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Abstract. Nonlinear nonlocal models exist in many fields of physics. The most known
of them are models possessing 𝒫𝒯 -symmetries. Apart of 𝒫𝒯 -symmetric models, nonlocal
models with inverse time and/or coordinates are actively studied. Other types of nonlocal-
ities arise much rare. As a rule, in works devoted to nonlinear nonlocal equations, soliton
or quasi-rational solutions to such equations are studied.
In the present work we consider nonlocal symmetries, to which all equations in the

Ablowitz-Kaup-Newell-Segur hierarchy. On the base of the properties of solutions satis-
fying nonlocal reductions of the equations in the Ablowitz-Kaup-Newell-Segur hierarchy,
we propose a modification of theta-functional formula for Baker-Akhiezer functions. We
find the conditions for the parameters of spectral curves associated with multi-phase solu-
tions possessing no exponential growth at infinity. We show that under these conditions,
the variables separate. The most part of statement of our work remain true for soliton and
quasi-rational solutions since they are limiting cases for the multi-phase solutions.

Keywords: Nonlinear Schrödinger equation, Ablowitz-Kaup-Newell-Segur hierarchy, non-
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Introduction

Nonlinear nonlocal models arise in many areas of physics. The most famous of them are
models with 𝒫𝒯 -symmetry. For a general understanding of the role of 𝒫𝒯 -symmetry in a
wide range of physical problems related to the spectral theory of non-Hermitian operators with
real spectra, its manifestations in the theory of nonlinear waves in various physical media and,
in particular, in the theory of nonlocal integrable systems, we can recommend survey [1] and
recent book [2].
After the publication of works by Ablowitz and Musslimani [3]- [8], the attention to solutions

of nonlocal integrable nonlinear equations sharply increased, see, for example, [9]- [30]. As
a rule, in these works, the authors used the Darboux transformation or Hirota method for
constructing solutions. Then there arose a natural question on the possibility of constructing
solutions of nonlocal integrable equations by the method of finite-zone integration. Our first
results on the theory of finite-zone solutions of nonlocal integrable equations from the AKNS
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hierarchy were published in papers [31]– [33]. In this paper, we summarize our research on this
topic.
The present work consists of five sections. In the first section, following [34], [35], we derive

equations of the AKNS hierarchy and analyze their symmetries. The second section is devoted
to our proposed modification of the Baker-Akhiezer function. As a base, the Baker-Akhiezer
function for the classical versions of the nonlinear Schrödinger equation serves [36]– [38]. In the
end of the second section, we provide formulae for finite-zone solutions corresponding to the
proposed Baker-Akhiezer function. In Section 3, we study the properties of finite-gap solutions
constructed by three classes of spectral curves with anti-holomorphic involution. In the general
case, finite-zone solutions constructed by spectral curves with anti-holomoric involution have
exponentially grow/decay as the independent arguments tend to positive/negative infinity. Be-
cause of this, we impose , an additional condition on the spectral curves assuming the presence
of a holomorphic involution. Sections 4 and 5 show how the presence of this holomorphic
involution affects the parameters of the finite-zone solutions of the nonlocal AKNS hierarchy
equations constructed in Section 2. In particular, in Section 5, we show that the presence of a
holomorphic involution leads to the separation of variables: each theta function of a finite-zone
solution is a sum of products of two theta functions of lower dimension. The independent
variables of one of the smaller theta functions contain times with an odd index 𝑡1, 𝑡3, . . . , while
the other theta function depends on the variable 𝑥 and times with an even index 𝑡2, 𝑡4, . . . .
Section 5 also provides examples of two-zone solutions of nonlocal AKNS hierarchy equations
expressed in terms of one-dimensional theta functions.

1. Equations in AKNS hierarchy

It is well known that equations in the AKNS hierarchy [39] are obtained as a result of joint
consideration of the equations {︃

Ψ𝑥 = UΨ,

Ψ𝑡𝑘 = V𝑘Ψ,
(1.1)

where, see, for instance, [34], [35],

U := 𝜆𝐽 + U0, V1 := 2𝜆U + V0
1, V𝑘+1 := 2𝜆V𝑘 + V0

𝑘+1, 𝑘 > 1, (1.2)

𝐽 :=

(︂
−𝑖 0
0 𝑖

)︂
, U0 :=

(︂
0 𝑖𝑝

−𝑖𝑞 0

)︂
, (1.3)

V0
𝑘 =

(︂
−𝑖𝑘𝐹𝑘(𝑝, 𝑞) 𝑖𝑘−1𝐻𝑘(𝑝, 𝑞)
𝑖𝑘−1𝐺𝑘(𝑝, 𝑞) 𝑖𝑘𝐹𝑘(𝑝, 𝑞)

)︂
. (1.4)

The equation
(Ψ𝑥)𝑡𝑘 = (Ψ𝑡𝑘)𝑥

implies the following recurrent relations for the functions 𝐹𝑘(𝑝, 𝑞), 𝐻𝑘(𝑝, 𝑞) and 𝐺𝑘(𝑝, 𝑞):

𝐻1(𝑝, 𝑞) = −𝑝𝑥, 𝐺1(𝑝, 𝑞) = −𝑞𝑥,
(𝐹𝑘(𝑝, 𝑞))𝑥 = −𝑝𝐺𝑘(𝑝, 𝑞) − 𝑞𝐻𝑘(𝑝, 𝑞),

𝐻𝑘+1(𝑝, 𝑞) = 2𝑝𝐹𝑘(𝑝, 𝑞) + (𝐻𝑘(𝑝, 𝑞))𝑥 ,

𝐺𝑘+1(𝑝, 𝑞) = −2𝑞𝐹𝑘(𝑝, 𝑞) − (𝐺𝑘(𝑝, 𝑞))𝑥 .

In particular,

𝐹1(𝑝, 𝑞) = 𝑝𝑞, 𝐻2(𝑝, 𝑞) = 2𝑝2𝑞 − 𝑝𝑥𝑥,

𝐺2(𝑝, 𝑞) = − 2𝑞2𝑝+ 𝑞𝑥𝑥, 𝐹2(𝑝, 𝑞) = 𝑝𝑥𝑞 − 𝑝𝑞𝑥,

𝐻3(𝑝, 𝑞) = 6𝑝𝑞𝑝𝑥 − 𝑝𝑥𝑥𝑥, 𝐺3(𝑝, 𝑞) = 6𝑝𝑞𝑞𝑥 − 𝑞𝑥𝑥𝑥,



FINITE-GAP SOLUTIONS OF NONLOCAL EQUATIONS . . . 83

𝐹3(𝑝, 𝑞) = 𝑝𝑞𝑥𝑥 + 𝑞𝑝𝑥𝑥 − 𝑝𝑥𝑞𝑥 − 3𝑝2𝑞2,

𝐻4(𝑝, 𝑞) = − 6𝑝3𝑞2 + 6𝑞𝑝2𝑥 + 4𝑝𝑝𝑥𝑞𝑥 + 8𝑝𝑞𝑝𝑥𝑥 + 2𝑝2𝑞𝑥𝑥 − 𝑝𝑥𝑥𝑥𝑥,

𝐺4(𝑝, 𝑞) = 6𝑝2𝑞3 − 6𝑝𝑞2𝑥 − 4𝑞𝑝𝑥𝑞𝑥 − 8𝑝𝑞𝑞𝑥𝑥 − 2𝑞2𝑝𝑥𝑥 + 𝑞𝑥𝑥𝑥𝑥,

𝐹4(𝑝, 𝑞) = − 6𝑝𝑞2𝑝𝑥 + 6𝑝2𝑞𝑞𝑥 − 𝑞𝑥𝑝𝑥𝑥 + 𝑝𝑥𝑞𝑥𝑥 + 𝑞𝑝𝑥𝑥𝑥 − 𝑝𝑞𝑥𝑥𝑥,

𝐻5(𝑝, 𝑞) = − 30𝑝2𝑞2𝑝𝑥 + 10𝑝2𝑥𝑞𝑥 + 20𝑞𝑝𝑥𝑝𝑥𝑥 + 10𝑝𝑞𝑥𝑝𝑥𝑥

+ 10𝑝𝑝𝑥𝑞𝑥𝑥 + 10𝑝𝑞𝑝𝑥𝑥𝑥 − 𝑝𝑥𝑥𝑥𝑥𝑥,

𝐺5(𝑝, 𝑞) = − 30𝑝2𝑞2𝑞𝑥 + 10𝑝𝑥𝑞
2
𝑥 + 10𝑞𝑞𝑥𝑝𝑥𝑥 + 10𝑞𝑝𝑥𝑞𝑥𝑥

+ 20𝑝𝑞𝑥𝑞𝑥𝑥 + 10𝑝𝑞𝑞𝑥𝑥𝑥 − 𝑞𝑥𝑥𝑥𝑥𝑥,

𝐹5(𝑝, 𝑞) = 10𝑝3𝑞3 − 5𝑞2𝑝2𝑥 − 5𝑝2𝑞2𝑥 − 10𝑝𝑞2𝑝𝑥𝑥 − 10𝑝2𝑞𝑞𝑥𝑥 + 𝑝𝑥𝑥𝑞𝑥𝑥

− 𝑞𝑥𝑝𝑥𝑥𝑥 − 𝑝𝑥𝑞𝑥𝑥𝑥 + 𝑞𝑝𝑥𝑥𝑥𝑥 + 𝑝𝑞𝑥𝑥𝑥𝑥.

It is easy to show that the functions 𝐹𝑘(𝑝, 𝑞), 𝐻𝑘(𝑝, 𝑞) and 𝐺𝑘(𝑝, 𝑞) possess the following prop-
erties [34], [35]

𝐹𝑘(𝑞, 𝑝) = (−1)𝑘−1𝐹𝑘(𝑝, 𝑞), 𝐹𝑘(−𝑝,−𝑞) = 𝐹𝑘(𝑝, 𝑞),

𝐺𝑘+1(𝑝, 𝑞) = (−1)𝑘𝐻𝑘+1(𝑞, 𝑝), 𝐻𝑘+1(−𝑝,−𝑞) = −𝐻𝑘+1(𝑝, 𝑞)
(1.5)

and
𝐹𝑘

(︀
𝑝|𝑥=−𝑥 , 𝑞|𝑥=−𝑥

)︀
= (−1)𝑘−1 𝐹𝑘(𝑝, 𝑞)|𝑥=−𝑥 ,

𝐺𝑘

(︀
𝑝|𝑥=−𝑥 , 𝑞|𝑥=−𝑥

)︀
= (−1)𝑘 𝐺𝑘(𝑝, 𝑞)|𝑥=−𝑥 ,

𝐻𝑘

(︀
𝑝|𝑥=−𝑥 , 𝑞|𝑥=−𝑥

)︀
= (−1)𝑘 𝐻𝑘(𝑝, 𝑞)|𝑥=−𝑥 .

(1.6)

An implication of the compatibility conditions are also integrable nonlinear evolutionary
AKNS hierarchy equations being of the form

𝑝𝑡𝑘 = −𝑖𝑘𝐻𝑘+1(𝑝, 𝑞), 𝑞𝑡𝑘 = −𝑖𝑘𝐺𝑘+1(𝑝, 𝑞)

or
𝑝𝑡𝑘 + 𝑖𝑘𝐻𝑘+1(𝑝, 𝑞) = 0, 𝑞𝑡𝑘 + (−𝑖)𝑘𝐻𝑘+1(𝑞, 𝑝) = 0. (1.7)

In our notations, classical integrable nonlinear equations have the following form:

1. focusing nonlinear Schrödinger equation

𝑖𝑝𝑡1 −𝐻2(𝑝,−𝑝*) = 0;

2. defocusing nonlinear Schrödinger equation

𝑖𝑝𝑡1 −𝐻2(𝑝, 𝑝
*) = 0;

3. real modified Korteweg-de Vries equation

𝑝𝑡2 −𝐻3(𝑝,±𝑝) = 0;

4. Lakshmanan-Porsezian-Daniel equation ( [40–42], 𝑡 = −𝑡3)
𝑖𝑝𝑡 −𝐻4(𝑝,−𝑝*) = 0.

2. Baker-Akhiezer function for nonlocal equations

We change the spectral parameter 𝜆→ 𝑖𝜆 in equations (1.2):

U := 𝑖𝜆𝐽 + U0, V1 := 2𝑖𝜆U + V0
1, V𝑘+1 := 2𝑖𝜆V𝑘 + V0

𝑘+1, 𝑘 > 1. (2.1)

It is easy to understand that the compatibility conditions for the Lax pairs (1.1) remain the
same in this case, although the reality conditions changes, as well as the reductions containing
the complex conjugation.
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Following [36], [37], see also [34], [35], [43]- [45], we define a hyperelliptic curve Γ = {(𝜒, 𝜆)}
of genus 𝑔

Γ : 𝜒2 =

2𝑔+2∏︁
𝑗=1

(𝜆− 𝜆𝑗) ≡ 𝜆2𝑔+2 +

2𝑔+2∑︁
𝑗=1

𝜒𝑗𝜆
2𝑔+2−𝑗, 𝜒𝑗 ∈ R. (2.2)

On Γ, we choose a canonical basis of cycles 𝛾𝑡 = (𝑎1, . . . , 𝑎𝑔, 𝑏1, . . . , 𝑏𝑔) with matrix of intersec-
tion indices

𝐶0 =

(︂
0 𝐼
−𝐼 0

)︂
.

On Γ we also choose a normalized basis of holomorphic differentials

𝑑𝒰𝑗 =

𝑔∑︁
𝑘=1

𝑐𝑗𝑘𝜆
𝑔−𝑘 𝑑𝜆

𝜒
, (2.3)∮︁

𝑎𝑘

𝑑𝒰𝑗 = 𝛿𝑘𝑗, 𝑘, 𝑗 = 1, . . . , 𝑔 (2.4)

with the matrix of periods

𝐵𝑘𝑗 =

∮︁
𝑏𝑘

𝑑𝒰𝑗, 𝑘, 𝑗 = 1, . . . , 𝑔, 𝐵𝑡 = 𝐵, Im(𝐵) > 0. (2.5)

By the matrix of periods, we construct a 𝑔-dimensional theta functions with characteristics
𝜂, 𝜁 ∈ R𝑔 [46]– [51]:

Θ[𝜂𝑡; 𝜁𝑡](p|𝐵) =
∑︁
m∈Z𝑔

exp{𝜋𝑖(m + 𝜂)𝑡𝐵(m + 𝜂) + 2𝜋𝑖(m + 𝜂)𝑡(p + 𝜁)},

Θ[0𝑡;0𝑡](p|𝐵) ≡ Θ(p|𝐵) ≡ Θ(p),

(2.6)

where p ∈ C𝑔 and the summation is made over the integer 𝑔-dimensional lattice.
On Γ we also define normalized Abelian integrals Ω𝑗(𝒫) of second kind and Abelian integrals

𝜔0(𝒫) of third kind with the following asymptotics at infinite points 𝒫±
∞:∮︁

𝑎𝑘

𝑑Ω𝑗 =

∮︁
𝑎𝑘

𝑑𝜔0 = 0, 𝑘 = 1, . . . , 𝑔,

Ω𝑗(𝒫) = ±
(︀
(2𝑖)𝑗−1𝜆𝑗 −𝐾𝑗 +𝑂

(︀
𝜆−1

)︀)︀
, 𝒫 → 𝒫±

∞, (2.7)

𝜔0(𝒫) = ∓
(︀
ln𝜆− ln𝐾0 +𝑂

(︀
𝜆−1

)︀)︀
, 𝒫 → 𝒫±

∞, (2.8)

𝜒 = ±
(︀
𝜆𝑔+1 +𝑂 (𝜆𝑔 )

)︀
, 𝒫 → 𝒫±

∞.

By 2𝜋𝑖V𝑗 we denote the vectors of 𝑏-periods of Abelian integrals Ω𝑗(𝒫) of second kind.
Following [36], [37] and [38], we define a single-valued vector Baker-Akhiezer function de-

pending on a point 𝒫 ∈ Γ:

Ψ(𝒫 ,x) =

(︂
𝜓(𝒫 ,x)
𝜑(𝒫 ,x)

)︂
, (2.9)

where x = (𝑥, 𝑡1, 𝑡2, . . . )
𝑡,

𝜓(𝒫 ,x) = 𝑟1(x)
Θ(𝒰(𝒫) − Z0 + U(x))

Θ(𝒰(𝒫) − Z0)
exp {Ω(𝒫 ,x)} ,

𝜑(𝒫 ,x) = 𝑟2(x)
Θ(𝒰(𝒫) − Z0 + U(x) + Δ)

Θ(𝒰(𝒫) − Z0)
exp {𝜔0(𝒫) + Ω(𝒫 ,x))} .
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Here 𝑟𝑗 are normalizing factors, Δ is the vector of Abelian holomorphic integrals calculated
along the paths connecting the points 𝒫−

∞ and 𝒫+
∞ and intersecting none of basis cycles,

Δ = 𝒰(𝒫+
∞) − 𝒰(𝒫−

∞), U(x) = V1𝑥+
∑︁
𝑗>1

V𝑗+1𝑡𝑗,

Ω(𝒫 ,x) = 𝑥Ω1(𝒫) +
∑︁
𝑗>1

𝑡𝑗Ω𝑗+1(𝒫),

Z0 ∈ C𝑔 is the vector defining the initial phase.
We find the normalizing factors

𝑟1(x) = 𝜌1
Θ(𝒰(𝒫+) − Z0)

Θ(𝒰(𝒫+) − Z0 + U(x))
exp

{︃
𝐾1𝑥+

∑︁
𝑗>1

𝐾𝑗+1𝑡𝑗

}︃
,

𝑟2(x) = 𝐾0𝜌2
Θ(𝒰(𝒫−) − Z0)

Θ(𝒰(𝒫−) − Z0 + U(x) + Δ)
exp

{︃
−𝐾1𝑥−

∑︁
𝑗>1

𝐾𝑗+1𝑡𝑗

}︃
,

by the asymptotics of vector function (2.9) in the vicinity of infinite points 𝒫±
∞:

𝜓(𝒫 ,x) =

(︃
𝜌1 +

∑︁
𝑗>1

𝛼+
𝑗 (x)𝜆−𝑗

)︃
exp

{︃
𝑥𝜆+

∑︁
𝑗>1

𝑡𝑗(2𝑖)
𝑗𝜆𝑗+1

}︃
, 𝒫 → 𝒫+

∞,

𝜑(𝒫 ,x) = 𝜆−1

(︃
𝑠2(x) +

∑︁
𝑗>1

𝛽+
𝑗 (x)𝜆−𝑗

)︃
exp

{︃
𝑥𝜆+

∑︁
𝑗>1

𝑡𝑗(2𝑖)
𝑗𝜆𝑗+1

}︃
, 𝒫 → 𝒫+

∞,

𝜓(𝒫 ,x) =

(︃
𝑠1(x) +

∑︁
𝑗>1

𝛼−
𝑗 (x)𝜆−𝑗

)︃
exp

{︃
−𝑥𝜆−

∑︁
𝑗>1

𝑡𝑗(2𝑖)
𝑗𝜆𝑗+1

}︃
, 𝒫 → 𝒫−

∞,

𝜑(𝒫 ,x) = 𝜆

(︃
𝜌2 +

∑︁
𝑗>1

𝛽−
𝑗 (x)𝜆−𝑗

)︃
exp

{︃
−𝑥𝜆−

∑︁
𝑗>1

𝑡𝑗(2𝑖)
𝑗𝜆𝑗+1

}︃
, 𝒫 → 𝒫−

∞.

Theorem 2.1. Algebraic-geometric solutions of equations in AKNS hierarchy constructed

by Baker-Akhiezer function (2.9) read as

𝑝(x) =
2𝑖𝐴𝜌1
𝜌2

Θ(𝒰(𝒫+
∞) − Z0 + U(x) −Δ)

Θ(𝒰(𝒫+
∞) − Z0 + U(x))

exp{2Φ(x)},

𝑞(x) =
2𝑖𝜌2𝐾

2
0

𝐴𝜌1

Θ(𝒰(𝒫+
∞) − Z0 + U(x) + Δ)

Θ(𝒰(𝒫+
∞) − Z0 + U(x))

exp{−2Φ(x)},
(2.10)

where

𝐴 =
Θ(𝒰(𝒫+

∞) − Z0)

Θ(𝒰(𝒫−
∞) − Z0)

, Φ(x) = 𝐾1𝑥+
∑︁
𝑗>1

𝐾𝑗+1𝑡𝑗.

3. Algebraic-geometric solutions constructed

by spectral curve with anti-involution

Let the canonical basis of cycles be transformed under the anti-holomorphic involution

𝜏𝑎 : (𝜒, 𝜆) → (𝜒*, 𝜆*) (3.1)

by the following formulae (𝜎𝑎 = ±1)

𝜏𝑎a = 𝜎𝑎a, 𝜏𝑎b = −𝜎𝑎(b +𝐾a). (3.2)
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We introduce the notations

𝒜𝑗𝑚 =

∮︁
𝑎𝑗

𝜆𝑔−𝑚𝑑𝜆

𝜒
, ℬ𝑗𝑚 =

∮︁
𝑏𝑗

𝜆𝑔−𝑚𝑑𝜆

𝜒
.

Then the matrix of the coefficients of the normalized holomorphic differentials (2.3) and matrix
of periods (2.5) are

𝒞 = (𝒜𝑡)−1, 𝐵 = ℬ𝒞𝑡 = ℬ𝒜−1.

The equation ∫︁
𝜏ℓ

𝑑𝜔 =

∫︁
ℓ

𝜏𝑑𝜔,

where ℓ is an arbitrary path on Γ and 𝑑𝜔 is an arbitrary Abelian differential, implies that

(𝒜𝑗𝑚)* =

∮︁
𝑎𝑗

(︂
𝜆𝑔−𝑚𝑑𝜆

𝜒

)︂*
=

∮︁
𝑎𝑗

𝜏𝑎

(︂
𝜆𝑔−𝑚𝑑𝜆

𝜒

)︂
=

∮︁
𝜏𝑎𝑎𝑗

𝜆𝑔−𝑚𝑑𝜆

𝜒
= 𝜎𝑎

∮︁
𝑎𝑗

𝜆𝑔−𝑚𝑑𝜆

𝜒
= 𝜎𝑎𝒜𝑗𝑚.

Therefore, 𝒜* = 𝜎𝑎𝒜 and 𝒞* = 𝜎𝑎𝒞. Proceeding in the same way with the integrals over
𝑏-cycles, we obtain

ℬ* = −𝜎𝑎(ℬ +𝐾𝒜) or 𝐵* = −𝐵 −𝐾

and

Re(𝐵) = −1

2
𝐾. (3.3)

Generalizing these formulae to an arbitrary path ℓ, we have(︂∫︁
ℓ

𝑑𝒰
)︂*

= 𝜎𝑎

∫︁
𝜏𝑎ℓ

𝑑𝒰 . (3.4)

It follows from Riemann bilinear relations, see, for instance, [38], [46], [49], that

𝑉 𝑘
𝑗 = Res

𝒫+
∞

(𝒰𝑗(𝒫)𝑑Ω𝑘) − Res
𝒫−
∞

(𝒰𝑗(𝒫)𝑑Ω𝑘) =
−2𝑘𝑖𝑘−1

(𝑘 − 1)!

𝜕𝑘𝒰𝑗

𝜕𝜉𝑘+

⃒⃒⃒⃒
𝜉+=0

.

Hence, (︀
V𝑘
)︀*

= (−1)𝑘−1𝜎𝑎V
𝑘. (3.5)

The identities (Ω𝑗(𝒫))* = (−1)𝑗−1Ω𝑗(𝜏𝑎𝒫) and 𝜏𝑎𝒫±
∞ = 𝒫±

∞ yield that

𝐾*
𝑗 = (−1)𝑗−1𝐾𝑗 and Φ*(x) = −Φ( ̂︀𝐽x),

where ̂︀𝐽𝑘𝑚 = (−1)𝑘𝛿𝑘𝑚.
We consider four types of spectral curves with involtuion (3.1), (3.2).

1. All branching point do not lie on the real axis: Im(𝜆2𝑔+2) ̸= 0, 𝜎𝑎 = −1, Re(𝐵) ̸= 0 as
𝑔 > 1, see Figure 1.

2. Only part of the branching points do not lie on the real axis, 𝜎𝑎 = −1, Re(𝐵) ̸= 0 as
𝑔 > 1, see Figure 2.

3. All branching points lie on the real axis: Im(𝜆𝑗) = 0, 𝜎𝑎 = −1, Re(𝐵) = 0, see Figure 3.
4. All branching points lie on the real axis: Im(𝜆𝑗) = 0, 𝜎𝑎 = 1, Re(𝐵) = 0, see Figure 4.

In all four cases we assume that

Ω𝑗(𝒫) =

∫︁ 𝒫

𝒫2𝑔+2

𝑑Ω𝑗, 𝜔0(𝒫) =

∫︁ 𝒫

𝒫2𝑔+2

𝑑𝜔0, 𝒰(𝒫) =

∫︁ 𝒫

𝒫2𝑔+2

𝑑𝒰 .

Therefore, in all four cases, the following conditions are satisfied

Ω𝑗(𝜏0𝒫) = −Ω𝑗(𝒫), 𝜔0(𝜏0𝒫) = −𝜔0(𝒫), 𝒰(𝜏0𝒫) = −𝒰(𝒫),
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𝒰(𝒫+
∞) = −𝒰(𝒫−

∞) and 𝒰(𝒫+
∞) =

1

2
∆,

where 𝜏0 is a hyperelliptic involution, 𝜏0 : (𝜒, 𝜆) → (−𝜒, 𝜆).
In Case 1, the condition 𝜏𝑎𝒫2𝑔+2 = 𝒫2𝑔+1 holds. This is why by equation (3.4) and the

relation 𝜏𝑎𝒫±
∞ = 𝒫±

∞ we obtain the following identities

(𝒰(𝒫+
∞))* =

(︃∫︁ 𝒫+
∞

𝒫2𝑔+2

𝑑𝒰

)︃*

= 𝜎𝑎

∫︁ 𝒫+
∞

𝒫2𝑔+1

𝑑𝒰 = 𝜎𝑎

∫︁ 𝒫2𝑔+2

𝒫2𝑔+1

𝑑𝒰 + 𝜎𝑎𝒰(𝒫+
∞),

(𝒰(𝒫−
∞))* =

(︃∫︁ 𝒫−
∞

𝒫2𝑔+2

𝑑𝒰

)︃*

= 𝜎𝑎

∫︁ 𝒫−
∞

𝒫2𝑔+1

𝑑𝒰 = 𝜎𝑎

∫︁ 𝒫2𝑔+2

𝒫2𝑔+1

𝑑𝒰 + 𝜎𝑎𝒰(𝒫−
∞).

(3.6)

Reλ

Imλ

λ2

λ1 λ2k−1

λ2k

λ2g+1

λ2g+2

b1

a1 ak

Figure 1. Case 1

We observe that the integration paths in equations (3.6) belong to two different sheets of
two-sheet surface 𝛤 . This is why, in Case 1

∆* = −𝜎𝑎
𝑔∑︁

𝑘=1

∫︁
𝑎𝑘

𝑑𝒰 + 𝜎𝑎∆ = e− ∆ or Re(∆) =
1

2
e,

where 𝑒𝑗 = 1, 𝑗 = 1, . . . , 𝑔.
Also in this case the identity

(𝜔0(𝒫))* =

(︃∫︁ 𝒫

𝒫2𝑔+2

𝑑𝜔0

)︃*

=

∫︁ 𝒫

𝒫2𝑔+2

𝜏𝑎(𝑑𝜔0) =

∫︁ 𝜏𝑎𝒫

𝒫2𝑔+1

𝑑𝜔0 =

∫︁ 𝒫2𝑔+2

𝒫2𝑔+1

𝑑𝜔0 + 𝜔0(𝜏𝑎𝒫),

holds, where the integration path connecting the points 𝒫2𝑔+1 and 𝒫2𝑔+2 do not intersect the

basis cycles. Calculating the integral

∫︁ 𝒫2𝑔+2

𝒫2𝑔+1

𝑑𝜔0, we obtain∫︁ 𝒫2𝑔+2

𝒫2𝑔+1

𝑑𝜔0 =
1

2

(︃
𝑔∑︁

𝑘=1

∫︁
𝑎𝑘

𝑑𝜔0 + 2𝜋𝑖Res
𝒫+
∞

(𝑑𝜔0)

)︃
= −𝜋𝑖.

Therefore,

Im(ln𝐾0) =
1

2𝑖
lim

𝒫→𝒫+
∞

(𝜔0(𝒫) − (𝜔0(𝒫))*)

=
𝜋

2
+

1

2𝑖
lim

𝒫→𝒫+
∞

∫︁ 𝒫

𝜏𝑎𝒫
𝑑𝜔0 =

𝜋

2
+ 𝜋𝑛, 𝑛 ∈ {0; 1;−1}
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or 𝐾2
0 = − |𝐾0|2.

Choosing the initial phase Z0 so that it satisfies the condition

(𝒰(𝒫+
∞) − Z0)

* = 𝒰(𝒫+
∞) − Z0 +𝐵M + N, M,N ∈ Z𝑔, N = −(Re𝐵)M, (3.7)

we get:

𝑝*(x) =
−2𝑖𝐴*𝜌*1

𝜌*2

Θ((𝒰(𝒫+
∞) − Z0)

* + 𝑈( ̂︀𝐽x) + ∆ − e)

Θ((𝒰(𝒫+
∞) − Z0)* + 𝑈( ̂︀𝐽x))

𝑒−2Φ( ̂︀𝐽x)

= − 𝑒𝜋𝑖M
𝑡e

⃒⃒⃒⃒
𝐴𝜌1
𝐾0𝜌2

⃒⃒⃒⃒2
𝑒2𝜋M

𝑡ImΔ𝑞( ̂︀𝐽x).

Thus, as |𝜌2| =
⃒⃒
𝐴𝜌1𝐾

−1
0 exp{𝜋M𝑡Im∆}

⃒⃒
, functions (2.10) constructed by the hyperelliptic

curve possessing involution (3.1), (3.2) and satisfying the conditions Im(𝜆𝑗) ̸= 0, 𝜎𝑎 = −1,
are algebraic-geometric solutions to nonlocal equations in AKNS hierarchy with the reduction
𝑞(x) = 𝜎𝑝*( ̂︀𝐽x), where

𝜎 = − exp{𝜋𝑖M𝑡e}. (3.8)

Reλ

Imλ

λ2λ1

λ2k−1

λ2k

λ2g+1 λ2g+2

b1

a1
ak

Figure 2. Case 2

In Case 2 there are non-zero diagonal entries in the matrix 𝐾. By the formula

Θ*(𝑝|𝐵) = Θ(𝑝* + d|𝐵),

where (d)𝑗 = 𝐾𝑗𝑗/2, we conclude that the spectral curve of this type can not be employed for
constructing nonlocal reductions of multi-phase solutions in AKNS hierarchy.
In Case 3 the condition 𝜏𝑎𝒫2𝑔+2 = 𝒫2𝑔+2 holds and this is why

(𝒰(𝒫+
∞))* = −𝒰(𝒫+

∞), (𝒰(𝒫−
∞))* = −𝒰(𝒫−

∞) and ∆* = −∆,

and

(𝜔0(𝒫))* =

(︃∫︁ 𝒫

𝒫2𝑔+2

𝑑𝜔0

)︃*

=

∫︁ 𝒫

𝒫2𝑔+2

𝜏𝑎(𝑑𝜔0) =

∫︁ 𝜏𝑎𝒫

𝒫2𝑔+2

𝑑𝜔0 = 𝜔0(𝜏𝑎𝒫).

Therefore,

Im(ln𝐾0) =
1

2𝑖
lim

𝒫→𝒫+
∞

(𝜔0(𝒫) − (𝜔0(𝒫))*) =
1

2𝑖
lim

𝒫→𝒫+
∞

∫︁ 𝒫

𝜏𝑎𝒫
𝑑𝜔0 = 𝜋𝑛, 𝑛 ∈ {0; 1;−1}

or 𝐾2
0 = |𝐾0|2.

Choosing the initial phase Z0 so that it satisfies the condition

(𝒰(𝒫+
∞) − Z0)

* = 𝒰(𝒫+
∞) − Z0 +𝐵M, M ∈ Z𝑔, (3.9)
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Reλ

Imλ

λ2λ1 λ2k−1 λ2k λ2g+1 λ2g+2

b1

a1 ak

Figure 3. Case 3

we find:

𝑝*(x) =
−2𝑖𝐴*𝜌*1

𝜌*2

Θ((𝒰(𝒫+
∞) − Z0)

* + 𝑈( ̂︀𝐽x) + ∆)

Θ((𝒰(𝒫+
∞) − Z0)* + 𝑈( ̂︀𝐽x))

𝑒−2Φ( ̂︀𝐽x)

=

⃒⃒⃒⃒
𝐴𝜌1
𝐾0𝜌2

⃒⃒⃒⃒2
𝑒2𝜋M

𝑡ImΔ𝑞( ̂︀𝐽x).

Thus, as |𝜌2| =
⃒⃒
𝐴𝜌1𝐾

−1
0 exp{𝜋M𝑡Im∆}

⃒⃒
, functions (2.10) constructed by the hyperelliptic

curve possessing involution (3.1), (3.2) and satisfying conditions Re(𝐵) = 0, Im(𝜆𝑗) = 0,
are algebraic-geometric solutions to nonlocal equations in AKNS hierarchy with the reduction
𝑞(x) = 𝑝*( ̂︀𝐽x).
For Case 4, the condition 𝜏𝑎𝒫2𝑔+2 = 𝒫2𝑔+2 holds again. However, since 𝜎𝑎 = 1, we have

(𝒰(𝒫+
∞))* = 𝒰(𝒫+

∞), (𝒰(𝒫−
∞))* = 𝒰(𝒫−

∞) and ∆* = ∆.

Reλ

Imλ

λ2λ1 λ2g+1 λ2g+2

b1
a1

Figure 4. Case 4

Similar to Case 3, the identities hold:

(𝜔0(𝒫))* =

(︃∫︁ 𝒫

𝒫2𝑔+2

𝑑𝜔0

)︃*

=

∫︁ 𝒫

𝒫2𝑔+2

𝜏𝑎(𝑑𝜔0) =

∫︁ 𝜏𝑎𝒫

𝒫2𝑔+2

𝑑𝜔0 = 𝜔0(𝜏𝑎𝒫)

and

Im(ln𝐾0) =
1

2𝑖
lim

𝒫→𝒫+
∞

(𝜔0(𝒫) − (𝜔0(𝒫))*) =
1

2𝑖
lim

𝒫→𝒫+
∞

∫︁ 𝒫

𝜏𝑎𝒫
𝑑𝜔0 = 𝜋𝑛, 𝑛 ∈ {0; 1;−1}

or 𝐾2
0 = |𝐾0|2.
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Choosing the initial phase Z0 so that it satisfies the condition

(𝒰(𝒫+
∞) − Z0)

* = −(𝒰(𝒫+
∞) − Z0) + N, N ∈ Z𝑔, (3.10)

we obtain:

𝑝*(x) =
−2𝑖𝐴*𝜌*1

𝜌*2

Θ(N− (𝒰(𝒫+
∞) − Z0 + 𝑈( ̂︀𝐽x) + ∆))

Θ(N− (𝒰(𝒫+
∞) − Z0 + 𝑈( ̂︀𝐽x)))

𝑒−2Φ( ̂︀𝐽x) =

⃒⃒⃒⃒
𝐴𝜌1
𝐾0𝜌2

⃒⃒⃒⃒2
𝑞( ̂︀𝐽x).

Thus, as |𝜌2| =
⃒⃒
𝐴𝜌1𝐾

−1
0

⃒⃒
functions (2.10) constructed by the hyperelliptic curve possessing

involution (3.1), (3.2) and satisfying the conditions Im(𝜆2𝑔+2) = 0, are algebraic-geometric

solutions to nonlocal equations in AKNS hierarchy with the reduction 𝑞(x) = 𝑝*( ̂︀𝐽x).

4. Solutions constructed spectral curve with holomorphic involution

Unfortunately, as 𝐾2𝑗−1 ̸= 0, algebraic-geometric solutions of (2.10) constructed by the
hyperelliptic curve possessing involution (3.1), (3.2) (3.1), (3.2) grow exponentially with respect
to the corresponding variables. This can be avoided if we employ hyperelliptic curves with the
holomorphic involution

𝜏ℎ : (𝜒, 𝜆) → (𝜒,−𝜆). (4.1)

It is easy to see that in all four considered cases, the bases of cycles are transformed by the rule

𝜏ℎa = 𝑆a, 𝜏ℎb = 𝑄a +𝑅b, 𝜏ℎ𝒫±
∞ = 𝒫±

∞,

where, see, for instance, [38], [52],

𝑆𝑅𝑡 = 𝐼 and 𝑄𝑅𝑡 = 𝑅𝑄𝑡.

Calculating the periods of holomorphic differentials 𝑑 ̂︀𝒰𝑗(𝒫) = 𝑑𝒰𝑗(𝜏ℎ𝒫), we obtain:∫︁
𝑎𝑘

𝑑 ̂︀𝒰𝑗(𝒫) =

∫︁
𝜏ℎ𝑎𝑘

𝑑𝒰𝑗 =

𝑔∑︁
𝑚=1

𝑆𝑘𝑚

∫︁
𝑎𝑚

𝑑𝒰𝑗 = 𝑆𝑘𝑗,∫︁
𝑎𝑘

𝑑 ̂︀𝒰𝑗(𝒫) =

𝑔∑︁
𝑚=1

𝑐𝑗𝑚

∫︁
𝑎𝑘

𝜏ℎ

(︂
𝜆𝑔−𝑚𝑑𝜆

𝜒

)︂
=

𝑔∑︁
𝑚=1

𝑐𝑗𝑚(−1)𝑔+1−𝑚𝒜𝑘𝑚 = (𝒜𝐽𝒞𝑡)𝑘𝑗,

where
𝐽𝑚𝑛 = (−1)𝑔+1−𝑚𝛿𝑚𝑛. (4.2)

Therefore, 𝑑 ̂︀𝒰 = 𝑆𝑡𝑑𝒰 , and the matrices 𝑆 and 𝐽 are similar:

𝑆 = (𝒞𝑡)−1𝐽𝒞𝑡 and 𝑆𝑡 = 𝒞𝐽𝒞−1.

Since 𝑅 = (𝑆𝑡)−1 and 𝑆2 = 𝐼, then 𝑅 = 𝑆𝑡.
We integrate holomorphic differentials over 𝑏-cycles:∫︁

𝑏𝑘

𝑑 ̂︀𝒰𝑗(𝒫) =

∫︁
𝜏ℎ𝑏𝑘

𝑑𝒰𝑗 =

𝑔∑︁
𝑚=1

(︂
𝑄𝑘𝑚

∫︁
𝑎𝑚

𝑑𝒰𝑗 +𝑅𝑘𝑚

∫︁
𝑏𝑚

𝑑𝒰𝑗

)︂
= (𝑄+𝑅𝐵)𝑘𝑗,∫︁

𝑏𝑘

𝑑 ̂︀𝒰𝑗(𝒫) =

𝑔∑︁
𝑚=1

(𝑆𝑡)𝑗𝑚

∫︁
𝑏𝑘

𝑑𝒰𝑚 = (𝐵𝑆)𝑘𝑗,

or
𝐵𝑆 = 𝑄+𝑅𝐵. (4.3)

We transpose identity (4.3) and we find:

𝑆𝑡𝐵 = 𝑄𝑡 +𝐵𝑅𝑡 or 𝑅𝐵 = 𝑄𝑡 +𝐵𝑆.

Therefore, 𝑄𝑡 = −𝑄. Calculating the real part of identity (4.3), we get:

𝑄 = (Re𝐵)𝑆 − 𝑆𝑡(Re𝐵)
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and
𝑆𝑡𝑄 = 𝑆𝑡(Re𝐵)𝑆 − (Re𝐵) = 𝑄𝑡𝑆.

We observe that it follows from the asymptotics of the function 𝜒(𝜆) in the vicinity of the
infinite points that

∙ if 𝑔 is odd, then 𝜏ℎ𝒫±
∞ = 𝒫±

∞,
∙ if 𝑔 is even, then 𝜏ℎ𝒫±

∞ = 𝒫∓
∞.

Therefore,

𝑆𝑡∆ =2

∫︁ 𝒫+
∞

𝒫2𝑔+2

𝑆𝑡𝑑𝒰 = 2

∫︁ 𝒫+
∞

𝒫2𝑔+2

𝜏ℎ𝑑𝒰 = 2

∫︁ 𝜏ℎ𝒫+
∞

𝒫1

𝑑𝒰

=2

∫︁ 𝒫2𝑔+2

𝒫1

𝑑𝒰 + 2𝒰(𝜏ℎ𝒫+
∞) = (−1)𝑔+1∆ − 2𝒰(𝒫1).

(4.4)

We introduce the notations: ̂︀Ω𝑗(𝒫) = Ω𝑗(𝜏ℎ𝒫). These integrals possess the following prop-
erties: ∫︁

𝑎𝑘

𝑑̂︀Ω𝑗 =

∫︁
𝜏ℎ𝑎𝑘

𝑑Ω𝑗 =

𝑔∑︁
𝑚=1

𝑆𝑘𝑚

∫︁
𝑎𝑚

𝑑Ω𝑗 = 0,

̂︀Ω𝑗(𝒫) = ±
(︀
(2𝑖)𝑗−1(−𝜆)𝑗 −𝐾𝑗 +𝑂

(︀
𝜆−1

)︀)︀
, 𝒫 → 𝒫±

∞.

Since the Abelian integral 𝜇𝑗(𝒫) = ̂︀Ω𝑗(𝒫)−(−1)𝑗Ω𝑗(𝒫) possesses zero 𝑎-periods and no singular
singularities, it is constant. The asymptotics of 𝜇𝑗(𝒫) at infinite points

𝜇𝑗(𝒫) = ∓
(︀
(−1)𝑗 − 1

)︀
𝐾𝑗 +𝑂

(︀
𝜆−1

)︀
, 𝒫 → 𝒫±

∞

implies that 𝜇𝑗(𝒫) ≡ 0, ̂︀Ω𝑗(𝒫) ≡ (−1)𝑗Ω𝑗(𝒫), 𝐾2𝑗−1 = 0.
Thus, multi-phase solutions (2.10) constructed by hyperelliptic curve (2.2) with involutions

(3.1), (4.1) has no exponential growth.
Calculating 𝑏-periods of Abelian integrals of second kind, we obtain:

(̂︀V𝑗)𝑘 =
1

2𝜋𝑖

∫︁
𝑏𝑘

𝑑̂︀Ω𝑗 =
1

2𝜋𝑖

∫︁
𝜏ℎ𝑏𝑘

𝑑Ω𝑗

=
1

2𝜋𝑖

𝑔∑︁
𝑚=1

(︂
𝑄𝑘𝑚

∫︁
𝑎𝑚

𝑑Ω𝑗 +𝑅𝑘𝑚

∫︁
𝑏𝑚

𝑑Ω𝑗

)︂
= (𝑅V𝑗)𝑘,

(̂︀V𝑗)𝑘 =
1

2𝜋𝑖

∫︁
𝑏𝑘

𝑑̂︀Ω𝑗 =
(−1)𝑗

2𝜋𝑖

∫︁
𝑏𝑘

𝑑Ω𝑗 = (−1)𝑗(V𝑗)𝑘.

Therefore, the vectors V𝑗 are the eigenvectors of the matrix 𝑅: 𝑅V𝑗 = (−1)𝑗V𝑗 or

𝑆𝑡V𝑗 = (−1)𝑗V𝑗. (4.5)

We considered single-phase solutions of nonlocal equations in AKNS hierarchy in works [31]–
[33]. This is why in what follows we assume that 𝑔 > 1.
In Case 1 the identity Re(𝐵𝑗𝑘) = (𝛿𝑗𝑘 − 1)/2 holds, and the entries of the matrices of cycles

transformation under the involution 𝜏ℎ are

𝑆1𝑘 = (−1)𝑔, 𝑆𝑗𝑘 = (−1)𝑔+1𝛿𝑗,𝑔+2−𝑘, 𝑗 = 2, . . . , 𝑔, 𝑘 = 1, . . . , 𝑔,

𝑄𝑗𝑘 = (−1)𝑔(𝛿𝑗1 − 𝛿1𝑘), 𝑗, 𝑘 = 1, . . . , 𝑔,

(𝑆𝑡𝑄)𝑗𝑘 = 1 − 𝛿𝑗1𝛿1𝑘.

(4.6)

In particular, as 𝑔 = 2,

𝑆 =

(︂
1 1
0 −1

)︂
, 𝑄 =

(︂
0 1
−1 0

)︂
, Re𝐵 = −1

2

(︂
0 1
1 0

)︂
,
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while for 𝑔 = 3 we have

𝑆 =

⎛⎝−1 −1 −1
0 0 1
0 1 0

⎞⎠ , 𝑄 =

⎛⎝0 −1 −1
1 0 0
1 0 0

⎞⎠ , Re𝐵 = −1

2

⎛⎝0 1 1
1 0 1
1 1 0

⎞⎠ .

It follows from equations (4.4), (4.6) and the realness of the vector ∆ that

𝑆𝑡∆ = (−1)𝑔+1 (∆ + (𝐵 − 𝐼)e1) ,

where e𝑡1 = (1, 0, . . . , 0).
It can be shown that for even 𝑔, condition (3.7) is satisfied only for M ∈ 2Z𝑔. Therefore, for

even 𝑔, solution (2.10) constructed by curve (2.2), (3.1), (4.1), satisfies the reduction

𝑞(x) = −𝑝*( ̂︀𝐽x).

At the same time, for odd 𝑔, there exist initial phases Z0 for the reductions of both types:

𝑞(x) = ±𝑝*( ̂︀𝐽x).

In Case 3, the entries of the matrix 𝑆 are determined by formula (4.6) and the identities
hold:

Re(𝐵𝑗𝑘) = 0, 𝑄𝑗𝑘 = 0, 𝑆𝑡∆ = (−1)𝑔+1 (∆ +𝐵e1) .

It is easy to show that in Case 3, for each M ∈ Z𝑔 and for an initial phase Z0 obeying
condition (3.9), solution (2.10) constructed by curve (2.2), (3.1), (4.1) satisfies the reduction

𝑞(x) = 𝑝*( ̂︀𝐽x).

In Case 4

Re(𝐵𝑗𝑘) = 0, 𝑄𝑗𝑘 = 0, 𝑆𝑗𝑘 = (−1)𝑔𝛿𝑗,𝑔+1−𝑘, 𝑗, 𝑘 = 1, . . . , 𝑔, (4.7)

𝑆𝑡∆ = (−1)𝑔+1 (∆ − e) ,

and for each N ∈ Z𝑔, with an initial phase Z0 obeying condition (3.10), solution (2.10) con-
structed by curve (2.2), (3.1), (4.1) satisfies the reduction

𝑞(x) = 𝑝*( ̂︀𝐽x).

5. Reduction of algebraic-geometric solution to

theta functions of lower dimension

5.1. General facts. It follows from equation (4.3) that the matrix of periods 𝐵 satisfies the
equation

𝐵 = 𝑆𝑡𝐵𝑆 − 𝑆𝑡𝑄. (5.1)

Following [52], we consider a matrix 𝑇 , 𝑇𝑗𝑘 ∈ Z, obeying the condition

𝑆 = 𝑇𝐽𝑇−1, (5.2)

where the matrix 𝐽 is determined by formula (4.2).
In the first and third cases, when the matrix 𝑆 is determined by conditions (4.6), equation

(5.2) implies the following requirements for the entries of the matrix 𝑇 :
𝑔∑︁

𝑚=2

𝑇𝑚𝑘 =
(︀
(−1)𝑘−1 − 1

)︀
𝑇1𝑘,

𝑇𝑔+2−𝑗,𝑘 = (−1)𝑘𝑇𝑗𝑘, 𝑗 = 2, . . . , 𝑔, 𝑘 = 1, . . . , 𝑔.

We fix the entries in the first row of the matrix 𝑇 :

𝑇1𝑘 = 1, 𝑘 = 1, . . . , 𝑔.
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We define other entries of the matrix 𝑇 as follows. If 𝑔 = 2𝑚, 𝑚 ∈ N, then

𝑇𝑗,2𝑘 = −𝛿𝑗,𝑚+𝑘 − 𝛿𝑗,𝑚+2−𝑘,

𝑇𝑗,2𝑘−1 = 𝛿𝑗,𝑚+𝑘 − 𝛿𝑗,𝑚+2−𝑘, 𝑗 = 2, . . . , 𝑔, 𝑘 = 1, . . . ,𝑚.

If 𝑔 = 2𝑚+ 1, 𝑚 ∈ N, then 𝑇𝑗1 = 0,

𝑇𝑗,2𝑘 = −𝛿𝑗,𝑚+1+𝑘 − 𝛿𝑗,𝑚+2−𝑘,

𝑇𝑗,2𝑘+1 = 𝛿𝑗,𝑚+1+𝑘 − 𝛿𝑗,𝑚+2−𝑘, 𝑗 = 2, . . . , 𝑔, 𝑘 = 1, . . . ,𝑚.

The properties of determinants imply that det𝑇 = (−2)𝑚.
In the fourth case the requirements for the entries of the matrix 𝑇 are of the form

𝑇𝑔+1−𝑗,𝑘 = (−1)𝑘−1𝑇𝑗𝑘.

We define the entries of the matrix 𝑇 as follows. If 𝑔 = 2𝑚, 𝑚 ∈ N, then

𝑇𝑗𝑘 = 1 as 1 6 𝑗 6 𝑚, 1 6 𝑘 6 2(𝑚+ 1 − 𝑗),

𝑇𝑗𝑘 = 0 as 1 < 𝑗 6 𝑚, 2(𝑚+ 1 − 𝑗) < 𝑘 6 2𝑚, 𝑚 ̸= 1,

𝑇𝑗𝑘 = (−1)𝑘−1 as 𝑚 < 𝑗 6 2𝑚, 1 6 𝑘 6 2(𝑗 −𝑚),

𝑇𝑗𝑘 = 0 as 𝑚 < 𝑗 < 2𝑚, 2(𝑗 −𝑚) < 𝑘 6 2𝑚, 𝑚 ̸= 1.

If 𝑔 = 2𝑚+ 1, 𝑚 ∈ N, then

𝑇𝑗𝑘 = 1 as 1 6 𝑗 6 𝑚, 1 6 𝑘 6 2(𝑚− 𝑗) + 3,

𝑇𝑗𝑘 = 0 as 1 < 𝑗 6 𝑚, 2(𝑚− 𝑗) + 3 < 𝑘 6 2𝑚+ 1, 𝑚 ̸= 1,

𝑇𝑗𝑘 = (−1)𝑘−1 as 𝑚 < 𝑗 6 2𝑚+ 1, 1 6 𝑘 6 2(𝑗 −𝑚) − 1,

𝑇𝑗𝑘 = 0 as 𝑚 < 𝑗 < 2𝑚+ 1, 2(𝑗 −𝑚) 6 𝑘 6 2𝑚+ 1.

In the case the identity det𝑇 = (−2)𝑚 holds as well.
We introduce the notations:̃︀𝐵 = 𝑇 𝑡(𝑖Im𝐵)𝑇, ̃︀𝐴 = 𝑇 𝑡(Re𝐵)𝑇, ̃︀V𝑗 = 𝑇 𝑡V𝑗.

Equations (4.5), (5.1) and (5.2) imply the following relations̃︀𝐵 = 𝐽 ̃︀𝐵𝐽, 𝐽 ̃︀V𝑗 = (−1)𝑗 ̃︀V𝑗, ( ̃︀𝐴)𝑗𝑘 ∈ Z. (5.3)

Changing the summation order in the formula for the multi-dimensional theta function with
the matrix 𝐵, we obtain (see [52])

Θ(p|𝐵) =
∑︁

k∈Z𝑔(𝑇 )

𝑒−𝜋𝑖𝜂𝑡(k)( ̃︀𝐴−𝐷)𝜂(k)Θ[𝜂𝑡(k); 𝜁𝑡(k)](𝑇 𝑡p| ̃︀𝐵 +𝐷),

where the summation k ∈ Z𝑔(𝑇 ) denotes a finite sum over k: k ∈ Z𝑔, 0 6 𝑇−1k < 1, 𝐷 is

a diagonal matrix, 𝐷𝑗𝑗 = ̃︀𝐴𝑗𝑗, 𝜂(k) = 𝑇−1k, 𝜁(k) = ( ̃︀𝐴 − 𝐷)𝜂(𝑘). The number of the terms

in the sum is equal to |det𝑇 |. At that, since relations (5.3) hold, the matrix ̃︀𝐵 has a block
structure and the theta function

Θ[𝜂𝑡(k); 𝜁𝑡(k)](𝑇 𝑡p| ̃︀𝐵 +𝐷)

can be represented as the product of two theta functions of lower dimension. It also follows
from relations (5.3) that one of theta functions depends on times with odd indices 𝑡1, 𝑡3, . . . ,
while the does on the variable 𝑥 and the times with even indices 𝑡2, 𝑡4, . . .
In conclusion of this section we provide examples of representing two-phase solutions for

nonlocal equations in AKNS hierarchy via one-dimensional theta functions.



94 A.O. SMIRNOV, V.B. MATVEEV

5.2. Two-phase solution. Case 1. The calculations made for the spectral curve

𝜒2 = (𝜆2 + 𝑐2)
(︀
𝜆4 − 2(𝑎2 − 𝑏2)𝜆2 + (𝑎2 + 𝑏2)2

)︀
, 𝑎, 𝑏, 𝑐 ∈ R, (5.4)

give the following formulae:

𝐵 =

(︂
2𝑖𝛽1 𝑖𝛽1 − 1/2

𝑖𝛽1 − 1/2 𝑖𝛽2

)︂
, ∆ =

(︂
1/2 − 𝑖𝛽1
1/2 + 𝑖𝛿2

)︂
,

V2𝑗−1 =

(︂
0

𝑖𝑣2𝑗−1

)︂
, V2𝑗 =

(︂
2𝑣2𝑗
𝑣2𝑗

)︂
,

where 𝛽𝑗, 𝛿𝑗, 𝑣𝑗 ∈ R. Therefore,

̃︀𝐵 =

(︂
2𝑖𝛽1 0

0 4𝑖𝛽2 − 2𝑖𝛽1

)︂
, ̃︀𝐴 =

(︂
0 1
1 2

)︂
,

̃︀V2𝑗−1 =

(︂
0

−2𝑖𝑣2𝑗−1

)︂
, ̃︀V2𝑗 =

(︂
2𝑣2𝑗

0

)︂
.

It is easy to confirm that the corresponding two-dimensional theta function

𝑓𝑠(x) = Θ

(︃
Z + V1𝑥+

∑︁
𝑗>1

V𝑗+1𝑡𝑗 + 𝑠∆

⃒⃒⃒⃒
⃒𝐵
)︃

= 𝜃[0; 0](𝑝1|2𝑖𝛽1)𝜃[0; 0](𝑝2|4𝑖𝛽2 − 2𝑖𝛽1) + 𝜃[1/2; 1/2](𝑝1|2𝑖𝛽1)𝜃[1/2; 1/2](𝑝2|4𝑖𝛽2 − 2𝑖𝛽1),

where 𝑠 ∈ {−1; 0; 1}, 𝒰(𝒫+
∞) − Z0 ≡ Z = (𝑧1, 𝑧2)

𝑡 ∈ R2,

𝑝1 = 𝑧1 + 2
∑︁
𝑗>1

𝑣2𝑗𝑡2𝑗−1 + 𝑠

(︂
1

2
− 𝑖𝛽1

)︂
,

𝑝2 = 𝑧1 − 2𝑧2 − 2𝑖𝑣1𝑥− 2𝑖
∑︁
𝑗>1

𝑣2𝑗+1𝑡2𝑗 − 𝑠

(︂
1

2
+ 𝑖𝛽1 + 2𝑖𝛿2

)︂
,

admits the following reductions

𝑓 *
0 (x) = 𝑓0( ̂︀𝐽x), 𝑓 *

1 (x) = 𝑓−1( ̂︀𝐽x), 𝑓 *
−1(x) = 𝑓1( ̂︀𝐽x). (5.5)

Hence, each solution (2.10) of equations in AKNS hierarchy constructed by curve (5.4) satisfies
the reduction

𝑞*(x) = −𝑝( ̂︀𝐽x)

for all 𝑧1, 𝑧2 ∈ R.

5.3. Two-phase solution. Case 3. The calculations made for the spectral curve

𝜒2 = (𝜆2 − 𝑎2)(𝜆2 − 𝑏2)(𝜆2 − 𝑐2), 𝑎, 𝑏, 𝑐 ∈ R, (5.6)

give the following formulae

𝐵 =

(︂
2𝑖𝛽1 𝑖𝛽1
𝑖𝛽1 𝑖𝛽2

)︂
, ∆ =

(︂
−𝑖𝛽1
𝑖𝛿2

)︂
, V2𝑗−1 =

(︂
0

𝑖𝑣2𝑗−1

)︂
, V2𝑗 =

(︂
2𝑣2𝑗
𝑣2𝑗

)︂
,

where 𝛽𝑗, 𝛿𝑗, 𝑣𝑗 ∈ R. Therefore,

̃︀𝐵 =

(︂
2𝑖𝛽1 0

0 4𝑖𝛽2 − 2𝑖𝛽1

)︂
, ̃︀𝐴 =

(︂
0 0
0 0

)︂
,

̃︀V2𝑗−1 =

(︂
0

−2𝑖𝑣2𝑗−1

)︂
, ̃︀V2𝑗 =

(︂
2𝑣2𝑗

0

)︂
.
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It is easy to confirm that the corresponding two-dimensional theta function

𝑓𝑠(x) =Θ

(︃
Z + V1𝑥+

∑︁
𝑗>1

V𝑗+1𝑡𝑗 + 𝑠∆

⃒⃒⃒⃒
⃒𝐵
)︃

=𝜃[0; 0](𝑝1|2𝑖𝛽1)𝜃[0; 0](𝑝2|4𝑖𝛽2 − 2𝑖𝛽1) + 𝜃[1/2; 0](𝑝1|2𝑖𝛽1)𝜃[1/2; 0](𝑝2|4𝑖𝛽2 − 2𝑖𝛽1),

where 𝑠 ∈ {−1; 0; 1}, 𝒰(𝒫+
∞) − Z0 ≡ Z = (𝑧1, 𝑧2)

𝑡 ∈ R2,

𝑝1 = 𝑧1 + 2
∑︁
𝑗>1

𝑣2𝑗𝑡2𝑗−1 − 𝑖𝑠𝛽1,

𝑝2 = 𝑧1 − 2𝑧2 − 2𝑖𝑣1𝑥− 2𝑖
∑︁
𝑗>1

𝑣2𝑗+1𝑡2𝑗 − 𝑖𝑠 (𝛽1 + 2𝛿2) ,

admits reductions (5.5). Therefore, solution (2.10) of the equations in AKNS hierarchy con-
structed by curve (5.6) satisfies the reduction

𝑞*(x) = 𝑝( ̂︀𝐽x)

for all 𝑧1, 𝑧2 ∈ R.

5.4. Two-phase solution. Case 4. The calculations made for spectral curve (5.6) give:

𝐵 =

(︂
𝑖𝛽2 𝑖𝛽1
𝑖𝛽1 𝑖𝛽2

)︂
, ∆ =

(︂
1 − 𝛿2
𝛿2

)︂
, V2𝑗−1 =

(︂
−𝑣2𝑗−1

𝑣2𝑗−1

)︂
, V2𝑗 =

(︂
𝑖𝑣2𝑗
𝑖𝑣2𝑗

)︂
,

where 𝛽𝑗, 𝛿𝑗, 𝑣𝑗 ∈ R. Therefore,

̃︀𝐵 =

(︂
2𝑖(𝛽2 + 𝛽1) 0

0 2𝑖(𝛽2 − 𝛽1)

)︂
, ̃︀𝐴 =

(︂
0 0
0 0

)︂
,

̃︀V2𝑗−1 =

(︂
0

−2𝑣2𝑗−1

)︂
, ̃︀V2𝑗 =

(︂
2𝑖𝑣2𝑗

0

)︂
.

It is easy to confirm that the corresponding two-dimensional theta function

𝑓𝑠(x) =Θ

(︃
Z + V1𝑥+

∑︁
𝑗>1

V𝑗+1𝑡𝑗 + 𝑠∆

⃒⃒⃒⃒
⃒𝐵
)︃

=𝜃[0; 0](𝑝1|2𝑖(𝛽2 + 𝛽1))𝜃[0; 0](𝑝2|2𝑖(𝛽2 − 𝛽1))

+ 𝜃[1/2; 0](𝑝1|2𝑖(𝛽2 + 𝛽1))𝜃[1/2; 0](𝑝2|2𝑖(𝛽2 − 𝛽1)),

where 𝑠 ∈ {−1; 0; 1}, 𝒰(𝒫+
∞) − Z0 ≡ 𝑖Z and Z = (𝑧1, 𝑧2)

𝑡 ∈ R2,

𝑝1 = 𝑖𝑧1 + 𝑖𝑧2 + 2𝑖
∑︁
𝑗>1

𝑣2𝑗𝑡2𝑗−1 + 𝑠,

𝑝2 = 𝑖𝑧1 − 𝑖𝑧2 − 2𝑣1𝑥− 2
∑︁
𝑗>1

𝑣2𝑗+1𝑡2𝑗 + 𝑠 (1 − 2𝛿2) ,

admits reductions (5.5). Therefore, solution (2.10) of equations in AKNS hierarchy constructed
by curve (5.6) under the second choice of the basis of cycles also satisfies the reduction

𝑞*(x) = 𝑝( ̂︀𝐽x)

for all 𝑧1, 𝑧2 ∈ R.
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Concluding remarks

To construct solutions for one of nonlocal equations in AKNS hierarchy, we can take an
arbitrary solutions of local equations in the same hierarchy obeying the conditions

𝑝(−𝑥, 0, 0, . . . ) = 𝑝(𝑥, 0, 0, . . . ),

𝑞*(x) = 𝜎𝑝(x), 𝑥, 𝑡𝑘 ∈ R, 𝜎 = ±1.

Then, in particular, the functions

𝑝(𝑥, 𝑡, 𝑖𝑇2, 𝑇3, 𝑖𝑇4, . . . ), 𝑞(𝑥, 𝑡, 𝑖𝑇2, 𝑇3, 𝑖𝑇4, . . . ), 𝑇𝑘 ∈ R

are solutions of 𝒫𝒯 -symmetric nonlinear Schrödinger equation

𝑞*(x) = 𝜎𝑝( ̂︀𝐽x).

We note exactly such conditions are satisfied by rogue waves constructed in works [27], [29].
At the same time, the functions

𝑝(𝑥, 𝑇1, 𝑖𝑇2, 𝑡, 𝑖𝑇4, . . . ), 𝑞(𝑥, 𝑇1, 𝑖𝑇2, 𝑡, 𝑖𝑇4, . . . ), 𝑇𝑘 ∈ R

are solutions of 𝒫𝒯 -symmetric Lakshmanan-Porsezian-Daniel equation.
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