate of 3

2
was studied, and in [25], there was studied the

characteristic algebra of the Tzitzeica equation growing at an average rate of 4
3
. In papers [33],

[34] infinite linear bases for these Lie algebras were constructed and it was shown that they are
isomorphic to the nonnegative part of the loop algebra s𝑙(2,C) ⊗ C[𝑡, 𝑡−1] and to the twisted
loop algebra of the simple Lie algebra s𝑙(3,C), respectively.
The present work is aimed at developing some of ideas expressed in preprint [1] and on a

progress in proving the conjectures expressed there. We have several goals. First, we are going
to give a due algebraic rigor to the concept of characteristic algebra (examples will be given
showing that this is absolutely necessary in the discrete case): we will show that it is natural
to treat these objects not as Lie algebras (or Lie rings), but as Lie-Rinehart algebras. Second,
we investigate an interesting combinatorics related to the Liouville equation, the simplest rep-
resentative of the class of exponential systems corresponding to Cartan matrices. And, thirdly,
we explicitly describe characteristic algebras of exponential type (1.1) with degenerate Cartan
matrices of rank 2 and describe higher symmetries for some of them. As in the case of systems
of rank 1, which can be reduced to the sine-Gordon and Tzizeica equations, the characteristic
algebras of these systems have linear growth.
In Section 2 we provide a brief survey of known results on the integrability of exponential type

systems corresponding to the Cartan matrices. In Section 3 we introduce the concept of a Lie-
Rinehart algebra, describe the structure of the characteristic algebras of the sine-Gordon and
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Tzizeica equations, and adduce an example showing that it is appropriate to treat characteristic
algebras exactly as Lie-Rinehart algebras. Section 4 is devoted to describing the notion of
growth for infinite-dimensional Lie algebras. In Section 5 we study an interesting combinatorics
related to the characteristic integrals and symmetries of the Liouville equation. Section 6 is
devoted to an explicit description of exponential systems corresponding to degenerate Cartan
matrices of rank 2 in terms of the generators and relations of characteristic algebras. In Section 7
we describe the symmetry hierarchy for the system corresponding to the affine Cartan matrix

𝐴
(1)
2 and gives some partial results on higher symmetries of systems corresponding to other

degenerate Cartan matrices of rank 2.

2. Exponential type system and Cartan matrices

We consider a hyperbolic system of partial differential equations of exponential type being a
multidimensional generalization of the classical Liouville equation

𝑤𝑖
𝑥𝑦 = 𝑒𝜌𝑖 , 𝜌𝑗 = 𝑎𝑖1𝑤

1 + · · ·+ 𝑎𝑖𝑟𝑤
𝑟, 𝑖 = 1, . . . , 𝑟. (2.1)

Leznov [3] showed that if the matrix of the coefficients 𝑀 = (𝑎𝑖𝑗) is a nondegenerate Cartan
matrix, then the corresponding exponential hyperbolic system (2.1) is Darboux integrable. In
his proof [3], for the Cartan matrix from the 𝐴 series, an exact solution of the system was found
explicitly and it depended on 2𝑟 arbitrary functions, that is, there was constructed a multi-
dimensional generalization of the classical solution of the one-dimensional Liouville equation
𝑢𝑥𝑦 = 𝑒𝑢. Later, in preprint [1], a conjecture was made that the main result of [3] could be
extended to the case of an arbitrary Cartan matrix 𝑀 , possibly degenerate, using the method
of the inverse scattering problem. The case 𝑟 = 2 was completely solved in [1, 2]:{︃

𝑤1
𝑥𝑦 = 𝑒(𝑎11𝑤

1+𝑎12𝑤2)

𝑤2
𝑥𝑦 = 𝑒(𝑎21𝑤

1+𝑎22𝑤2)
, 𝑀 =

(︂
𝑎11 𝑎12
𝑎21 𝑎22

)︂
. (2.2)

It was shown [1, 2] that for two degenerate Cartan matrices

𝑀1 =

(︂
2 −2
−2 2

)︂
, 𝑀2 =

(︂
2 −4
−1 2

)︂
,

corresponding exponential systems (2.2) are integrable by the inverse scattering problem
method. The characteristic Lie algebras of these equations, which will be discussed in the

next section, are isomorphic to some Lie subalgebras in the Lie algebras 𝐴
(1)
1 , 𝐴

(2)
2 . Exponential

systems (2.2) corresponding to non-degenerate Cartan matrices of size 2× 2(︂
2 0
0 2

)︂
,

(︂
2 −1
−1 2

)︂
,

(︂
2 −2
−1 2

)︂
,

(︂
2 −3
−1 2

)︂
of semi-simple Lie algebras 𝐴1⊕𝐴1, 𝐴2, 𝐶2, 𝐺2 are integrable in an explicit form.
Now we consider a degenerate Cartan matrix 𝑀 = (𝑎𝑖𝑗). Its last row 𝑙𝑟 can be represented

as a linear combination of the first 𝑟 − 1 rows:

𝑙𝑟 = 𝜆1𝑙1 + · · ·+ 𝜆𝑟−1𝑙𝑟−1.

We introduce new variables

𝑢𝑖 = 𝑎𝑖1𝑤
1 + · · ·+ 𝑎𝑖𝑟𝑤

𝑟, 𝑖 = 1, 2, . . . 𝑟 − 1.

Then system (2.1) can be rewritten as

𝑢𝑖
𝑥𝑦 = 𝑎𝑖1𝑒

𝑢1 + 𝑎𝑖2𝑒
𝑢2 + · · ·+ 𝑎𝑖𝑟−1𝑒

𝑢𝑟−1 + 𝑎𝑖𝑟𝑒
𝜆1𝑢1+···+𝜆𝑟−1𝑢𝑟−1 , 𝑖 = 1, 2, . . . , 𝑟 − 1.

Thus, for degenerate Cartan matrices of size 𝑟, the corresponding exponential system is reduced
to a system consisting of 𝑟− 1 hyperbolic equations. In particular, a degenerate Cartan matrix
of size 2 leads to the scalar sine-Gordon and Tzizeica equations. In Section 6 we study the
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systems to which the exponential systems corresponding to degenerate Cartan matrices of size
3 are reduced.

3. Characteristic Lie-Rinehart algebras

Let us recall the construction of one generalization of the notion of Lie algebra known in the
literature as the Lie-Rinehart algebra.

Definition 3.1 ([35]). Let 𝑅 be a unital associative ring and 𝐴 be a commutative 𝑅-algebra.
The pair (𝐴,ℒ) is called Lie-Rinehart algebra if
1) ℒ is a Lie algebra over 𝑅 acting on 𝐴 by left differentiations, i.e.,

𝑋(𝑎𝑏) = 𝑋(𝑎)𝑏+ 𝑎𝑋(𝑏) for all 𝑎, 𝑏 ∈ 𝐴, 𝑋 ∈ ℒ;

2) Lie algebra ℒ is an 𝐴-module.
The pair (𝐴,ℒ) should satisfy the following compatibility conditions:

[𝑋, 𝑎𝑌 ] = 𝑋(𝑎)𝑌 + 𝑎[𝑋, 𝑌 ] for all 𝑋, 𝑌 ∈ ℒ, 𝑎 ∈ 𝐴;

(𝑎𝑋)(𝑏) = 𝑎(𝑋(𝑏)) for all 𝑎, 𝑏 ∈ 𝐴, 𝑋 ∈ ℒ.

A morphism 𝜙 : (𝐴,ℒ) → (𝐴, ℒ̃) of Lie-Rineharts algebras (𝐴,ℒ) and (𝐴, ℒ̃) is a morphism
𝜙 : ℒ → ℒ̃ of Lie algebras over 𝑅 compatible with the action ℒ over 𝐴.
The concept of a Lie-Rinehart algebra turns out to arise naturally in the theory of character-

istic Lie algebras of hyperbolic systems. As a basic example, let us consider the characteristic
Lie algebra 𝜒(sinh(𝑢)) of the sine-Gordon equation.
It was established in [33], [34] that in the characteristic Lie algebra

𝜒(sinh(𝑢)) = ℒ𝑖𝑒(𝑋0, 𝑋1)

we can choose an infinite basis 𝑋0, 𝑋1, 𝑋2, 𝑋3, . . . , such that

[𝑋𝑖, 𝑋𝑗] = 𝑐𝑖𝑗𝑋𝑖+𝑗, 𝑐𝑖𝑗 =

⎧⎪⎨⎪⎩
1, 𝑗 − 𝑖 ≡ 1 mod 3

0, 𝑗 − 𝑖 ≡ 0 mod 3

−1, 𝑗 − 𝑖 ≡ −1 mod 3

, 𝑖, 𝑗 > 0. (3.1)

Structure relations (3.1) coincide with the canonical relations for the basic elements of the
algebra of nonnegative loops ℒ(s𝑙(2,C))60 over s𝑙(2,C) or, in other terms, with the nonnegative

part of the affine Kac-Moody algebra 𝐴
(1)
1 .

The characteristic Lie algebra 𝜒(sinh(𝑢)) is a Lie algebra, but in the proof of its commutation
relations the structure of some auxiliary Lie-Rinehart algebra is essentially employed. It should
be noted that in monograph [31], as well as in a series of papers [25]-[28] and in others, the term
Lie ring was used. This choice was not very successful, and now in the literature a correct, in
our opinion, term Lie-Reinhart algebra is used more and more often [30].
We recall some known constructions. We consider the Klein-Gordon equation 𝑢𝑥𝑦 = 𝑓(𝑢)

obtained from the classical equation

𝑢𝑡𝑡 − 𝑢𝑧𝑧 = 𝑓(𝑢)

by the change of variables 𝑥 = 𝑧+𝑡
2
, 𝑦 = 𝑧−𝑡

2
.

We define a composite function 𝑔(𝑥, 𝑦) by means of a function 𝑔 of many variables and some
solution 𝑢(𝑥, 𝑦) of the Klein-Gordon equation

𝑢 = 𝑢(𝑥, 𝑦), 𝑔(𝑥, 𝑦) = 𝑔(𝑢, 𝑢𝑥, 𝑢𝑥𝑥, 𝑢𝑥𝑥𝑥, . . . ) = 𝑔(𝑢, 𝑢1, 𝑢2, 𝑢3, . . . ),

where we have used the notations

𝑢1 = 𝑢𝑥, 𝑢2 = 𝑢𝑥𝑥, 𝑢3 = 𝑢𝑥𝑥𝑥, . . . .
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A classical construction is as follows: while calculating a partial derivative 𝜕𝑔
𝜕𝑥

of a composite
function

𝜕𝑔

𝜕𝑥
=

𝜕𝑢

𝜕𝑥

𝜕𝑔

𝜕𝑢
+

𝜕𝑢1

𝜕𝑥

𝜕𝑔

𝜕𝑢1

+ · · · = 𝑢1
𝜕𝑔

𝜕𝑢
+ 𝑢2

𝜕𝑔

𝜕𝑢1

+ . . .

an operator 𝐷 = 𝜕
𝜕𝑥

of a partial differentiation in 𝑥 arises:

𝐷 = 𝑢1
𝜕

𝜕𝑢
+ 𝑢2

𝜕

𝜕𝑢1

+ 𝑢3
𝜕

𝜕𝑢2

+ · · ·+ 𝑢𝑘+1
𝜕

𝜕𝑢𝑘

+ . . . . (3.2)

Definition 3.2. The polynomial 𝐹 (𝑢, 𝑢𝑥, 𝑢𝑥𝑥, 𝑢𝑥𝑥𝑥, . . . ) = 𝐹 (𝑢, 𝑢1, 𝑢2, 𝑢3, . . . ) is called 𝑦-
integral of the Klein-Gordon equation if 𝜕𝐹

𝜕𝑦
= 0.

We consider

𝜕

𝜕𝑦
𝐹 (𝑢, 𝑢1, 𝑢2, . . . ) = 𝑢𝑦

𝜕𝐹

𝜕𝑢
+ 𝑢𝑥𝑦

𝜕𝐹

𝜕𝑢1

+ 𝑢𝑥𝑥𝑦
𝜕𝐹

𝜕𝑢2

+ . . .

= 𝑢𝑦
𝜕𝐹

𝜕𝑢⏟  ⏞  
=0

+ 𝑓
𝜕𝐹

𝜕𝑢1

+
𝜕𝑓

𝜕𝑥

𝜕𝐹

𝜕𝑢2

+ . . .⏟  ⏞  
=0

.

The polynomial 𝐹 is a 𝑦-interal if the following conditions are satisfied

𝜕𝐹

𝜕𝑢
= 0, 𝑋𝑓 (𝐹 ) = 𝑓

𝜕𝐹

𝜕𝑢1

+𝐷(𝑓)
𝜕𝐹

𝜕𝑢2

+𝐷2(𝑓)
𝜕𝐹

𝜕𝑢2

+ · · · = 0.

We recall that a characteristic algebra 𝜒(sinh(𝑢)) of the sine-Gordon equation is the Lie
algebra ℒ𝑖𝑒(𝑋0, 𝑋sinh𝑢) generated by two differential operators 𝑋0, 𝑋sinh𝑢, where

𝑋0 =
𝜕

𝜕𝑢
, 𝑋sinh𝑢 =

+∞∑︁
𝑛=1

𝐷𝑛−1
𝑥 (sinh𝑢)

𝜕

𝜕𝑢𝑛

and 𝐷𝑦 = 𝑋sinh𝑢 + 𝑋0. We shall construct a required basis in 𝜒(sinh(𝑢)) step-by-step by
considering all commutators of higher order of generators 𝑋0, 𝑋sinh𝑢.
At the first step we fix a linear span ⟨𝑋0, 𝑋sinh𝑢, 𝑌1⟩, where 𝑌1 = [𝑋0, 𝑋sinh𝑢] and we consider

another basis in this span:

𝑋0, 𝑋1 = 𝑋sinh𝑢 + 𝑌1, 𝑋2 = 𝑋sinh𝑢 − 𝑌1.

New operators can be written as follows

𝑋1 =
+∞∑︁
𝑛=1

𝐷𝑛−1
𝑥 (𝑒𝑢)

𝜕

𝜕𝑢𝑛

, 𝑋2 = −
+∞∑︁
𝑛=1

𝐷𝑛−1
𝑥 (𝑒−𝑢)

𝜕

𝜕𝑢𝑛

.

We observe that these operators can be expressed in terms of Bell polynomials 𝐵𝑛(𝑢1, . . . , 𝑢𝑛),
which we will discussed more detail in Section 5:

𝑋1 = 𝑒𝑢
+∞∑︁
𝑛=1

𝐵𝑛−1(𝑢1, . . . , 𝑢𝑛−1)
𝜕

𝜕𝑢𝑛

, 𝑋2 = −𝑒−𝑢

+∞∑︁
𝑛=1

𝐵𝑛−1(−𝑢1, . . . ,−𝑢𝑛−1)
𝜕

𝜕𝑢𝑛

.

The first idea of the proof [33], [34] is to represent the characteristic Lie algebra 𝜒(sinh(𝑢)) as
the Lie algebra ℒ𝑖𝑒(𝑋0, 𝑋1, 𝑋2) generated not by two, but by three elements 𝑋0, 𝑋1, 𝑋2. The
advantage of the representation 𝜒(sinh(𝑢)) = ℒ𝑖𝑒(𝑋0, 𝑋1, 𝑋2) is the following two commutation
relations:

[𝑋0, 𝑋1] = 𝑋1, [𝑋0, 𝑋2] = −𝑋2,

which mean that the vectors 𝑋1, 𝑋2 are eigenvectors for the operator ad𝑋0 and the same is
true for all their higher commutators. Exactly this fact will be key in all calculations.
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The second idea of the proof from [33], [34] is to observe that commutation relations (3.1)
can be found without obtaining explicit formulae for the operators 𝑋3, 𝑋4, 𝑋5, . . . . This idea
is not original and is based on a well-known elementary lemma.

Lemma 3.1 ([31]). Let the differential operator

𝑋 =
+∞∑︁
𝑖=1

𝑃𝑖
𝜕

𝜕𝑢𝑖

, 𝑃𝑖 = 𝑃𝑖(𝑢, 𝑢1, . . . , 𝑢𝑛, . . . ),

commute with the operator 𝐷. Then 𝑋 = 0.

We stress that the identity [𝐷,𝑋0] = 0 does not contradict to the previous lemma in the
identity since the operator 𝑋0 = 𝜕

𝜕𝑢
does not have the form specified in the assumptions of

Lemma 3.1.
It is easy to check the commutation relations

[𝐷,𝑋1] = −𝑒𝑢𝑋0, [𝐷,𝑋2] = 𝑒−𝑢𝑋0.

The appearance of the functional factors 𝑒𝑢, 𝑒−𝑢 in the right hand sides of these formulas
indicates the need to consider Lie-Rinehart algebras instead of ordinary Lie algebras.
As an example, we provide one more commutation relation, in which the functional factors

𝑒𝑢, 𝑒−𝑢 appear as well:

[𝐷,𝑋3] = [𝐷, [𝑋1, 𝑋2]] = − [𝑒𝑢𝑋0, 𝑋2] +
[︀
𝑋1, 𝑒

−𝑢𝑋0

]︀
= 𝑒𝑢𝑋2 − 𝑒−𝑢𝑋1.

What can we say about the Lie algebra ℒ𝑖𝑒(𝐷,𝑋0, 𝑋1, 𝑋2) generated by the operators 𝐷,
𝑋0, 𝑋1, 𝑋2? Exactly this algebra should serve as the Lie subalgebra in the Lie-Rinehart algebra
(𝐴,ℒ), where 𝐴 denotes a commutative algebra of quasipolynomials of the form

𝐴 =

{︃
𝑚∑︁

𝑘=−𝑛

𝑒𝑘𝑢𝑃𝑘, 𝑃𝑘 ∈ C[𝑢1, 𝑢2, 𝑢3, . . . ], 𝑛,𝑚 ∈ N

}︃
,

and the Lie algebra ℒ is the algebra of quasipolynomial differential operators

𝑋 = 𝑓0
𝜕

𝜕𝑢
+ 𝑓1

𝜕

𝜕𝑢1
+ 𝑓2

𝜕

𝜕𝑢2
+ . . . , 𝑓𝑖 ∈ 𝐴, 𝑖 ∈ N.

We observe that

[𝐷,−𝑒𝑢𝑋0] = −𝐷(𝑒𝑢)𝑋0 = −𝑒𝑢𝑢1𝑋0, [𝐷, 𝑒−𝑢𝑋0] = −𝑒−𝑢𝑢1𝑋0.

Continuing this process recurrently, we see that the Lie algebra ℒ𝑖𝑒(𝐷,𝑋0, 𝑋1, 𝑋2) also contains
operators with coefficients in the form of quasipolynomials of arbitrary weights

−𝑒𝑢𝐵𝑛(𝑢1, . . . , 𝑢𝑛)𝑋0, 𝑒−𝑢𝐵𝑘(−𝑢1, . . . ,−𝑢𝑛)𝑋0, 𝑛, 𝑘 ∈ N.

It would be interesting to study ℒ𝑖𝑒(𝐷,𝑋0, 𝑋1, 𝑋2) from the point of view of infinite-
dimensional Z-graded Lie algebras. It seems that it should be isomorphic to one of known
algebras of such type.
However, the main aim of all our calculations is the proof of commutation relations (3.1):

[𝐷,𝑋4] = − [[𝐷,𝑋1], 𝑋3]− [𝑋1, [𝐷,𝑋3]] = [𝑒𝑢𝑋0, 𝑋3]−
[︀
𝑋1, 𝑒

𝑢𝑋2 + 𝑒−𝑢𝑋1

]︀
= −𝑒𝑢𝑋3,

where 𝑋4 = −[𝑋1, 𝑋3].
Let us prove that [𝑋1, 𝑋4] = 0. In order to do this, we calculate a double commutator

[𝐷, [𝑋1, 𝑋4]] = [[𝐷,𝑋1], 𝑋4] + [𝑋1, [𝐷,𝑋4]] = − [𝑒𝑢𝑋0, 𝑋4]− [𝑋1, 𝑒
𝑢𝑋3] = −𝑒𝑢𝑋4 + 𝑒𝑢𝑋4 = 0.

In the same way we prove [34] that [𝑋2, 𝑋5] = 0.
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Then we define inductively all operators of the canonical infinite basis for the characteristic
Lie algebra 𝜒(sinh(𝑢)) by the formulae

𝑋3𝑘+1 = −[𝑋1, 𝑋3𝑘], 𝑋3𝑘+2 = [𝑋2, 𝑋3𝑘], 𝑋3𝑘+3 = [𝑋1, 𝑋3𝑘+2], 𝑘 > 1.

And for these operators, by induction, we prove commutation relations (3.1).
Following paper [2], another way of algebraic arguing can be proposed. Its matter is that

the functional factors 𝑒𝜆𝑢 are “removed” from the basis operators, in other words, we introduce
new operators

𝐿3𝑘+1 = 𝑒−𝑢𝑋 ′
3𝑘+1, 𝐿3𝑘+2 = 𝑒𝑢𝑋 ′

3𝑘+2, 𝐿3𝑘+3 = 𝑋 ′
3𝑘+3.

It is obvious that the new differential operators 𝐿𝑖 satisfy the same commutation relations (3.1)
as the operators 𝑋𝑖 do, but at the same time they are polynomial, i.e., they are the differenti-
ation operators of the algebra of polynomials C[𝑢1, 𝑢2, . . . , 𝑢𝑝, . . . ].
The commutation relations involving the operator 𝐷 change their form. Let us write down

two main relations:
[𝐷,𝐿1] = −𝑢1𝐿1, [𝐷,𝐿2] = 𝑢1𝐿2. (3.3)

We arrive at the construction of so-called polynomial Lie algebra proposed by Buchstaber [36].
A polynomial Lie algebra in Buchstaber sense is the Lie-Rinehart algebra in the situation when
the algebra 𝐴 is some algebra of polynomials, usually on finitely many variables, and at the
same time, two additional important conditions are to be satisfied:
1) the Lie algebra ℒ mentioned in the definition should be a free module, usually finite-

dimensional, over the algebra 𝐴;
2) the Lie algebra ℒ and the polynomial algebra 𝐴 should be graded and the gradings should

be compatible in a natural sense.
As it was shown in [37] at the example of 𝜒(sinh(𝑢)), the study of characteristic Lie algebras

leads one to the need to consider polynomial Lie algebras 𝐴 in infinitely many variables, and
the Lie algebras are modules of a countable rank over the polynomial algebra 𝐴.
Now let us define Z-gradings of the polynomial algebra 𝐴 = C[𝑢1, 𝑢2, . . . , 𝑢𝑝, . . . ] and of the

Lie algebra ℒ for the characteristic Lie algebra of the sine-Gordon equation. We introduce
weights 𝑤(𝑢𝑖) of generators 𝑢1, 𝑢2, 𝑢3, . . . of the algebra 𝐴 and weights 𝑤(𝐿𝑖), 𝑤(𝐷) for the
operators 𝐷,𝐿1, 𝐿2, 𝐿3, . . . , which form a basis of the Lie algebra ℒ

𝑤(𝑢𝑖) = −𝑖, 𝑤(𝐷) = −1, 𝑤(𝐿𝑖) = 𝑖, where 𝑖 ∈ N.

A polyonmial Lie algebra (C[𝑢1, 𝑢2, . . . ],ℒ) of a finite rank is defined by means of a countable
basis𝐷,𝐿1, 𝐿2, 𝐿3, . . . of the Lie algebra ℒ, i.e., by the basis of the left module ℒ over the algebra
of polynomials 𝐴 = C[𝑢1, 𝑢2, 𝑢3, . . . ].
1) The basis elements 𝐷,𝐿1, 𝐿2, 𝐿3, . . . should satisfy commutations relations (3.1) and (3.3).
2) The action of the algebra ℒ on the algebra of polynomials C[𝑢1, 𝑢2, . . . ] is defined by the

action of basis operators on the variables 𝑢𝑖

𝐷(𝑢𝑖) = 𝑢𝑖+1, 𝐿1(𝑢𝑖) = 𝐵𝑖−1(𝑢1, . . . , 𝑢𝑖−1), 𝐿2(𝑢𝑖) = 𝐵𝑖−1(−𝑢1, . . . ,−𝑢𝑖−1), 𝑖 > 1.

3) The action of basis operators 𝐿𝑘 for 𝑘 > 3 is defined by induction beginning with the
action of the generators 𝐿1, 𝐿2

𝐿3(𝑢𝑖) = 𝐿1𝐿2(𝑢𝑖)− 𝐿2𝐿1(𝑢𝑖) = 𝐿1(𝐵𝑖(𝑢1, 𝑢2, . . . , 𝑢𝑖−1)− 𝐿2𝐵𝑖(−𝑢1,−𝑢2, . . . ,−𝑢𝑖−1).

The commutators [𝐷,𝐿𝑘] for 𝑘 > 3 are defined in the same way:

[𝐷,𝐿3] = [𝐷, [𝐿1, 𝐿2]] = [[𝐷,𝐿1], 𝐿2] + [𝐿1[𝐷,𝐿2]] = 𝐿1 − 𝐿2.

Analysis of other examples in applications shows that the characteristic Lie algebras can have
an additional structure of the Lie-Rinehart algebra, which can significantly simplify search for
higher symmetries of hyperbolic systems. This direction is now being actively developed [30].
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The concept of characteristic algebra can be generalized to the case of semi-discrete and
completely discrete hyperbolic equations [20], [22]. If the equation is not symmetric with respect
to two independent variables (and in the semi-discrete case this is always like this), then it is
necessary to define two characteristic algebras along each of the characteristic directions. We
do not provide here the general theory from papers [20], [22], but we only confine ourselves to
considering one instructive example and give all the definitions necessary for it.
We consider a scalar equation of form

𝑢𝑛+1,𝑥 = 𝑓(𝑢𝑛, 𝑢𝑛+1, 𝑢𝑛,𝑥), (3.4)

where 𝑢 is a function of two independent variables, a continuous variable 𝑥 and a discrete
𝑛, the dependence on which is traditionally indicated as a subscript. An analytic function
𝐼 = 𝐼(𝑢𝑛,𝑥, 𝑢𝑛, 𝑢𝑛+1, 𝑢𝑛+2, . . . ) is called an 𝑥-integral of equation (3.4) if its total derivative in
𝑥 by virtue of the equation vanishes: 𝐷(𝐼) = 0, where

𝐷 = 𝑢𝑛,𝑥𝑥
𝜕

𝜕𝑢𝑛,𝑥

+ 𝑢𝑛,𝑥
𝜕

𝜕𝑢𝑛

+ 𝑓
𝜕

𝜕𝑢𝑛+1

+ (𝑇𝑓)
𝜕

𝜕𝑢𝑛+2

+ (𝑇 2𝑓)
𝜕

𝜕𝑢𝑛+3

. . . ,

and 𝑇 is the operator of the shift along the discrete variable: 𝑇𝑓 = 𝑓(𝑢𝑛+1, 𝑢𝑛+2, 𝑢𝑛+1,𝑥). It
is easy to see that if the function 𝐼 is an integral of equation (3.4), then it is independent of
𝑢𝑛,𝑥 since otherwise by applying the operator 𝐷 we get a term 𝑢𝑛,𝑥𝑥 which does not cancel out.
Hence, each 𝑥-integral should satisfy the condition 𝑋0(𝐼) = 0, where 𝑋0 =

𝜕
𝜕𝑢𝑛,𝑥

.

The Lie algebra 𝜒𝑥 generated by the operators 𝐷 and 𝑋0 is called an 𝑥-characteristic algebra
of equation (3.4). It follows from the above that the function 𝐼 is an 𝑥-integral of equation (3.4)
if and only if it annihilates the characteristic algebra 𝜒𝑥. By analogy with ideas from [1],
[2], it is natural to assume that equation (3.4) admits nontrivial 𝑥-integrals if and only if
its characteristic algebra is finite-dimensional. However, as the following example shows, this
statement is not true in such form.

Example 3.1. We consider a semi-discrete analogue of the Liouville equation

𝑢𝑛+1,𝑥 − 𝑢𝑛,𝑥 = 𝑒𝑢𝑛+1 + 𝑒𝑢𝑛 .

This equation was studied in detail in paper [38], where it was shown that its properties are
completely analogous to those of the continuous Liouville equation 𝑢𝑥𝑦 = 𝑒𝑢. For example, it
possesses an 𝑥-integral

𝐼 = (1 + 𝑒𝑢𝑛+1−𝑢𝑛+2)(1 + 𝑒𝑢𝑛+1−𝑢𝑛).

Let us study the characteristic algebra 𝜒𝑥 of this equation. It is easy to confirm that in this case
for each 𝑘 ∈ N the identity

𝑇 𝑘𝑓 = 𝑢𝑛,𝑥 + 𝑒𝑢𝑛 + 2 (𝑒𝑢𝑛+1 + 𝑒𝑢𝑛+2 + · · ·+ 𝑒𝑢𝑛+𝑘) + 𝑒𝑢𝑛+𝑘+1

holds. This is why the operator 𝐷 can be represented as 𝐷 = 𝑋0 + 𝑢𝑛,𝑥𝑌 +𝑊 , where

𝑌 =
+∞∑︁
𝑖=0

𝜕

𝜕𝑢𝑛+𝑖

, 𝑊 =
+∞∑︁
𝑖=1

(︃
𝑒𝑢𝑛 + 2

𝑖−1∑︁
𝑗=1

𝑒𝑢𝑛+𝑗 + 𝑒𝑢𝑛+𝑖

)︃
𝜕

𝜕𝑢𝑛+𝑖

.

Considering the commutation relations, it is easy to see that

[𝑋0, 𝐷] = 𝑌, [𝑌,𝐷] = 𝑊,

and this implies that 𝑌,𝑊 ∈ 𝜒𝑥. Since 𝐷 ∈ 𝜒𝑥, then 𝑢𝑛,𝑥𝑌 = 𝐷 −𝑋0 −𝑊 ∈ 𝜒𝑥. We have:

[𝑢𝑛,𝑥𝑌,𝑊 ] = 𝑢𝑛,𝑥𝑊 ∈ 𝜒𝑥,

[𝑢𝑛,𝑥𝑌, 𝑢𝑛,𝑥𝑊 ] = (𝑢𝑛,𝑥)
2𝑊 ∈ 𝜒𝑥,

[𝑢𝑛,𝑥𝑌, (𝑢𝑛,𝑥)
2𝑊 ] = (𝑢𝑛,𝑥)

3𝑊 ∈ 𝜒𝑥,
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and so forth. It is easy to see that in this case the characteristic algebra 𝜒𝑥 is infinite-
dimensional, as a Lie algebra over the field of constants. Nevertheless, it is a finite-dimensional
module over the ring of polynomials in the variable 𝑢𝑛,𝑥 and is generated by the fields 𝑋0, 𝑌
and 𝑊 as the Lie-Rinehart algebra.

Characteristic algebras can be defined and effectively employed for studying arbitrary systems
of hyperbolic equations. The considered example shows that when passing from exponential
systems to the general case (both in the discrete and, generally speaking, in the continuous
case), the characteristic algebra should be defined not as a Lie algebra, but as a Lie-Rinehart
algebra, and its dimension should be considered in this sense. That is, it is the concept of a
Lie-Reinhart algebra that gives a suitable algebraic construction in this case.

4. Growth of characteristic Lie algebras

The emergence and development of the theory of characteristic algebras in its application to
the theory of symmetries of hyperbolic systems occurred a little later after the appearance of
the first works of Kac and Moody, which laid the foundations of the theory of affine algebras,
contragradient Lie algebras, as they were called.
In the end of 60s, Victor Kac started to study simple Z-graded Lie algebras g = ⊕𝑘∈Zg𝑘

obeying the following condition for the dimensions of homogeneous components

dim g𝑘 6 𝑃 (|𝑘|), 𝑘 ∈ Z,
where 𝑃 (𝑡) is some polynomial with non-negative integer coefficients. Kac called such infinite
dimensional Lie algebras as Lie algebras of finite growth.
Kac proved [39] that an infinite-dimensional simple Z-graded Lie algebra g of finite growth

satisfying some two technical conditions is isomorphic to one (and only one) Lie algebra from
the following list (see [40] to clarify definitions and notation)

∙ Centerless affine algebras: six infinite series and seven exceptional algebras

𝐴(1)
𝑛 , 𝐵(1)

𝑛 , 𝐶(1)
𝑛 , 𝐷(1)

𝑛 , 𝐴(2)
𝑛 , 𝐷(2)

𝑛 , 𝐸
(2)
6 , 𝐷

(3)
4 , 𝐸

(1)
6 , 𝐸

(1)
7 , 𝐸

(1)
8 , 𝐹

(1)
4 , 𝐺

(1)
2 ;

∙ Lie algebras of Cartan type 𝑊𝑛, 𝑆𝑛, 𝐾𝑛, 𝐻𝑛.

In addition to his theorem, Kac conjectured that omitting the additional technical conditions
from his theorem would add to this list only one simple Z-graded Lie algebra, the Witt algebra
𝑊 . This conjecture was proved by Kac by Mathieu in 1990 [40].
The appearance of the notion growth of a Lie algebra in Kac’s work was also not accidental

since the theory of the growth of groups and algebras appeared and became very popular
precisely in those years [41]: the end of the 60s and the beginning of the 70s; the concept of
the growth of a group appeared a bit earlier. The notion finite growth from paper [39] still did
not take root in the algebraic literature, usually now one says about polynomial growth.
Let us give a modern definition of the growth function of a Lie algebra, see for details [41].

Suppose that an infinite-dimensional Lie algebra g is generated by a finite-dimensional subspace
𝑉1(g). We denote by 𝑉𝑛(g) the subspace 𝑉1(g) spanned over higher commutators of length at
most 𝑛 > 2 with an arbitrary arrangement of parentheses. A chain of infinite-dimensional
subspaces appears:

𝑉1(g) ⊂ 𝑉2(g) ⊂ · · · ⊂ 𝑉𝑛(g) ⊂ . . . , ∪+∞
𝑖=1𝑉𝑖(g) = g.

We define the growth function 𝐹g(𝑛) = dim𝑉𝑛(g). However, such definition is not invariant
since it depends on the choice of the generating set 𝑉1.
For instance, if we choose another generating set 𝑉1(g) such that 𝑉1(g) ⊂ 𝑉𝑚(g) for some

natural 𝑚, then we obtain the following estimate for two growth functions

𝐹g(𝑛) = dim𝑉𝑛(g) 6 dim𝑉𝑚𝑛(g) = 𝐹g(𝑚𝑛).
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A growth of Lie algebra g is an equivalence class of its growth functions [41]. Growth functions
𝑓, 𝑔 : N→ N are called equivalent if there exists constants 𝑐,𝑚, 𝑐, �̃� ∈ N such that

𝑓(𝑛) 6 𝑐𝑔(𝑚𝑛), 𝑔(𝑛) 6 𝑐𝑓(�̃�𝑛),

for almost each 𝑛 ∈ N.
One chooses three growth types of Lie algebras: 1) polynomial; 2) exponential (this is the

growth of a free Lie algebra of finitely many generators); 3) intermediate or sub-exponential
growth.
It is convenient to characterize the polynomial growth type by means of another invariant

called Gelfand-Kirillov dimension [42]

GKdim g = lim sup
𝑛→+∞

log dim𝑉𝑛(g)

log 𝑛
.

The finiteness of the Gelfand-Kirillov dimension GKdim g means that there exists a polynomial
𝑃 (𝑥) such that dim𝑉𝑛(g) < 𝑃 (𝑛). If the Lie algebra g is finite-dimensional, then its Gelfand-
Kirillov dimension vanishes: GKdim g = 0. Informally, we can also say the following: if the
Gelfand-Kirillov dimension of the Lie algebra g is equal to some real number 𝛼, then the growth
function of the Lie algebra g grows at the rate of the power function 𝐶𝑛𝛼, where 𝐶 is some
positive constant.
While studying the growth of characteristic Lie algebras, one should have in mind a number of

additional circumstances. The first of them is reflected in the next lemma, which characterizes,
in particular, the characteristic Lie algebras of exponential systems corresponding to the Cartan
matrices.

Lemma 4.1 ([34]). Let g̃ be an infinite-dimensional Lie algebra generated by a finite-
dimensional subspace

𝑉1(g̃) = g0 ⊕ g1,

where g0 is a commutative Lie subalgebra in g̃, and the subspace g1 of dimension 𝑞 is invariant
under the action of g0 to g̃. We suppose also that the g0-module g1 is diagonalizable and
its corresponding weights 𝛼1, . . . , 𝛼𝑞 ∈ g*0 are non-trivial. We consider the subalgebra g in g
generated by the subspace g1. Then the growth functions 𝐹g(𝑛) and 𝐹g̃(𝑛) differ one from the
other by a constant

𝐹g̃(𝑛) = 𝐹g(𝑛) + dim g0.

Corollary 4.1. Lie algebras g and g̃ have the same Gelfand-Kirillov dimensions.

In the already discussed example on the characteristic Lie algebra g̃ = 𝜒(sinh(𝑢)) of sine-
Gordon equation, the commutative Lie algebra g0 = ⟨𝑋0⟩ is one-dimensional and the two-
dimensional space g1 = ⟨𝑋1, 𝑋2⟩ was defined as the linear span

g1 = ⟨𝑋(sinh(𝑢)), [𝑋0, 𝑋(sinh(𝑢))]⟩.

The general conclusion is as follows: if the characteristic Lie algebra g̃ satisfies the assumptions
of Lemma 4.1, then we can study the growth of its commutant g = [g̃, g̃] instead of the growth
of the entire Lie algebra g̃.
The second property describing the characteristic Lie algebras g̃ of exponential systems cor-

responding to Cartan matrices is the natural positive grading of their commutants g = [g̃, g̃].

Definition 4.1. N-graded Lie algebra g = ⊕+∞
𝑖=1 g𝑖 is called naturally graded if

[g1, g𝑘] = g𝑘+1, where 𝑘 > 1. (4.1)
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For a naturally graded Lie algebra g = ⊕+∞
𝑖=1 g𝑖 we can define one specific growth function

𝐹 𝑔𝑟
g (𝑛) [34] choosing a homogeneous component g1 as the generating subspace 𝑉1(g). The

following properties are obvious:

𝐹 𝑔𝑟
g (𝑛) = dim𝑉𝑛(g) =

𝑛∑︁
𝑖=1

dim g𝑖 = dim(g/g𝑛+1),

where g𝑛+1 stands for (𝑛+ 1)th ideal of the lower central series of Lie algebra g.

Definition 4.2. N-graded Lie algebra g = ⊕+∞
𝑖=1 g𝑖 is called Lie algebra of a bounded width

if the dimensions of all its homogeneous components are uniformly bounded by some constant
𝐶

dim g𝑘 6 𝐶, where 𝑘 > 1.

The maximal dimension among the dimensions dim g𝑘 of homogeneous components of a Lie
algebra of a finite width is called its width 𝑑(g).

For an arbitrary naturally graded Lie algebra g = ⊕+∞
𝑖=1 g𝑖 of width 𝑑(g) the function 𝐹 𝑔𝑟

g (𝑛)
grows not faster than 𝑑(g)𝑛:

𝐹 𝑔𝑟
g (𝑛) 6 𝑑(g)𝑛.

Therefore, the Gelfand-Kirillov dimension GKdim g of an arbitrary Lie algebra of finite width
is equal to one: GKdim g = 1.
It was shown in paper [34] that the characteristic Lie algebras of the sine-Gordon and Tzizeica

equations grow with the average linear rates 3
2
and 4

3
, respectively. We shall show in Section 6

that the characteristic algebras of systems corresponding to degenerate Cartan matrices of rank
2 also have linear growth.
In a number of works, in particular in monograph [31], it was conjectured that the integrabil-

ity of exponential hyperbolic nonlinear systems is determined by the growth of the correspond-
ing characteristic Lie algebra. It seems to us that both the integrability and the slow growth of
characteristic Lie algebras are indirect manifestations of the properties of the Cartan matrices.
In any case, one should not rely too much on the restrictions that have arisen only due to slow
growth. Note also that the Z-graded Lie algebras from the Kac list are simple and this is a
very strong restriction. If the characteristic Lie algebras have a grading, then it is nonnegative,
and this means that in principle they cannot be simple. A number of additional restrictions is
to be added to the conditions for slow growth. All this can be considered only as a plan for
future research.

5. Combinatorics of Liouville equation

This section is devoted to the properties of integrals and symmetries of the Liouville equation
from the point of view of formal algebra and combinatorics. We consider the Liouville equation
𝑢𝑥𝑦 = 𝑓(𝑢) = 𝑒𝑢. By straightforward calculations one confirm easily that the polynomial

𝑞2 = 2𝑢2 − 𝑢2
1 = 2𝑢𝑥𝑥 − 𝑢2

𝑥

is a 𝑦-integral of the Liouville equation.
We define a polynomial differential operator 𝑋 by the formula 𝑋𝑒𝑢 = 𝑒𝑢𝑋, that is,

𝑋 =
𝜕

𝜕𝑢1

+ 𝑢1
𝜕

𝜕𝑢2

+ (𝑢2
1 + 𝑢2)

𝜕

𝜕𝑢2

+ . . . .
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The coefficients of this operator are known in combinatorics as the complete Bell polynomials
𝐵𝑘

𝑋 =
∞∑︁
𝑘=1

𝐵𝑘−1(𝑢1, . . . , 𝑢𝑘−1)
𝜕

𝜕𝑢𝑘

.

In book by Riordan [43] one can find many interesting combinatorial properties of Bell polyno-
mials, they also have many applications.
A generating function for the Bell polynomial 𝐵𝑛(𝑢1, 𝑢2, . . . , 𝑢𝑛) is

exp

(︃
+∞∑︁
𝑖=1

𝑢𝑖
𝑡𝑖

𝑖!

)︃
=

+∞∑︁
𝑛=0

𝐵𝑛(𝑢1, . . . , 𝑢𝑛)
𝑡𝑛

𝑛!
.

In [43], also the following recurrent formula was given for the Bell polynomials 𝐵𝑛(𝑢1, . . . , 𝑢𝑛):

(𝐷 + 𝑢1)𝐵𝑘 = 𝐵𝑘+1, 𝑘 > 0.

Corollary 5.1. The identity holds:

𝐵𝑛(𝑢1, . . . , 𝑢𝑛) = (𝐷 + 𝑢1)
𝑛(1). (5.1)

It is convenient to write recurrently the Bell polynomials by means of formula (5.1):

𝐵1(𝑢1) = (𝐷 + 𝑢1)(1) = 𝑢1,

𝐵2(𝑢1, 𝑢2) = (𝐷 + 𝑢1)(𝑢1) = 𝑢2 + 𝑢2
1,

𝐵3(𝑢1, 𝑢2, 𝑢3) = (𝐷 + 𝑢1)(𝑢2 + 𝑢2
1) = 𝑢3 + 3𝑢1𝑢2 + 𝑢3

1,

𝐵4(𝑢1, 𝑢2, 𝑢3, 𝑢4) = (𝐷 + 𝑢1)(𝐵3(𝑢1, 𝑢2, 𝑢3)) = 𝑢4
1 + 6𝑢2

1𝑢2 + 4𝑢1𝑢3 + 3𝑢2
2 + 𝑢4.

(5.2)

The complete Bell polynomials can be recurrently defined in one more way:

𝐵0 = 1, 𝐵𝑛+1(𝑢1, 𝑢2, . . . , 𝑢𝑛+1) =
𝑛∑︁

𝑖=0

(︂
𝑛

𝑖

)︂
𝐵𝑛−𝑖(𝑢1, 𝑢2, . . . , 𝑢𝑛−𝑖)𝑢𝑖+1.

We define the grading in the algebra of polynomials 𝐴 = K[𝑢1, 𝑢2, 𝑢3, . . . ] on its generators

𝑤(𝑢𝑘) = 𝑘, 𝑘 = 1, 2, 3, . . . ,

continuing then it by the multiplicativity for all polynomials. For instance, the polynomial
𝑞2 = 2𝑢2 − 𝑢2

1 is homogeneous of weight 2. We note that this grading differs by sign from the
grading of the algebra 𝐴 = K[𝑢1, 𝑢2, 𝑢3, . . . ] introduced in Section 3.
Thus, the algebra 𝐴 is positively graded

𝐴 = ⊕+∞
𝑛=1𝐴𝑛, 𝐴𝑛 = {𝑃 ∈ 𝐴,𝑤(𝑃 ) = 𝑛} .

The operator 𝑋 decreases the weight 𝑤(𝑃 ) of each homogeneous polynomial 𝑃 ∈ 𝐴𝑛 by one,
while the operator 𝐷 and the operator of multiplication by 𝑢1 do vice versa: these operators
increase the weight of each homogeneous polynomial exactly by one

𝑋 : 𝐴𝑛 → 𝐴𝑛−1, 𝐷 : 𝐴𝑛 → 𝐴𝑛+1, 𝑢1 : 𝐴𝑛 → 𝐴𝑛+1, 𝑛 > 1.

We define an increasing filtration {𝐴𝑚,𝑚 > 0} of the algebra 𝐴

𝐴0 = ⟨1⟩ ⊂ 𝐴1 = ⟨1, 𝑢1⟩ ⊂ 𝐴2 = ⟨1, 𝑢1, 𝑢
2
1, 𝑢2⟩ ⊂ · · · ⊂ 𝐴𝑚 = {𝑃 ∈ 𝐴,𝑤(𝑃 ) 6 𝑚} ⊂ 𝐴𝑚+1 ⊂ . . . ,

that is, we define a filtrating subspace 𝐴𝑚 as the linear span of homogeneous polynomials 𝑃
with weights 𝑤(𝑃 ) at most 𝑚.

Proposition 5.1. The operator 𝑋 restricted to an arbitrary finite-dimensional subspace 𝐴𝑚

becomes nilpotent: 𝑋|𝑚+1
𝐴𝑚 = 0.
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Since 𝑋 is a differentiation of the algebra 𝐴, its kernel Ker𝑋 is a subalgebra of 𝐴. Moreover,
the subalgebra Ker𝑋 is 𝐷-invariant due to the following commutation relations

[𝐷,𝑋] = 𝐷𝑋 −𝑋𝐷 = −𝑢1𝑋 ⇔ (𝐷 + 𝑢1)𝑋 = 𝑋𝐷. (5.3)

In what follows we shall make use of the following generalization of commutation relation (5.3)

𝑋(𝐷 + 𝑘𝑢1) = (𝐷 + (𝑘 + 1)𝑢1)𝑋 + 𝑘 Id, 𝑘 ∈ Z. (5.4)

We consider homogeneous 𝑦-integrals of weights 3, 4, . . . , 𝑘, . . . , which are defined recurrently
using the operator 𝐷 and the very first element of the kernel 𝑞2 = 2𝑢2 − 𝑢2

1 (other than a
constant):

𝑞3 = 𝐷(𝑞2) = 2𝑢1𝑢2 − 2𝑢3, 𝑞4 = 𝐷2(𝑞2) = 2𝑢2
2 + 2𝑢1𝑢3 − 2𝑢4, . . . , 𝑞𝑘 = 𝐷𝑘−2(𝑞2), . . . .

We can treat the polynomials 𝑞𝑘 as a polynomial deformation of the variables 2𝑢𝑘

𝑞𝑘 = 2𝑢𝑘 +𝑄𝑘(𝑢1, . . . , 𝑢𝑘−1),

where the quadratic polynomials 𝑄𝑘(𝑢1, . . . , 𝑢𝑘−1) depend on the variables 𝑢𝑗 with the indices

𝑗 strictly less than 𝑘. Hence, the polynomials of form 𝑞𝑘22 𝑞𝑘33 . . . 𝑞𝑘𝑚𝑚 , where 𝑘𝑖 ∈ Z>0, 𝑚 > 1,
form an infinite set of linearly independent polynomials.
We arrive at the following well-known theorem.

Theorem 5.1 (Shabat, Zhiber, 1979). The subalgebra Ker𝑋 is isomoprhic to a polynomial
algebra K[𝑞2, 𝑞3, . . . , 𝑞𝑘, . . . ], where 𝑞𝑘 = 𝐷𝑘−2(𝑞2), 𝑘 > 2.

Concerning the proof of this algebraic theorem, at present, only the inclusion of subalgebras

K[𝑞2, 𝑞3, 𝑞4, . . . ] ⊂ Ker𝑋 (5.5)

is proved. A bit later in this section we shall prove that this inclusion is in fact the identity.
By means of the operator 𝑋 we define one more increasing filtration of the algebra 𝐴

𝐴0 = {0} ⊂ 𝐴1 ⊂ 𝐴2 ⊂ · · · ⊂ 𝐴𝑚 = {𝑃 ∈ 𝐴,𝑋𝑚𝑃 = 0} ⊂ 𝐴𝑚+1 ⊂ . . . , (5.6)

that is, in the case the filtrating subspace 𝐴𝑚 is defined as the kernel of the operator 𝑋𝑚.
We note that the subspaces 𝐴𝑚 are no longer finite-dimensional. In addition, there exists an
obvious relation between two filtrations due to Proposition 5.1

𝐴𝑚 ⊂ 𝐴𝑚+1, 𝑚 > 0.

We also note that 𝐴1 = Ker𝑋.
For all natural 𝑚, the inclusions hold:

𝑋𝐴𝑚 ⊂ 𝐴𝑚−1, 𝑢1𝐴
𝑚 ⊂ 𝐴𝑚+1, 𝐷𝐴𝑚 ⊂ 𝐴𝑚+1.

The first inclusion is implied by the definition of 𝐴𝑚, while to prove the other, it is sufficient
to note that the relations hold:

𝑋𝑚+1(𝑢1𝐹 ) = (𝑚+ 1)𝑋𝑚𝐹 + 𝑢1𝑋
𝑚+1𝐹, where 𝑚 > 0, (5.7)

which can be proved by a simple induction in 𝑚 starting from the obvious identity

𝑋(𝑢1𝐹 ) = 𝐹 + 𝑢1𝑋𝐹.

The latter inclusion is implied by the following relation involving the operator 𝐷:

𝑋𝑚+1(𝐷𝐹 ) = (𝐷 + (𝑚+ 1)𝑢1)𝑋
𝑚+1𝐹 +

𝑚(𝑚+ 1)

2
𝑋𝑚𝐹, 𝑚 > 1. (5.8)
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It is also proved by induction in the exponent 𝑚 starting from (5.3):

𝑋𝑚+1𝐷𝐹 = 𝑋(𝐷 +𝑚𝑢1)𝑋
𝑚𝐹 +𝑋(

(𝑚− 1)𝑚

2
𝑋𝑚−1𝐹 )

= (𝐷 + (𝑚+ 1)𝑢1)𝑋
𝑚+1𝐹 +

(︂
(𝑚− 1)𝑚

2
+𝑚

)︂
𝑋𝑚𝐹.

As an implication of (5.7), (5.8) we obtain the following formula:

𝑋𝑚+1(𝐷 + 𝑘𝑢1)𝐹 = (𝐷 + (𝑚+ 𝑘 + 1)𝑢1)𝑋
𝑚+1𝐹 +

(𝑚+ 1)(𝑚+ 2𝑘)

2
𝑋𝑚𝐹. (5.9)

Remark 5.1. The polynomials 𝑃 in the kernel of the operator Ker𝑋 are the eigenvectors
of the operator 𝑋𝐷 associated with the eigenvalue 𝜆 = 0:

𝑋𝐷(𝑃 ) = (𝐷 + 𝑢1)𝑋𝑃 = 0.

Lemma 5.1. Let 𝐹 be an arbitrary polynomial in the algebra 𝐴, then the series

𝜋(𝐹 ) = 𝐹 − 𝑢1𝑋𝐹 +
𝑢2
1

2!
𝑋2𝐹 − 𝑢3

1

3!
𝑋3𝐹 + · · ·+ (−1)𝑘

𝑢𝑘
1

𝑘!
𝑋𝑘𝐹 + . . . (5.10)

contains finitely many non-zero terms and the polynomial 𝜋𝐹 annihilates the operator 𝑋.

The proof of the lemma is the straightforward calculation

𝑋𝜋(𝐹 ) = 𝑋𝐹 −𝑋(𝑢1)𝑋𝐹 − 𝑢1𝑋
2𝐹 +

𝑋(𝑢2
1)

2!
𝑋2𝐹 − . . .

Since

𝑋(𝑢1) = 1, 𝑋(𝑢2
1) = 2𝑢1, 𝑋(𝑢𝑘

1) = 𝑘𝑢𝑘−1
1 ,

then in the case when 𝐹 ∈ 𝐴𝑚 for some natural 𝑚, we have:

𝑋𝐹 =
𝑋𝑚

𝑚!
𝐹 = 0.

In particular, it follows from the proof that for the polynomial 𝐹 ∈ 𝐴𝑚+1 we have

𝜋(𝐹 ) = 𝐹 − 𝑢1𝑋𝐹 +
𝑢2
1

2!
𝑋2𝐹 − 𝑢3

1

3!
𝑋3𝐹 + · · ·+ (−1)𝑚

𝑢𝑚−1
1

(𝑚− 1)!
𝑋𝑚𝐹.

In particular, for 𝐹 ∈ Ker𝑋2 we have 𝐹 − 𝑢1𝑋𝐹 ∈ Ker𝑋.

Remark 5.2. The mapping 𝜋 : 𝐴 → 𝐴 defined by formula (5.10) is a projector on the
subalgebra Ker𝑋: 𝜋2 = 𝜋.

It is easy to find the kernel of this projector:

Ker 𝜋 = 𝑢1𝐴 = {𝑢1𝐹, 𝐹 ∈ 𝐴} . (5.11)

Indeed, we employ formula (5.7) to calculate 𝜋(𝑢1𝐹 ) for an arbitrary 𝐹 ∈ 𝐴

𝜋(𝑢1𝐹 ) = 𝑢1𝐹 − 𝑢1𝑋(𝑢1𝐹 ) +
𝑢2
1

2!
𝑋2(𝑢1𝐹 )− 𝑢3

1

3!
𝑋3(𝑢1𝐹 ) + . . .

= 𝑢1𝐹 − 𝑢1𝐹 − 𝑢2
1𝑋𝐹 +

𝑢2
1

2!
(2𝑋𝐹 + 𝑢1𝑋

2𝐹 )− 𝑢3
1

3!
(3𝑋2𝐹 + 𝑢1𝑋

3𝐹 ) + · · · = 0.

As an implication, we obtain the formula for the dimension of the kernel of the operator 𝑋
restricted to the subspace 𝐴𝑛 of elements of weight 𝑛:

dimKer𝜋|𝐴𝑛 = dim𝑢1𝐴
𝑛−1 = 𝑝(𝑛− 1),

according to (5.11). This gives rise to the formula

dimKer𝑋|𝐴𝑛 = dim Im 𝜋|𝐴𝑛 = dim𝐴𝑛 − dimKer𝜋|𝐴𝑛 = 𝑝(𝑛)− 𝑝(𝑛− 1), (5.12)
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where 𝑝(𝑛) denotes the number of partitions of a number 𝑛, while the difference 𝑝(𝑛)−𝑝(𝑛−1)
is obviously equal to the number of partitions of 𝑛 into the sum of terms strictly greater than
1: the number of partitions of 𝑛 containing the unit is obtained from some partition of 𝑛− 1,
to which we add one unit.

Corollary 5.2. Inclusion (5.5) in Zhiber-Shabat theorem 5.1 is an isomorphism.

We have also proved that the operator 𝑋|𝐴𝑛 : 𝐴𝑛 → 𝐴𝑛−1 is a mapping of a maximal rank:
dim Im𝑋|𝐴𝑛 = dim𝐴𝑛−1 = 𝑝(𝑛− 1).
Let us recall the defining equation of higher symmetries of the Klein-Gordon equation (the

equation of the formal Lie-Bäcklund group of higher symmetries)

𝐹𝑥𝑦 = 𝑓 ′(𝑢)𝐹, 𝑢𝜏 = 𝐹 (𝑢, 𝑢𝑥, 𝑢𝑥𝑥, . . . ),

which can be reduced to the following algebraic form

(𝐷 + 𝑢1)𝑋𝐹 = 𝑋𝐷𝐹 = 𝐹.

This means that the symmetry 𝐹 = 𝐹 (𝑢1, 𝑢2, . . . ) is an eigenvector of the operator 𝑋𝐷 asso-
ciated with the eigenvalue 𝜆 = 1.

Lemma 5.2. For all integer 𝑚, the operator 𝐷 +𝑚𝑢1 has a zero kernel:

Ker(𝐷 +𝑚𝑢1) = {0}.
We use the standard lexicographic ordering in the algebra 𝐴 and select the highest monomial

𝛾𝑢𝑘1
1 . . . 𝑢𝑘𝑛

𝑛 in the expansion of an element in the kernel 𝐹 ∈ Ker(𝐷 + 𝑚𝑢1). This means, in
particular, that 𝑢𝑛 is the highest variable among those participating in the expansion of the
polynomial 𝐹 :

𝐹 = 𝛾𝑢𝑘1
1 . . . 𝑢𝑘𝑛

𝑛 + . . . , 𝛾 ∈ C.
The dots stands for the sums of monomials of variables 𝑢1, . . . , 𝑢𝑛, in which the variable 𝑢𝑛 can
be involved with multiplicities strictly less than 𝑘𝑛. We apply the operator (𝐷 +𝑚𝑢1) to 𝐹 :

𝐷𝐹 + 𝑢1𝐹 = 𝛾𝑘𝑛𝑢
𝑘1
1 . . . 𝑢𝑘𝑛−1

𝑛 𝑢𝑛+1 + . . . ,

that is, the monomial 𝛾𝑘𝑛𝑢
𝑘1
1 . . . 𝑢𝑘𝑛−1

𝑛 𝑢𝑛+1 is the highest in the expansion of (𝐷+𝑚𝑢1)𝐹 since
the multiplicity of the variable 𝑢𝑛 in the monomial, where 𝑢𝑛+1 is present, is maximal. Hence,
𝛾 = 0 and by similar reasoning we obtain that 𝐹 = 0.

Proposition 5.2. Let 𝐹 be a symmetry, that is, it is an eigenvector of the operator 𝑋𝐷
with 𝜆 = 1. Then 𝑋2(𝐹 ) = 0.

By the definition of the symmetry 𝐹 = 𝑋𝐷𝐹 and commutation relations (5.4) for 𝑘 = 1 we
obtain the following chain of identities

𝑋𝐹 = 𝑋2𝐷𝐹 = 𝑋(𝐷 + 𝑢1)𝑋𝐹 = ((𝐷 + 2𝑢1)𝑋 + 𝐼𝑑)𝑋𝐹 = (𝐷 + 2𝑢1)𝑋
2𝐹 +𝑋𝐹.

This implies that (𝐷 + 2𝑢1)𝑋
2𝐹 = 0 and applying Lemma 5.2, we arrive at the statement of

the proposition.

Theorem 5.2 (Zhiber, Shabat, 1979, [32]). An arbitrary 𝑥-symmetry 𝐹 , an eigenvector of
the operator 𝑋𝐷 with 𝜆 = 1, can be written as

𝐹 = (𝐷 + 𝑢1)𝑄, 𝑄 ∈ Ker𝑋 = K[𝑞2, 𝑞3, . . . ].

We reproduce here in a more rigorous way the proof from [32]. In one direction: let 𝑋𝑄 = 0,
then

(𝐷 + 𝑢1)𝑋(𝐷 + 𝑢1)𝑄 = (𝐷 + 𝑢1) ((𝐷 + 2𝑢1)𝑋 + 𝐼𝑑)𝑄

= (𝐷 + 𝑢1)(𝐷 + 2𝑢1)𝑋𝑄+ (𝐷 + 𝑢1)𝑄 = (𝐷 + 𝑢1)𝑄.
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The proof in the opposite direction is implied by the definition of the symmetry (𝐷+𝑢1)𝑋𝐹 =
𝐹 . We introduce an element 𝑄 = 𝑋𝐹 . It follows from Proposition 5.2 that 𝐹 = (𝐷 + 𝑢1)𝑄
and, in addition, 𝑋𝑄 = 𝑋2𝐹 = 0.
We denote the eigenspaces of the operator 𝑋𝐷 associated with 𝜆 = 0, 1 respectively by 𝑉0

and 𝑉1.

Proposition 5.3. The identity holds:

𝑉0 ⊕ 𝑉1 = Ker𝑋2.

We have proved the inclusion 𝑉0 ⊕ 𝑉1 ⊂ Ker𝑋2. We consider a finite-dimensional version
by restricting all operators to the subspace 𝐴𝑛 of polynomials of weight 𝑛. The subspace
𝑉1(𝑛) = 𝑉1 ∩𝐴𝑛 is isomorphic to the subspace 𝑉0(𝑛− 1) = 𝑉0 ∩𝐴𝑛−1 according to the theorem
5.2 and Lemma 5.2. Hence,

dim(𝑉0(𝑛)⊕ 𝑉1(𝑛)) = 𝑝(𝑛)− 𝑝(𝑛− 1) + 𝑝(𝑛− 1)− 𝑝(𝑛− 2) = 𝑝(𝑛)− 𝑝(𝑛− 2).

On the other hand, the operator 𝑋 : 𝐴𝑛 → 𝐴𝑛−1 is surjective for each 𝑛, and hence the same
is true for the operator 𝑋2 : 𝐴𝑛 → 𝐴𝑛−2. Therefore, dimKer𝑋2|𝐴𝑛 = 𝑝(𝑛)− 𝑝(𝑛− 2).
A natural question arises: “What other eigenvectors are there for the operator 𝑋𝐷?”
Before giving a general answer to this question, let us analyze examples in small dimensions.
1) Weight 𝑛 = 1. The operator 𝑋𝐷 has a single eigenvector 𝑢1 associated with the eigenvalue

𝜆1 = 1.
2) Weight 𝑛 = 2. We consider the basis 𝑢2

1, 𝑢2. Then the matrix of the operator 𝑋𝐷 reads as(︂
2 1
2 1

)︂
. This matrix has two eigenvalues: 𝜆0 = 0 and 𝜆2 = 3. The corresponding eigenvectors

are two polynomials

𝑞2 = 𝑢2
1 − 2𝑢2, 𝐵2 = 𝑢2

1 + 𝑢2.

3) In the weight 𝑛 = 3 we fix the basis 𝑢3
1, 𝑢1𝑢2, 𝑢3. In this basis, the matrix of the operator

𝑋𝐷 is ⎛⎝3 1 1
6 3 3
0 1 1

⎞⎠ .

Its eigenvalues are 𝜆0 = 0, 𝜆1 = 1 and 𝜆3 = 6. The associated eigenvectors are respectively of
the form

𝑞3 = 𝑢1𝑢2 − 2𝑢3, (𝜆0 = 0),

𝑢3
1 − 2𝑢3, (𝜆1 = 1),

2𝑢2
1 + 5𝑢1𝑢2 + 𝑢3, (𝜆3 = 6).

4) In the weight 𝑛 = 4 we choose the basis of the polynomials 𝑢4
1, 𝑢

2
1𝑢2, 𝑢1𝑢3, 𝑢

2
2, 𝑢4. Now

the matrix of the operator 𝑋𝐷 is of size 5× 5:⎛⎜⎜⎜⎜⎝
4 1 1 0 1
12 5 4 2 6
0 2 2 2 4
0 2 1 2 3
0 0 1 0 1

⎞⎟⎟⎟⎟⎠ .

Its eigenvalues are 𝜆0 = 0 (of multiplicity 2), 𝜆1 = 1, 𝜆2 = 3 and 𝜆4 = 10. Among the
eigenvectors of this matrix we have two integrals 𝑞22 and 𝑞4 (𝜆0 = 0), one symmetry (𝐷 +
𝑢1)(𝑞3) = 𝑞4, and other eigenvectors:

−𝑢4
1 − 2𝑢2

1𝑢2 + 2𝑢1𝑢3 + 𝑢2
2 + 𝑢4 and 6𝑢4

1 + 26𝑢2
1𝑢2 + 9𝑢1𝑢3 + 8𝑢2

2 + 𝑢4,
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associated respectively with 𝜆2 = 3 and 𝜆4 = 10.
We arrive to a theorem, which naturally generalizes Theorem 5.2.

Theorem 5.3. 1) The operator (𝐷 + 𝑢1)𝑋 = 𝑋𝐷 restricted to the subspace, 𝐴𝑛 of polyno-
mials of weight 𝑛 > 2 is diagonalizable;
2) Its spectrum is the following set of nonnegative integer numbers:

𝜆0 = 0, 𝜆1 = 1, . . . , 𝜆𝑛−2 =
(𝑛− 2)(𝑛− 1)

2
, 𝜆𝑛 =

𝑛(𝑛+ 1)

2
;

3) The multiplicity of the eigenvalue 𝜆𝑘 is equal to

𝑝(𝑛− 𝑘)− 𝑝(𝑛− 𝑘 − 1), 𝑘 = 0, 1, . . . , 𝑛− 2, 𝑛;

4) An arbitrary eigenvectors 𝑃 associated with an eigenvalue 𝜆𝑘, where 𝑘 ∈ {0, 1, . . . , 𝑛−2, 𝑛},
can be written as

𝑃 = (𝐷 + 𝑢1)(𝐷 + 2𝑢1) . . . (𝐷 + 𝑘𝑢1)𝐹,

where 𝐹 denotes some homogeneous polynomial of weight (𝑛− 𝑘) in the kernel Ker𝑋.

We begin the proof with Statement 4.
Let 𝑋𝐹 = 0. We apply the operator 𝑋𝐷 to the polynomial 𝑃 = (𝐷+ 𝑢1)(𝐷+2𝑢1) . . . (𝐷+

𝑛𝑢1)𝐹 :

𝑋𝐷(𝐷 + 𝑢1)(𝐷 + 2𝑢1) . . . (𝐷 + 𝑛𝑢1)𝐹 = (𝐷 + 𝑢1)𝑋(𝐷 + 𝑢1)(𝐷 + 2𝑢1) . . . (𝐷 + 𝑛𝑢1)𝐹

= (𝐷 + 𝑢1)((𝐷 + 2𝑢1)𝑋 + 𝑖𝑑)(𝐷 + 2𝑢1) . . . (𝐷 + 𝑛𝑢1)𝐹

= (𝐷 + 𝑢1)(𝐷 + 2𝑢1)𝑋(𝐷 + 3𝑢1) . . . (𝐷 + 𝑛𝑢1)𝐹 + 𝑃.

Swapping the operators 𝑋 and (𝐷+ 𝑘𝑢1) and taking into account relation (5.4), we finally end
up with the relation

𝑋𝐷𝑃 = (𝐷 + 𝑢1)(𝐷 + 2𝑢1) . . . (𝐷 + 𝑛𝑢1)𝑋𝐹 + 𝑃 + 2𝑃 + · · ·+ 𝑛𝑃 =
𝑛(𝑛+ 1)

2
𝑃,

where we have employed that 𝑋𝐹 = 0.
The next proposition is an elementary implication of lemma 5.2.

Proposition 5.4. A linear mapping 𝜙𝑘 : 𝑉0(𝑛− 𝑘) → 𝑉𝑘(𝑛) defined by the formula

𝜙𝑘(𝐹 ) = (𝐷 + 𝑢1)(𝐷 + 2𝑢1) . . . (𝐷 + 𝑘𝑢1)𝐹,

is a monomorphism.

It implies immediately a simple bound for the dimensions of eigenspaces 𝑉𝑘(𝑛):

dim𝑉𝑘(𝑛) > dim Im𝜙𝑘 = dim𝑉0(𝑛− 𝑘) = dimKer𝑛−𝑘 𝑋 = 𝑝(𝑛− 𝑘)− 𝑝(𝑛− 𝑘 − 1), (5.13)

where 𝑝(𝑛) denotes the number of partitions of 𝑛.
We consider the direct sum ⊕𝑛

𝑘=0, ̸=𝑛−1𝑉𝑘(𝑛) of eigensubspaces of the operator 𝑋𝐷|𝐴𝑛 . Ac-
cording to (5.13), we have the following estimate for its dimension

dim
(︀
⊕𝑛

𝑘=0, ̸=𝑛−1𝑉𝑘(𝑛)
)︀
>

𝑛−2∑︁
𝑘=0

(𝑝(𝑛− 𝑘)− 𝑝(𝑛− 𝑘 − 1)) + 1 = 𝑝(𝑛) = dim𝐴𝑛.

Hence, we conclude that this inequality is identity and the same is true for all inequalities
(5.13). This implies Statement 1), that is,

𝐴𝑛 = 𝑉0(𝑛)⊕ 𝑉1(𝑛)⊕ · · · ⊕ 𝑉𝑛−2(𝑛)⊕ 𝑉𝑛(𝑛),

and Statement 2) on the dimensions of eigenspaces 𝑉𝑘. The proof of the theorem is complete.
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Corollary 5.3. There is a simple relation between the eigensubspaces of 𝑉𝑘 of operator 𝑋𝐷
and the filtering 𝐴𝑚 of the polynomial algebra 𝐴

𝑉0 ⊕ 𝑉1 ⊕ · · · ⊕ 𝑉𝑘 = Ker𝑋𝑘+1 = 𝐴𝑘+1.

We have already proved this statement for 𝑘 = 0, 1. Here the operator 𝑋 : 𝑉1 → 𝑉0 is an
isomorphism decreasing the grading. In the general case we have

𝑋𝑉𝑘 ⊂ 𝑉0 ⊕ 𝑉1 ⊕ · · · ⊕ 𝑉𝑘−1, 𝑘 > 1.

We recall that according to formula (5.9), the mapping (𝐷+𝑞𝑢1) maps an element 𝐹 ∈ Ker𝑋𝑚

into an element of a higher filtration from Ker𝑋𝑚+1.
The maximum eigenvalue 𝜆𝑛 = 𝑛(𝑛+1)

2
of the operator 𝑋𝐷|𝐴𝑛 has multiplicity one, and the

associated eigenvector is collinear to a homogeneous polynomial 𝑃𝑛 in 𝐴𝑛, which is given by an
elegant formula similar to (5.2) for the Bell polynomials:

𝑃𝑛 = (𝐷 + 𝑢1)(𝐷 + 2𝑢1) . . . (𝐷 + 𝑛𝑢1)(1). (5.14)

In the examples, we have already seen the first polynomials from the sequence

𝑃1 = 𝑢1, 𝑃2 = 𝑢2
1 + 𝑢2, 𝑃3 = 2𝑢2

1 + 5𝑢1𝑢2 + 𝑢3, 𝑃4 = 6𝑢4
1 + 26𝑢2

1𝑢2 + 9𝑢1𝑢3 + 8𝑢2
2 + 𝑢4.

By induction, it is easy to find the values of the first and of the leading coefficients in the
polynomial 𝑃𝑛

𝑃𝑛 = (𝑛− 1)!𝑢𝑛
1 + · · ·+ 𝑢𝑛.

The existence of an eigenvector 𝑃𝑛 of multiplicity one with strictly positive coordinates for
the operator 𝑋𝐷 is an explicit manifestation of the classical Perron-Frobenius theorem on an
operator with a matrix of a special form consisting of nonnegative elements.
We recall that, as in the Perron-Frobenius theorem, the eigenvalue 𝜆𝑛 corresponding to the

vector 𝑃𝑛 is positive and maximal among all eigenvalues of the operator 𝑋𝐷|𝐴𝑛 . It is reasonable
to assume that the family of polynomials 𝑃𝑛 not only has a nice recursive definition (5.14), but
also has useful applications that have yet to be found.

6. Characteristic algebras for systems of rank 2

Similarly to the case of scalar hyperbolic equations, the concept of characteristic algebra
can be extended to the case of an arbitrary exponential type system: following paper [1], a
characteristic algebra of a system of form (1.1) is the Lie algebra generated by operators

𝜕

𝜕𝑤1
,

𝜕

𝜕𝑤2
, . . . ,

𝜕

𝜕𝑤𝑟
, 𝐷𝑦,

where 𝐷𝑦 is the operator of total differentiation with respect to 𝑦 by virtue of the system.
For exponential systems corresponding to non-degenerate Cartan matrices, the characteristic
algebra is finite-dimensional [1].
We consider exponential systems corresponding to the Cartan matrices of affine Lie algebras

of low rank 𝑟. It is easy to confirm that in the simplest case of rank 1, the exponential systems
corresponding to the Cartan matrices(︂

2 −2
−2 2

)︂
and

(︂
2 −4
−1 2

)︂
,

are reduced respectively to the equations

𝑢𝑥𝑦 = 𝑒𝑢 + 𝑒−𝑢 and 𝑢𝑥𝑦 = 𝑒𝑢 + 𝑒−2𝑢.
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Both of these equations are well studied, the first of them is called sin-Gordon equation1,
and the second is Tzizeica equation. The characteristic algebra of sine-Gordon equation was
described explicitly in [21], and the characteristic algebra of Tzizeica equation was described
in [25]. In papers [33], [34], another system of generators was constructed for these infinite-
dimensional Lie algebras and it was shown that they are isomorphic to the nonnegative parts
of the loop algebra ℒ(s𝑙(2,C))>0 and twisted loop algebra ℒ(s𝑙(3,C), 𝜇)>0 respectively. Let us
present these systems of generators in an explicit form.
For the equations of the form 𝑢𝑥𝑦 = 𝑓(𝑢), the characteristic algebra is generated by the

operators 𝑋0 =
𝜕
𝜕𝑢

and by the operator 𝐷𝑦 of total differentiation by virtue of the equation. It
is easy to check that if 𝑓(𝑢) = 𝑒𝑢 + 𝑒𝛼𝑢 as 𝛼 ̸= 0, 1, the 𝐷𝑦 = 𝑋1 +𝑋2, where

𝑋1 = 𝑒𝑢
∞∑︁
𝑛=1

𝐵𝑛−1(u)
𝜕

𝜕𝑢𝑛

, 𝑋2 = 𝑒𝛼𝑢
∞∑︁
𝑛=1

𝐵𝑛−1(𝛼u)
𝜕

𝜕𝑢𝑛

,

and 𝐵𝑛(u) = 𝐵𝑛(𝑢1, . . . , 𝑢𝑛) = 𝑒−𝑢𝐷𝑥(𝑒
𝑢) is a complete Bell polynomial.

Theorem 6.1. [33], [34] The characteristic algebra 𝜒𝑠𝐺 = ⟨𝑋0, 𝑋1, . . . , 𝑋𝑛, . . . ⟩ of the sine-
Gordon equation is generated by 𝑋0, 𝑋1, 𝑋2:

𝑋3𝑘+1 = −[𝑋1, 𝑋3𝑘], 𝑋3𝑘+2 = [𝑋2, 𝑋3𝑘], 𝑋3𝑘+3 = [𝑋1, 𝑋3𝑘+2], 𝑘 = 0, 1, 2, . . . . (6.1)

The characteristic algebra 𝜒𝑠𝐺 is naturally graded: it can be represented as ⊕+∞
𝑖=0 g𝑖, where

[g1, g𝑖] = g𝑖+1. Indeed, using relations (6.1) and letting

g0 = ⟨𝑋0⟩, g1 = ⟨𝑋1, 𝑋2⟩, . . . , g2𝑘 = ⟨𝑋3𝑘⟩, g2𝑘+1 = ⟨𝑋3𝑘+1, 𝑋3𝑘+2⟩, . . . ,
we obtain that the natural grading of the basis element 𝑋𝑛 is the number of commutators in
its minimal representation by generators. Representing this as a diagram (see Figure 1), it is

𝑋0

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

𝑋6
. . .

Figure 1. Characteristic algebra of sine-Gordon equation

easy to see that the average growth rate of this characteristic algebra, that is, the increase in
dimension under adding one graded component, is equal to 3

2
.

Theorem 6.2. [33], [34] Characteristic algebra 𝜒𝑇𝑧 = ⟨𝑋0, 𝑋1, . . . , 𝑋𝑛, . . . ⟩ of the Tzizeica
equation is generated by 𝑋0, 𝑋1, 𝑋2:

𝑋8𝑘+1 = −[𝑋1, 𝑋8𝑘], 𝑋8𝑘+2 =
1

2
[𝑋2, 𝑋8𝑘], 𝑋8𝑘+3 = [𝑋1, 𝑋8𝑘+2], 𝑋8𝑘+4 = [𝑋1, 𝑋8𝑘+3],

𝑋8𝑘+5 = −1

3
[𝑋1, 𝑋8𝑘+4], 𝑋8𝑘+6 = −1

2
[𝑋1, 𝑋8𝑘+5], 𝑋8𝑘+7 = [𝑋2, 𝑋8𝑘+5], 𝑋8𝑘+8 = [𝑋1, 𝑋8𝑘+7],

where 𝑘 = 0, 1, 2, . . . .

Representing the structure of this algebra in the form of a diagram, cf. Figure 2), it is easy
to see that the rate of its growth is 4

3
.

1More precisely, it is more natural to call the equation 𝑢𝑥𝑦 = sin𝑢 the sine-Gordon equation, which is related
with the equation we consider by a complex change. But since it is more convenient for us to work with an
equation containing exponentials, we allow ourselves to admit such freedom in using the terminology.
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𝑋0

𝑋1

𝑋2

𝑋3 𝑋4 𝑋5

𝑋6

𝑋7

𝑋8

𝑋9

𝑋10

. . .

Figure 2. Characteristic algebra of Tzizeica equation

We proceed to studying the characteristic algebras for exponential systems corresponding to
affine Cartan matrices of rank 2 (such matrices have size 3× 3). The Cartan matrix⎛⎝ 2 −1 −1

−1 2 −1
−1 −1 2

⎞⎠
of the affine Lie algebra 𝐴

(1)
2 corresponds to the exponential system⎧⎪⎨⎪⎩

𝑤1,𝑥𝑦 = exp(2𝑤1 − 𝑤2 − 𝑤3),

𝑤2,𝑥𝑦 = exp(−𝑤1 + 2𝑤2 − 𝑤3),

𝑤3,𝑥𝑦 = exp(−𝑤1 − 𝑤2 + 2𝑤3).

The change of variable 𝑢 = 2𝑤1 − 𝑤2 − 𝑤3, 𝑣 = −𝑤1 + 2𝑤2 − 𝑤3 reduces this system to{︃
𝑢𝑥𝑦 = 2𝑒𝑢 − 𝑒𝑣 − 𝑒−𝑢−𝑣,

𝑣𝑥𝑦 = −𝑒𝑢 + 2𝑒𝑣 − 𝑒−𝑢−𝑣.
(6.2)

The operator 𝐷𝑦 of total differentiation by virtue of system (6.2) reads as

𝐷𝑦 = 𝑋1 +𝑋2 +𝑋3,

where

𝑋1 = 𝑒𝑢
∞∑︁
𝑛=1

𝐵𝑛−1(u)

(︂
2

𝜕

𝜕𝑢𝑛

− 𝜕

𝜕𝑣𝑛

)︂
,

𝑋2 = 𝑒𝑣
∞∑︁
𝑛=1

𝐵𝑛−1(v)

(︂
− 𝜕

𝜕𝑢𝑛

+ 2
𝜕

𝜕𝑣𝑛

)︂
,

𝑋3 = −𝑒−𝑢−𝑣

∞∑︁
𝑛=1

𝐵𝑛−1(−u− v)

(︂
𝜕

𝜕𝑢𝑛

+
𝜕

𝜕𝑣𝑛

)︂
.

Theorem 6.3. The characteristic algebra 𝜒
𝐴

(1)
2

= ⟨𝑋0, 𝑋1, . . . , 𝑋𝑛, . . . ⟩ of system (6.2) is

generated by 𝑌0 =
𝜕
𝜕𝑢
, 𝑌 ′

0 = 𝜕
𝜕𝑣
, 𝑋1, 𝑋2, 𝑋3:

𝑋8𝑘+1 = [𝑋1, 𝑋8𝑘−1], 𝑋8𝑘+2 = −[𝑋2, 𝑋8𝑘], 𝑋8𝑘+3 = [𝑋3, 𝑋8𝑘−1], 𝑋8𝑘+4 = [𝑋1, 𝑋8𝑘+2],

𝑋8𝑘+5 = [𝑋1, 𝑋8𝑘+3], 𝑋8𝑘+6 = [𝑋2, 𝑋8𝑘+3], 𝑋8𝑘+7 = [𝑋2, 𝑋8𝑘+5], 𝑋8𝑘+8 = [𝑋1, 𝑋8𝑘+6],

where 𝑋−1 = −2𝑌0 + 𝑌 ′
0 , 𝑋0 = −𝑌0 + 2𝑌 ′

0 and 𝑘 = 0, 1, 2, . . . .

It is easy to see that the average growth rate of the characteristic algebra of system (6.2) is
equal to 8

3
.

The proof is based on the following two simple lemmata; the first of them goes back to
A.B. Shabat. Let

𝐷 = 𝑢1
𝜕

𝜕𝑢
+ 𝑣1

𝜕

𝜕𝑣
+ 𝑢2

𝜕

𝜕𝑢2

+ 𝑣2
𝜕

𝜕𝑣2
+ . . . ;
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𝑋−1

𝑋0

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

𝑋6

𝑋7

𝑋8

𝑋9

𝑋10

𝑋11

𝑋12

𝑋13

𝑋14

. . .

Figure 3. Characteristic algebra of system 𝐴
(1)
2

to simplify the formulae, we keep the notation 𝐷 for the operators of form more general than
in Section 3.

Lemma 6.1. If the differential operator

𝑋 =
+∞∑︁
𝑛=1

(︂
𝑃𝑛(𝑢, 𝑣, 𝑢1, 𝑣1, 𝑢2, 𝑣2 . . . )

𝜕

𝜕𝑢𝑛

+𝑄𝑛(𝑢, 𝑣, 𝑢1, 𝑣1, 𝑢2, 𝑣2 . . . )
𝜕

𝜕𝑣𝑛

)︂
,

where 𝑃𝑛 and 𝑄𝑛 are polynomials, satisfies the relation [𝐷,𝑋] = 0, then 𝑋 = 0.

The next lemma generalizes Lemma 5.2 in Section 5.

Lemma 6.2. Let 𝑓 = 𝑓(𝑢1, 𝑣1, 𝑢2, 𝑣2 . . . ) be a function depending on finitely many variables
and 𝑐 be an arbitrary constant. Then for arbitrary constants 𝛼 and 𝛽 the equation

(𝐷 + 𝛼𝑢1 + 𝛽𝑣1)𝑓 = 𝑐

has no solutions as 𝑐 ̸= 0 and it possesses only the trivial solution 𝑓 ≡ 0 as 𝑐 = 0.

Proof. Since [𝑌0, 𝐷𝑦] = [𝑌0, 𝑋1 + 𝑋2 + 𝑋3] = 𝑋1 − 𝑋3, the operator 𝑋1 − 𝑋3 belongs to the
characteristic algebra. Then [𝑌 ′

0 , 𝑋1 − 𝑋3] = 𝑋3, which implies that 𝑋3, and hence, 𝑋1, also
belongs to the characteristic algebra. This is why

𝑋2 = 𝐷𝑦 −𝑋1 −𝑋3 ∈ 𝜒
𝐴

(1)
2
.

Thus, the characteristic algebra is generated by the elements 𝑌0, 𝑌
′
0 , 𝑋1, 𝑋2 and 𝑋3.

It follows from the Jacobi identity that all higher order commutators are expressed as linear
combinations of commutators of the form [𝐴, [𝐵, [𝐶, [. . . ]]]], where 𝐴, 𝐵, 𝐶, . . . are the gener-
ators. Thus, it is sufficient to consider only commutators of such type. The further proof is
similar to the proof of Theorems 6.1 and 6.2 in paper [34] and is carried out by induction in
𝑘, where 𝑘 is the number of periodically repeating groups of 8 elements, see Figure 3. First,
considering the commutation relations of the generators and their commutators with elements
𝑌0, 𝑌

′
0 and 𝐷 and using Lemma 6.1, we can show that among all of the commutators of the

natural grading 2, 3, the only nontrivial elements are 𝑋4, 𝑋5, . . . , 𝑋8. The independence of
all elements 𝑋1, 𝑋2, . . . , 𝑋8 can be proved by contradiction using Lemmata 6.1, 6.2. This
completes the induction base.
The induction step is based on two key ideas. First, the commutation relations within one

group 𝑋8𝑘+1, 𝑋8𝑘+2, . . . , 𝑋8𝑘+8 imply similar commutation relations in the next group. Hence,
using Lemma 6.1, one can deduce the triviality of those commutators that are not listed in the
table. Second, the independence of the others is deduced from the independence proved at the
previous step by successively adding new elements (using Lemmata 6.1, 6.2), which completes
the induction step.
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We proceed to studying characteristic algebras of systems corresponding to other affine Lie
algebras. We consider the Cartan matrix⎛⎝ 2 −1 0

−2 2 −2
0 −1 2

⎞⎠
of affine Lie algebra 𝐵

(2)
2 ; it corresponds to the exponential system⎧⎪⎨⎪⎩

𝑤1,𝑥𝑦 = exp(2𝑤1 − 𝑤2),

𝑤2,𝑥𝑦 = exp(−2𝑤1 + 2𝑤2 − 2𝑤3),

𝑤3,𝑥𝑦 = exp(−𝑤2 + 2𝑤3).

Under the change of variables 𝑢 = 2𝑤1 − 𝑤2, 𝑣 = −2𝑤1 + 2𝑤2 − 2𝑤3 this system is reduced to{︃
𝑢𝑥𝑦 = 2𝑒𝑢 − 𝑒𝑣,

𝑣𝑥𝑦 = −2𝑒𝑢 + 2𝑒𝑣 − 2𝑒−𝑢−𝑣.
(6.3)

The operator 𝐷𝑦 of total differentiation by virtue of system (6.3) is as follows

𝐷𝑦 = 𝑋1 +𝑋2 +𝑋3,

where

𝑋1 = 𝑒𝑢
∞∑︁
𝑛=1

𝐵𝑛−1(u)

(︂
2

𝜕

𝜕𝑢𝑛

− 2
𝜕

𝜕𝑣𝑛

)︂
,

𝑋2 = 𝑒𝑣
∞∑︁
𝑛=1

𝐵𝑛−1(v)

(︂
− 𝜕

𝜕𝑢𝑛

+ 2
𝜕

𝜕𝑣𝑛

)︂
,

𝑋3 = −2𝑒−𝑢−𝑣

∞∑︁
𝑛=1

𝐵𝑛−1(−u− v)
𝜕

𝜕𝑣𝑛
.

Theorem 6.4. The characteristic algebra 𝜒
𝐵

(2)
2

= ⟨𝑋0, 𝑋1, . . . , 𝑋𝑛, . . . ⟩ of system (6.3) is

generated by 𝑌0 =
𝜕
𝜕𝑢
, 𝑌 ′

0 = 𝜕
𝜕𝑣
, 𝑋1, 𝑋2, 𝑋3:

𝑋15𝑘+1 = −[𝑋1, 𝑋15𝑘−1], 𝑋15𝑘+2 = [𝑋2, 𝑋15𝑘], 𝑋15𝑘+3 = −[𝑋3, 𝑋15𝑘],

𝑋15𝑘+4 = [𝑋1, 𝑋15𝑘+2], 𝑋15𝑘+5 = [𝑋2, 𝑋15𝑘+3], 𝑋15𝑘+6 = [𝑋1, 𝑋15𝑘+4],

𝑋15𝑘+7 = [𝑋1, 𝑋15𝑘+5], 𝑋15𝑘+8 = [𝑋3, 𝑋15𝑘+5], 𝑋15𝑘+9 = [𝑋1, 𝑋15𝑘+7],

𝑋15𝑘+10 = [𝑋1, 𝑋15𝑘+8], 𝑋15𝑘+11 = [𝑋1, 𝑋15𝑘+10], 𝑋15𝑘+12 = [𝑋2, 𝑋15𝑘+9],

𝑋15𝑘+13 = [𝑋2, 𝑋15𝑘+10], 𝑋15𝑘+14 = [𝑋1, 𝑋15𝑘+13], 𝑋15𝑘+15 = [𝑋3, 𝑋15𝑘+12],

where 𝑋−1 = 𝑌0 − 𝑌 ′
0 , 𝑋0 = −𝑌 ′

0 and 𝑘 = 0, 1, 2, . . . .

It is easy to see that the average growth rate of the characteristic algebra of system (6.3) is
5
2
.
We consider the Cartan matrix ⎛⎝ 2 −2 0

−1 2 −2
0 −1 2

⎞⎠
of affine Lie algebra �̃�

(2)
2 ; it corresponds to the exponential system⎧⎪⎨⎪⎩

𝑤1,𝑥𝑦 = exp(2𝑤1 − 2𝑤2),

𝑤2,𝑥𝑦 = exp(−𝑤1 + 2𝑤2 − 2𝑤3),

𝑤3,𝑥𝑦 = exp(−𝑤2 + 2𝑤3).
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Figure 4. Characteristic algebra of system 𝐵
(2)
2

Under the change of the variables 𝑢 = 2𝑤1 − 2𝑤2, 𝑣 = −𝑤1 + 2𝑤2 − 2𝑤3 this system is reduced
to {︃

𝑢𝑥𝑦 = 2𝑒𝑢 − 2𝑒𝑣,

𝑣𝑥𝑦 = −𝑒𝑢 + 2𝑒𝑣 − 2𝑒−
𝑢
2
−𝑣.

(6.4)

The operator 𝐷𝑦 of total differentiation by virtue of system (6.4) reads as

𝐷𝑦 = 𝑋1 +𝑋2 +𝑋3,

where

𝑋1 = 𝑒𝑢
∞∑︁
𝑛=1

𝐵𝑛−1(u)

(︂
2

𝜕

𝜕𝑢𝑛

− 𝜕

𝜕𝑣𝑛

)︂
,

𝑋2 = 𝑒𝑣
∞∑︁
𝑛=1

𝐵𝑛−1(v)

(︂
−2

𝜕

𝜕𝑢𝑛

+ 2
𝜕

𝜕𝑣𝑛

)︂
,

𝑋3 = −2𝑒−
𝑢
2
−𝑣

∞∑︁
𝑛=1

𝐵𝑛−1

(︁
−u

2
− v

)︁ 𝜕

𝜕𝑣𝑛
.

Theorem 6.5. The characteristic algebra 𝜒
�̃�

(2)
2

= ⟨𝑋0, 𝑋1, . . . , 𝑋𝑛, . . . ⟩ of system (6.4) is

generated by 𝑌0 =
𝜕
𝜕𝑢
, 𝑌 ′

0 = 𝜕
𝜕𝑣
, 𝑋1, 𝑋2, 𝑋3:

𝑋24𝑘+1 = −1

2
[𝑋1, 𝑋24𝑘−1], 𝑋24𝑘+2 = 2[𝑋2, 𝑋24𝑘], 𝑋24𝑘+3 = −2[𝑋3, 𝑋24𝑘],

𝑋24𝑘+4 = [𝑋1, 𝑋24𝑘+2], 𝑋24𝑘+5 = [𝑋2, 𝑋24𝑘+3], 𝑋24𝑘+6 = [𝑋1, 𝑋24𝑘+5],

𝑋24𝑘+7 = [𝑋2, 𝑋24𝑘+4], 𝑋24𝑘+8 = [𝑋3, 𝑋24𝑘+5], 𝑋24𝑘+9 = [𝑋1, 𝑋24𝑘+8],

𝑋24𝑘+10 = [𝑋2, 𝑋24𝑘+6], 𝑋24𝑘+11 = [𝑋2, 𝑋24𝑘+9], 𝑋24𝑘+12 = [𝑋3, 𝑋24𝑘+10],

𝑋24𝑘+13 = [𝑋2, 𝑋24𝑘+12], 𝑋24𝑘+14 = [𝑋3, 𝑋24𝑘+12], 𝑋24𝑘+15 = [𝑋1, 𝑋24𝑘+13],

𝑋24𝑘+16 = [𝑋2, 𝑋24𝑘+14], 𝑋24𝑘+17 = [𝑋3, 𝑋24𝑘+14], 𝑋24𝑘+18 = [𝑋1, 𝑋24𝑘+16],

𝑋24𝑘+19 = [𝑋3, 𝑋24𝑘+16], 𝑋24𝑘+20 = [𝑋1, 𝑋24𝑘+19], 𝑋24𝑘+21 = [𝑋2, 𝑋24𝑘+18],

𝑋24𝑘+22 = [𝑋2, 𝑋24𝑘+19], 𝑋24𝑘+23 = [𝑋1, 𝑋24𝑘+22], 𝑋24𝑘+24 = [𝑋3, 𝑋24𝑘+21],

where 𝑋−1 = 2𝑌0 − 𝑌 ′
0 , 𝑋0 = −1

2
𝑌 ′
0 and 𝑘 = 0, 1, 2, . . . .

It is easy to see that the average growth rate of the characteristic algebra of system (6.4) is
equal to 12

5
.

We consider the Cartan matrix ⎛⎝ 2 −2 0
−1 2 −1
0 −2 2

⎞⎠
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Figure 5. Characteristic algebra of system �̃�
(2)
2

of affine Lie algebra 𝐶
(1)
2 ; it corresponds to the exponential system⎧⎪⎨⎪⎩

𝑤1,𝑥𝑦 = exp(2𝑤1 − 2𝑤2),

𝑤2,𝑥𝑦 = exp(−𝑤1 + 2𝑤2 − 𝑤3),

𝑤3,𝑥𝑦 = exp(−2𝑤2 + 2𝑤3).

By the change of variables 𝑢 = 2𝑤1 − 2𝑤2, 𝑣 = −𝑤1 + 2𝑤2 − 𝑤3 this system is reduced to{︃
𝑢𝑥𝑦 = 2𝑒𝑢 − 2𝑒𝑣,

𝑣𝑥𝑦 = −𝑒𝑢 + 2𝑒𝑣 − 𝑒−𝑢−2𝑣.
(6.5)

The operator 𝐷𝑦 of total differentiation by virtue of system (6.5) reads as

𝐷𝑦 = 𝑋1 +𝑋2 +𝑋3,

where

𝑋1 = 𝑒𝑢
∞∑︁
𝑛=1

𝐵𝑛−1(u)

(︂
2

𝜕

𝜕𝑢𝑛

− 𝜕

𝜕𝑣𝑛

)︂
,

𝑋2 = 𝑒𝑣
∞∑︁
𝑛=1

𝐵𝑛−1(v)

(︂
−2

𝜕

𝜕𝑢𝑛

+ 2
𝜕

𝜕𝑣𝑛

)︂
,

𝑋3 = −𝑒−𝑢−2𝑣

∞∑︁
𝑛=1

𝐵𝑛−1(−u− 2v)
𝜕

𝜕𝑣𝑛
.

Theorem 6.6. Characteristic algebra 𝜒
𝐶

(1)
2

= ⟨𝑋0, 𝑋1, . . . , 𝑋𝑛, . . . ⟩ of system (6.5) is gen-

erated by 𝑌0 =
𝜕
𝜕𝑢
, 𝑌 ′

0 = 𝜕
𝜕𝑣
, 𝑋1, 𝑋2, 𝑋3:

𝑋10𝑘+1 = [𝑋1, 𝑋10𝑘], 𝑋10𝑘+2 = −[𝑋2, 𝑋10𝑘−1], 𝑋10𝑘+3 = [𝑋3, 𝑋10𝑘],

𝑋10𝑘+4 = [𝑋1, 𝑋10𝑘+2], 𝑋10𝑘+5 = [𝑋2, 𝑋10𝑘+3], 𝑋10𝑘+6 = [𝑋1, 𝑋10𝑘+5],

𝑋10𝑘+7 = [𝑋2, 𝑋10𝑘+4], 𝑋10𝑘+8 = [𝑋2, 𝑋10𝑘+5], 𝑋10𝑘+9 = [𝑋1, 𝑋10𝑘+8],

𝑋10𝑘+10 = [𝑋2, 𝑋10𝑘+6],

where 𝑋−1 = 𝑌 ′
0 − 2𝑌0, 𝑋0 = 𝑌 ′

0 − 𝑌0 and 𝑘 = 0, 1, 2, . . . .

It is easy to see that the average growth rate of the characteristic algebra of system (6.5) is
equal to 5

2
.

The proof of Theorems 6.4–6.6 is similar to the proof of Theorem 6.3.
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Figure 6. Characteristic algebra of the system 𝐶
(1)
2

7. Characteristic algebras and symmetries

It is well known (see, for example, [31]) that both the sine-Gordon and Tzitzeica equations
have an infinite hierarchy of higher symmetries. Let us formulate the corresponding results.

Theorem 7.1. [31] The equation 𝑢𝑥𝑦 = 𝑒𝑢 + 𝑒−𝑢 has an infinite hierarchy of homogeneous
graded polynomial symmetries 𝑢𝑡 = 𝐹𝑘(𝑢1, 𝑢2, 𝑢3, . . . ), where 𝑘 = 1, 3, 5, 7, . . . and

𝐹2𝑘+1 = 𝐿𝑘(𝑢1), 𝐿 = (𝐷 + 𝑢1)(𝐷 − 𝑢1 +𝐷−1𝑢2).

All polynomial symmetries of form 𝑢𝑡 = 𝐹 (𝑢1, 𝑢2, 𝑢3, . . . ) are linear combinations with constant
coefficients of symmetries 𝐹1, 𝐹3, 𝐹5, . . .

Theorem 7.2. [31] The equation 𝑢𝑥𝑦 = 𝑒𝑢 + 𝑒−2𝑢 has an infinite hierarchy of homogeneous
graded polynomial symmetries

𝑢𝑡 = 𝐹6𝑘+1(𝑢1, 𝑢2, 𝑢3, . . . ) and 𝑢𝑡 = 𝐹6𝑘+5(𝑢1, 𝑢2, 𝑢3, . . . ),

where 𝑘 = 0, 1, 2, . . . and

𝐹6𝑘+1 = 𝐿𝑘(𝑢1), 𝐹6𝑘+5 = 𝐿𝑘
(︀
𝑢5 + 5(𝑢2 − 𝑢2

1)𝑢3 − 5𝑢1𝑢
2
2 + 𝑢5

1

)︀
,

𝐿 = (𝐷 − 𝑢1 − 2𝑢1𝐷
−1𝑢1)(𝐷 − 𝑢1)𝐷(𝐷 + 𝑢1)(𝐷

2 + 𝑢1𝐷 − 2𝑢2
1 + 2𝑢1𝐷

−1𝑢2).

All polynomial symmetries of form 𝑢𝑡 = 𝐹 (𝑢1, 𝑢2, 𝑢3, . . . ) are linear combinations with constant
coefficients of symmetries 𝐹6𝑘+1, 𝐹6𝑘+5.

There are two important points to be noted. First, in both cases, the structure of the
symmetries turns out to be related with the structure of naturally graded components of the
corresponding characteristic algebras: for the sine-Gordon equation, there is a periodicity with
period 2, and for the Tzizeica equation the period is 6; the symmetries are numbered according
their graduation. Second, despite the fact that the recursion operators 𝐿 in each of the cases
contain pseudodifferential components 𝐷−1, the symmetries are arranged in such a way that
when the operator 𝐿 is applied to them, the nonlocality disappears.
A similar connection between the hierarchy of symmetries and the structure of naturally

graded components of the corresponding characteristic algebra is also observed for exponential
systems of rank 2.

Theorem 7.3. Exponential system (6.2) corresponding to the Cartan matrix of the affine

Lie algebra 𝐴
(1)
2 has an infinite hierarchy of graded homogeneous polynomial symmetries

𝑢𝑡 = 𝐹3𝑘+1(𝑢1, 𝑣1, 𝑢2, 𝑣2, . . . ), 𝑣𝑡 = 𝐺3𝑘+1(𝑢1, 𝑣1, 𝑢2, 𝑣2, . . . ),

𝑢𝑡 = 𝐹3𝑘+2(𝑢1, 𝑣1, 𝑢2, 𝑣2, . . . ), 𝑣𝑡 = 𝐺3𝑘+2(𝑢1, 𝑣1, 𝑢2, 𝑣2, . . . ),
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where (︂
𝐹3𝑘+1

𝐺3𝑘+1

)︂
= 𝐿𝑘

(︂
𝑢1

𝑣1

)︂
,

(︂
𝐹3𝑘+2

𝐺3𝑘+2

)︂
= 𝐿𝑘

(︂
𝑢2 + 2𝑣2 + 𝑢2

1 + 2𝑢1𝑣1
−2𝑢2 − 𝑣2 − 𝑣21 − 2𝑢1𝑣1

)︂
,

and the operator 𝐿 is defined by the following formula

𝐿 =

(︂
1 2
−2 −1

)︂
𝐷3 + 2

(︂
𝑢1 + 𝑣1 𝑢1

−𝑣1 −𝑢1 − 𝑣1

)︂
𝐷2

+

(︂(︂
𝑢2 + 𝑣2 𝑢2

−𝑣2 −𝑢2 − 𝑣2

)︂
− 𝐴

3

(︂
1 2
−2 −1

)︂)︂
𝐷 −

(︂
𝑢1 0
0 𝑣1

)︂
𝐷−1

(︂
𝐵 𝐶
𝐵 𝐶

)︂
𝐷 (7.1)

+
1

3

(︂
𝑢2 + 2𝑣2 + 2𝑢1𝑣1 + 𝑢2

1 0
0 𝑣2 + 2𝑢2 + 2𝑢1𝑣1 + 𝑣21

)︂
𝐷−1

(︂
−2𝑢1 − 𝑣1 −𝑢1 − 2𝑣1
2𝑢1 + 𝑣1 𝑢1 + 2𝑣1

)︂
𝐷,

𝐴 = 𝑢2
1 + 𝑢1𝑣1 + 𝑣21, 𝐵 =

2

3
𝑢2
1 −

1

3
𝑣21 +

2

3
𝑢1𝑣1 + 𝑣2, 𝐶 =

1

3
𝑢2
1 −

2

3
𝑣21 −

2

3
𝑢1𝑣1 − 𝑢2.

All polynomial symmetries of form 𝑢𝑡 = 𝐹 (𝑢1, 𝑣1, 𝑢2, 𝑣2, . . . ), 𝑣𝑡 = 𝐺(𝑢1, 𝑣1, 𝑢2, 𝑣2, . . . ) are linear
combinations with constant coefficients of the symmetriues (𝐹3𝑘+1, 𝐺3𝑘+1), (𝐹3𝑘+2, 𝐺3𝑘+2).

Proof. For the sake of convenience we introduce the notation

𝑋 = 𝑒−𝑢𝑋1, 𝑌 = 𝑒−𝑣𝑋2, 𝑍 = 𝑒𝑢+𝑣𝑋3.

It is easy to check that the relations

(𝐷 + 𝑢1)𝑋 = 𝑋𝐷, (𝐷 + 𝑣1)𝑌 = 𝑌 𝐷, (𝐷 − 𝑢1 − 𝑣1)𝑍 = 𝑍𝐷 (7.2)

hold and that the equations 𝑢𝑡 = 𝐹 , 𝑣𝑡 = 𝐺 define a symmetry of system (6.2) if and only if
the following conditions are satisfied:

𝑋𝐷

(︂
𝐹
𝐺

)︂
=

(︂
2𝐹
−𝐹

)︂
, 𝑌 𝐷

(︂
𝐹
𝐺

)︂
=

(︂
−𝐺
2𝐺

)︂
, 𝑍𝐷

(︂
𝐹
𝐺

)︂
=

(︂
𝐹 +𝐺
𝐹 +𝐺

)︂
.

Let a pair of homogeneous graded polynomials 𝐹 and �̃� of the same degree define a symmetry
of system (6.2). Then, using relations (7.2), one can show that the functions

𝐹 = 𝑋𝑍𝑌 𝐹 and 𝐺 = 𝑌 𝑋𝑍�̃� (7.3)

satisfy conditions (7.3), i.e., they also define a symmetry of system (6.2). Since applying of
each of the operators 𝑋, 𝑌 and 𝑍 to a homogeneous polynomial decreases its grading by one,
the grading of the symmetry (𝐹,𝐺) is less than the grading of 𝐹 , �̃� by 3. It is straightforward
to confirm that the only (up to a rescaling by a constant) symmetries of the first and second
order of system (6.2) are respectively

𝑢𝑡 = 𝐹1, 𝑣𝑡 = 𝐺1 and 𝑢𝑡 = 𝐹2, 𝑣𝑡 = 𝐺2.

In the same way it is easy to show that system (6.2) has no third order symmetries, which
implies that it also cannot have symmetries of order 3𝑘, where 𝑘 ∈ N. Further, by rather
cumbersome calculations using identities (7.2), we can invert formulae (7.3):(︂

𝐹

�̃�

)︂
=

1

9
· 𝐿
(︂
𝐹
𝐺

)︂
,

where the operator 𝐿 is defined by formula (7.1). Thus, each of the symmetries (𝐹1, 𝐺1) and
(𝐹2, 𝐺2) uniquely (up to a rescaling by a constant) generates a sequence of symmetries in the
gradings 3𝑘 + 1 and 3𝑘 + 2, respectively.
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The structure of symmetries for systems (6.3)–(6.5) looks similar. A computer experiment
shows that system (6.3) has one symmetry in the weights 1, 3, 5, 7, and in the weights 2, 4,
6 there are no symmetries (we do not provide explicit expressions for symmetries since they
are too bulky). It is not difficult to construct operators like (7.3) that map symmetries into
symmetries and decrease the weight by 6. Hence, in particular, it follows that system (6.3) has
no symmetries in even weights.
System (6.5) has one symmetry in weights 1, 3, 5, 7 and has no symmetries in weights 2, 4, 6.

Since for this system there is an operator that maps symmetries into symmetries and increases
the weight by 4, it follows that it has no symmetries in even weights. For system (6.4), we
succeed to find symmetries in the weights 1, 3, 7 and show that they are absent in the weights
2, 4, 5, 6. For this system, there is an operator that maps symmetries into symmetries and
decreases the weight by 10. It is easy to see that these results completely repeat the structure of
characteristic algebras for the corresponding systems, see Figures 3-6. The above observations
allow us to formulate the following conjecture.

Conjecture 7.1. The characteristic algebra of an exponential system corresponding to the
Cartan matrix of an arbitrary affine Lie algebra, has a linear growth and the average rate of
this growth does not exceed the size 𝑟 + 1 of the corresponding Cartan matrix, where 𝑟 is the
rank of this matrix. The naturally graded structure of such characteristic algebra of the system
is periodic with some period 𝑚 ∈ N. Such system has an infinite hierarchy of symmetries
homogeneous in grading, which consists finitely many sequences. All elements of such sequence
are of the form 𝐿𝑘(F), where 𝐿 is some linear operator, 𝑘 = 1, 2, . . . and F = (𝐹 1, . . . , 𝐹 𝑟)
is an initial symmetry of order less than 𝑚. Any symmetry depending polynomially on the
𝑥-derivatives of dynamical variables is a linear combination with constant coefficients of the
above described symmetries.
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26. M. Gürses, A.V. Zhiber, I.T. Habibullin. Characteristic Lie rings of differential equations //

Ufimskji Matem. Zhurn. 4:1, 53–62 (2012). (in Russian).
27. A.V. Zhiber, S.N. Kamaeva. Construction of exact solution to sine-Gordon equation on the base

of its characteristic Lie ring // Ufimskij Matem. Zhurn. 8:3, 49–58 (2016). [Ufa Math. J. 8:3,
49–57 (2016).]

28. I. Habibullin, M. Poptsova. Classification of a subclass of two-dimensional lattices via character-

istic Lie rings // SIGMA. 13:073 (2017).
29. M.N. Poptsova, I.T. Habibullin. Algebraic properties of quasilinear two-dimensional lattices con-

nected with integrability // Ufimskij Matem. Zhurn. 10:3, 89–109 (2018). [Ufa Math. J. 10:3,
86–105 (2018).]

30. I.T. Habibullin, M.N. Kuznetsova. A classification algorithm for integrable two-dimensional lat-

tices via Lie-Rinehart algebras // Teor. Matem. Fiz. 203:1, 161–173 (2020). [Theor. Math. Phys.
203:1, 569–581 (2020).]

31. A.B. Zhiber, R.D. Murtazina, I.T. Habibullin, A.B. Shabat. Equations of mathematical physics.
Nonlinear integrable equations. Yurait, Moscow (2018). (in Russian).

32. A.V. Zhiber, A.B. Shabat. Klein-Gordon equations with a nontrivial group // Dokl. AN SSSR.
247:5, 1103–1107 (1979). [Sov. Phys. Dokl. 24:8, 608–609 (1979).]

33. D.V. Millionshchikov. Characteristic Lie algebras of the sinh-Gordon and Tzitzeica equations //
Uspekhi Matem. Nauk. 72:6, 203-204 (2017). [Russ. Math. Surv. 72:6, 1174–1176 (2017).]

34. D. Millionshchikov. Lie algebras of slow growth and Klein-Gordon PDE // Algeb. Represent.
Theo. 21:5, 1037–1069 (2018).



CHARACTERISTIC ALGEBRAS AND INTEGRABLE EXPONENTIAL SYSTEMS 69

35. G. Rinehart. Differential forms for general commutative algebras // Trans. Amer. Math. Soc.
108:2, 195–222 (1963).

36. V.M. Buchstaber, D.V. Leykin. Polynomial Lie algebras // Funk. Anal. Pril. 36:4, 18–34 (2002).
[Func. Anal. Appl. 36:4, 267–280 (2002).]

37. D.V. Millionshchikov. Polynomial Lie algebras and growth of their finitely generated Lie subalge-

bras // Trudy MIAN. 302, 316–333 (2018). [Proc. Steklov Inst. Math. 302, 298–314 (2018).]
38. V.E. Adler, S.Ya. Startsev. Discrete analogues of the Liouville equation // Teor. Mat. Fiz. 121:2,

271–285 (1999). [Theor. Math. Phys. 121:2, 1484–1495 (1999).]
39. V.G. Kac. Simple irreducible graded Lie algebras of finite growth // Izv. AN SSSR. Ser. Matem.

32:5, 1323–1367 (1968). [Math. USSR-Izv. 2:6, 1271–1311 (1968).]
40. O. Mathieu. Classification of simple graded Lie algebras of finite growth // Invent. Math. 108,

455-519 (1990).
41. G.R. Krause, T.H. Lenagan. Growth of algebras and Gelfand–Kirillov dimension. Amer. Math.

Soc., Providence, R.I. (2000).
42. I.M. Gelfand, A.A. Kirillov. Sur les corps liés aux algèbres enveloppantes des algèbres de Lie //
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