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GENERAL SOLUTIONS OF SOME LINEAR EQUATIONS

WITH VARIABLE COEFFICIENTS

O.V. KAPTSOV, M.M. MIRZAOKHMEDOV

Abstract. In this work we find general solutions to some classes of linear wave equations
with variable coefficients. Such equations describe the oscillations of rods, acoustic waves,
and also some models of gas dynamics are reduced to these equations.

To construct general solutions, we employ special types of Euler-Darboux transforma-
tions, namely, Levi type transformations. These transformations are first order differential
substitutions. For constructing each transformation, we need to solve two linear second or-
der ordinary differential equations. The solutions of one of these equations are determined
by the solutions of the other equations by means of a differential substitution and Liouville
formula. In the general case, it is not easy to solve these ordinary differential equations.
However, it is possible to provide some formula for the superposition of the transformation
of Levy type.

Starting with a classical wave equation with constant coefficients and employing the
found transformations, we can construct infinite series of equations possessing explicit gen-
eral solutions. By means of Matveev method we obtain limiting forms of iterated trans-
formations. We provide a series of particular examples of the equations possessing general
solutions.

Keywords: linear equations with variable coefficients, general solutions, limiting Levi
transformations.
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1. Introduction

The propagation of one-dimensional waves in inhomogeneous media is often described by an
equation of form

𝑣𝑡𝑡 = 𝑎(𝑏𝑣𝑥)𝑥, (1.1)

where 𝑎, 𝑏 are some smooth positive functions of 𝑥. For instance, in the case of sound waves the
function 𝑣 describes a pressure and 𝑎 = 𝜌𝑐2, 𝑏 = 𝜌−1, where 𝜌 is a density, 𝑐 is the sound speed
in the media [1]. If equation (1.1) models longitudinal oscillations of a rod, then 𝑣 describes
the movements of the rod and 𝑎 = 𝐸

𝜌𝜔
, 𝑏 = 𝜔, where 𝐸 is the Young modulus, 𝜌 is a density, 𝜔

is the area of the transversal cross-section of the rod. Apart of these, other models are related
with equation (1.1). For instance, a system describing isentropic gas motion [4] can be reduced
to form (1.1).
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It is interesting to find general solutions to equations (1.1) for non-constant functions 𝑎, 𝑏.
Some examples of such solutions can be found in [5], [3]. The general solution can be employed
for solving the Cauchy problem. For constructing general solutions to some equations of form

𝑢𝑥𝑦 + 𝑎𝑢𝑥 + 𝑏𝑢𝑦 + 𝑐𝑢 = 0,

Laplace introduced the cascade method [2]. On the other hand, Euler [6] proposed to use
differential substitutions for finding general solutions to the equations of form

𝑢𝑡𝑡 = 𝐹𝑢𝑥𝑥 + 𝐺𝑢𝑥 + 𝐻𝑢, (1.2)

where 𝐹 , 𝐺, 𝐻 are functions on 𝑥. Later in the end of XIX and the beginning of XX century,
Darboux [2] and other mathematicians generalized such transformations and applied them to
solving geometric problems. In the last 40 years, the interest in such transformations has
increased essentially in connection with the development of the theory of solitons [11], [12], [8].

In the present work we employ the Euler-Darboux transforms for finding general solutions
to the equations

𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝑔(𝑥)𝑢𝑥 (1.3)

for special classes of the functions 𝑔. It is easy to confirm that by the point transformations,
equation (1.1) is reduced to form (1.3). We find Euler-Darboux transformations mapping
solutions of equation (1.2) into those of equation (1.2) but with another function 𝑔. Starting
with a function 𝑔 = 0, we can obtain infinite series of equations, by means of which we succeed
to find general solutions.

Our work extend the studied initiated in [3] via using more general transformations. More-
over, we construct limiting transformations by employing the ideas of Matveev [11].

2. Euler-Darboux transforms

As it is known [6], Euler found the conditions, under which a first order differential substi-
tution

𝑤 = 𝑀(𝑢𝑥 + 𝑠𝑢)

maps solutions of equation (1.2) into the solutions of the equation

𝑤𝑡𝑡 = 𝐹1𝑤𝑥𝑥 + 𝐺1𝑤𝑥 + 𝐻1𝑤, (2.1)

where 𝑀 , 𝑠, 𝐹1, 𝐺1, 𝐻1 are functions on 𝑥. We provide a slightly modified formulation of this
result from book [3] since it is convenient to employ it in what follows.

Lemma 2.1. Let 𝑢 be a solution of equation (1.2). Then the substitution

𝑤 =
𝑢𝑥 − (lnℎ)𝑥𝑢

𝑟
(2.2)

maps the function 𝑢 into a solution of equation (2.1) if
1) the function ℎ(𝑥) solves the equation

𝐹ℎ′′ + 𝐺ℎ′ + (𝐻 + 𝑐)ℎ = 0, (2.3)

where 𝑟 is an arbitrary smooth function on 𝑥 and 𝑐 is an arbitrary constant;
2) 𝐹1, 𝐺1, 𝐻1 are defined by the formulae

𝐹1 = 𝐹, 𝐺1 = 𝐺 + 𝐹 ′ + 2𝐹 (ln 𝑟)′, 𝐻1 = 𝐻 +
(𝐹𝑟′ + 𝐺𝑟)′

𝑟
+ 𝐹 ′(lnℎ)′ + 2𝐹 (lnℎ)′′. (2.4)
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It is easy to simplify equation (1.1) by a change of an independent variable. Indeed, let
𝑣(𝑡, 𝑥) = 𝑢(𝑡, 𝑦(𝑥)), where 𝑦 = 𝑦(𝑥) is a new variable. Calculating the derivatives 𝑣𝑡𝑡, 𝑣𝑥, 𝑣𝑥𝑥
and substituting them into (1.1), we obtain the equation

𝑢𝑡𝑡 = 𝑎𝑏𝑦′
2
𝑢𝑦𝑦 + (𝑎𝑏𝑦′′ + 𝑎𝑏′𝑦′)𝑢𝑦.

Letting 𝑎𝑏𝑦′2 = 1, we find:

𝑦 =

∫︁
𝑑𝑥√
𝑎𝑏

.

This integral is well-defined since the functions 𝑎, 𝑏 are smooth and positive definite. Hence,
by this change, equation (1.1) is reduced to

𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝐺(𝑥)𝑢𝑥. (2.5)

Proposition 2.1. Substitution (2.2) maps the solutions of equation (2.5) into the solutions
of the equation

𝑤𝑡𝑡 = 𝑤𝑥𝑥 + 𝐺1𝑤𝑥 (2.6)

if the following conditions are satisfied:
1) ℎ(𝑥) satisfies the equation

ℎ′′ + 𝐺ℎ′ + 𝑐ℎ = 0, 𝑐 ∈ R, (2.7)

2)

𝐺1 = 𝐺 + 2
(︁

ln
ℎ′

ℎ

)︁′
, (2.8)

3) the function 𝑟 satisfies the equation

𝑟′′ + 𝐺𝑟′ +
(︀
𝐺′ + 2(lnℎ)′′

)︀
𝑟 = 0. (2.9)

This proposition follows from Lemma 2.1. In order to obtain (2.9), we should let 𝐻1 = 𝐻 = 0
in formula (2.4).

Proposition 2.2. The substitution

𝑟 =
ℎ′

ℎ
(2.10)

maps solutions of equation (2.7) into solutions of equation (2.9). The substitution

𝑤 = 𝑢− ℎ

ℎ′𝑢𝑥 (2.11)

maps the solutions of equation (2.5) into the solutions of equation (2.6).

The proof is made by straightforward substitution of (2.10) into (2.9). At that, one should
take into consideration equation (2.7) and its differential implications.

Remark 2.1. Substitution of type (2.11) is called Levy transform in the theory of conjugate
nets [7]. We observe that knowing a general solution to equation (2.7), we do not get a general
solution to equation (2.9). The general solution is found by a known Liouville formula.

Example 1. Let the function 𝐺 in (2.5) vanishes. Then depending on the choice of the
constant 𝑐, we obtain three types of solutions to equation (2.7):

1) as 𝑐 = 0, the function ℎ is linear, that is,

ℎ = 𝑐1𝑥 + 𝑐2, 𝑐1, 𝑐2 ∈ R;

2) as 𝑐 = −𝑘2 < 0, the solution reads as

ℎ = 𝑐1 exp(𝑘𝑥) + 𝑐2 exp(−𝑘𝑥), 𝑐1, 𝑐2 ∈ R;
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3) as 𝑐 = 𝑘2 > 0, the function ℎ is

ℎ = 𝑐1 sin(𝑘𝑥) + 𝑐2 cos(𝑘𝑥).

Let us consider the first option. In this case the general solution of equation (2.9) reads as

𝑟 =
𝑑1

𝑥 + 𝑏
+ 𝑑2(𝑥 + 𝑏)2, 𝑑1, 𝑑2 ∈ 𝑅, 𝑏 =

𝑐2
𝑐1
.

Hence, according to (2.8), we obtain

𝐺1 =
4𝑚(𝑥 + 𝑏)3 − 2

(𝑥 + 𝑏)(𝑚(𝑥 + 𝑏)3 + 1)
, 𝑚 =

𝑑2
𝑑1

.

Therefore, in accordance with Proposition 2.1, a general solution to equation (2.6) in this case
reads as

𝑤 =
(𝑥 + 𝑏)𝑢𝑥 + 𝑢

𝑑1 + 𝑑2(𝑥 + 𝑏)3
,

where 𝑢 = 𝑋(𝑥 + 𝑡) + 𝑇 (𝑥− 𝑡), and 𝑋, 𝑇 are arbitrary smooth function.
Let us briefly dwell on the second option. In this case two solutions of equation (2.9) are of

the form

𝑟1 = 𝑘
exp(𝑘𝑥) − 𝑏 exp(−𝑘𝑥)

exp(𝑘𝑥) + 𝑏 exp(−𝑘𝑥)
, 𝑟2 =

𝑘𝑥(exp(2𝑘𝑥) − 𝑏) − 2𝑏

exp(2𝑘𝑥) + 𝑏
, 𝑏 =

𝑐2
𝑐1
.

The function 𝐺1 is found by formula (2.8) and as 𝑟 = 𝑟1, it reads as

𝐺1 =
8𝑏𝑘 exp(2𝑘𝑥)

𝑏2 exp(4𝑘𝑥) − 1
.

The general solution of equation (2.6) with this function 𝐺1 is found by means of substitution
(2.2) and it reads as

𝑤 = 𝑋 + 𝑇 − (𝑋 ′ + 𝑇 ′)(exp(𝑘𝑥) + 𝑏 exp(−𝑘𝑥))

𝑘(exp(𝑘𝑥) − 𝑏 exp(−𝑘𝑥))
, (2.12)

where 𝑋(𝑥+ 𝑡), 𝑇 (𝑥− 𝑡) are arbitrary smooth function and the prime stands for the derivative.
It is obvious that as 𝑏 < 0, solution (2.12) is smooth. The third option can be considered in
the same way.

In [3], a lemma was proved on a sequence of transforms of Levy type.

Lemma 2.2. Let ℎ1, . . . , ℎ𝑛 be linearly independent solutions of equation (2.7) corresponding
to parameters 𝑐1, . . . , 𝑐𝑛 and 𝑐𝑖 ̸= 𝑐𝑗 as 𝑖 ̸= 𝑗. Then the transform

𝑧 =
𝑊 (𝑢, ℎ1, . . . , ℎ𝑛)

𝑊 (ℎ′
1, . . . , ℎ

′
𝑛)

, (2.13)

where 𝑊 is the Wronskian, maps the solutions of equation (2.5) into the solutions of equation

𝑧𝑡𝑡 = 𝑧𝑥𝑥 + 𝐺𝑛𝑧𝑥, (2.14)

and the function 𝐺𝑛 is defined by the formula

𝐺𝑛 = 𝐺 + 2
𝑑

𝑑𝑥

(︁
ln

𝑊 (ℎ′
1, . . . , ℎ

′
𝑛)

𝑊 (ℎ1, . . . , ℎ𝑛)

)︁
. (2.15)

In [3], one can find examples concerning this lemma. In work [9], there was studied a Levy
sequence appearing in the theory of conjugate nets.
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3. Limiting transformations and examples

It was assumed in Lemma 2.2 on sequence of Levy type transformations that the functions
ℎ𝑖 correspond to mutually different parameters 𝑐𝑖. Here we consider the case of coinciding
parameters. Below we shall sometimes employ notations 𝜕𝑥, 𝜕𝑘 for the operators of differenti-
ation with respect to 𝑥 and 𝑘, respectively. We shall also employ standard notations for the
derivatives.

Lemma 3.1. Let ℎ(𝑥, 𝑘) be a solution of the equation

ℎ′′ + 𝑔ℎ′ − 𝑘2ℎ = 0, (3.1)

where 𝑔 is a smooth function on 𝑥, 𝑘 ∈ R. Then the transformation

𝑧 =
𝑊 (𝑢, ℎ, 𝜕𝑘ℎ, . . . , 𝜕

𝑚
𝑘 ℎ)

𝑊 (𝜕𝑥ℎ, 𝜕𝑘𝜕𝑥ℎ, . . . , 𝜕𝑚
𝑘 𝜕𝑥ℎ)

(3.2)

maps the solutions of the equation

𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝑔𝑢𝑥 (3.3)

into the solutions of the equation

𝑧𝑡𝑡 = 𝑧𝑥𝑥 + 𝑔𝑚+1𝑧𝑥, (3.4)

where the function 𝑔𝑚+1 is given by the formula

𝑔𝑚+1 = 𝑔 + 2𝜕𝑥

(︁
ln

𝑊 (𝜕𝑥ℎ, 𝜕𝑘𝜕𝑥ℎ, . . . , 𝜕
𝑚
𝑘 𝜕𝑥ℎ)

𝑊 (ℎ, 𝜕𝑘ℎ, . . . , 𝜕𝑚
𝑘 ℎ)

)︁
. (3.5)

Proof. In our arguging, we shall employ the ideas of work by Matveev [10]. For simplicity, we
consider the case 𝑚 = 1. Let ℎ(𝑥, 𝑘) be a solution of equation (3.1). We introduce the notations
ℎ1 = ℎ(𝑥, 𝑘1), ℎ

2 = ℎ(𝑥, 𝑘2). According Taylor formula, we have

ℎ2 = ℎ1 + 𝜀𝜕𝑘ℎ
1 + 𝑜(𝜀),

where 𝜀 = 𝑘2 − 𝑘1 and 𝑜(𝜀) is the Landau symbol.
We are going to pass to the limit 𝜀 → 0 in formulae (2.13), (2.15). The Wronskian

𝑊 (𝑢, ℎ1, ℎ2) is written as follows:

𝑊 (𝑢, ℎ1, ℎ2) =

⃒⃒⃒⃒
⃒⃒ 𝑢 ℎ1 ℎ1 + 𝜀𝜕𝑘ℎ

1 + 𝑜(𝜀)
𝑢𝑥 ℎ1

𝑥 ℎ1
𝑥 + 𝜀𝜕𝑘ℎ

1
𝑥 + 𝑜𝑥(𝜀)

𝑢𝑥𝑥 ℎ1
𝑥𝑥 ℎ1

𝑥𝑥 + 𝜀𝜕𝑘ℎ
1
𝑥𝑥 + 𝑜𝑥𝑥(𝜀)

⃒⃒⃒⃒
⃒⃒ = 𝜀

⃒⃒⃒⃒
⃒⃒ 𝑢 ℎ1 𝜕𝑘ℎ

1 + 𝑜
𝑢𝑥 ℎ1

𝑥 𝜕𝑘ℎ
1
𝑥 + 𝑜𝑥

𝑢𝑥𝑥 ℎ1
𝑥𝑥 𝜕𝑘ℎ

1
𝑥𝑥 + 𝑜𝑥𝑥

⃒⃒⃒⃒
⃒⃒

= 𝜀𝑊 (𝑢, ℎ1, 𝜕𝑘ℎ
1 + 𝑜(𝜀)).

In the same way we obtain the formula

𝑊 (ℎ1
𝑥, ℎ

2
𝑥) = 𝜀𝑊 (𝜕𝑥ℎ

1, 𝜕𝑘𝜕𝑥ℎ
1 + 𝑜(𝜀)).

Hence, we have

lim
𝜀→0

𝑊 (𝑢, ℎ1, ℎ2)

𝑊 (ℎ1
𝑥, ℎ

2
𝑥)

=
𝑊 (𝑢, ℎ1, 𝜕𝑘ℎ

1)

𝑊 (𝜕𝑥ℎ1, 𝜕𝑘𝜕𝑥ℎ1)
.

In the same way, by formula (2.15) we obtain expression (3.5). The validity of the lemma as
𝑚 = 1 can be also confirmed straightforwardly. The proof is complete.

Remark 3.1. We can also obtain a more general statement than Lemma 3.1, as a similar
statement in [10]. It corresponds to the case when not all constants 𝑐𝑖 in Lemma 2.2 coincide.
The arguing are generally the same but the formulae become more bulky.
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Example 2. Let 𝑔 = 0, 𝑘 ̸= 0, 𝑚 = 1. Then a solution of equation (3.1) reads as

ℎ = 𝑎1 sinh(𝑘𝑥) + 𝑎2 cosh(𝑘𝑥). (3.6)

To simplify the formulae we assume that 𝑎2 = 0. Then, according (3.5), the function 𝑔2 is

𝑔2 = −2𝑘(4𝑘𝑥 cosh2(𝑘𝑥) − sinh(2𝑘𝑥) − 2𝑘𝑥)

cosh2(𝑘𝑥) sinh2(𝑘𝑥) − 𝑘2𝑥2
. (3.7)

The general solution of equation (3.4) reads as

𝑧 =
(cosh(𝑘𝑥) sinh(𝑘𝑥) − 𝑘𝑥)𝑔′′ + (−2𝑘 cosh2(𝑘𝑥) + 2𝑘)𝑔′ + · · · + 𝑘(𝑘2𝑥𝑓 − 𝑥𝑓 ′′ + 2𝑓 ′)

𝑘2(cosh(𝑘𝑥) sinh(𝑘𝑥) + 𝑘𝑥)
. (3.8)

Here 𝑓(𝑥 + 𝑡), 𝑔(𝑥 − 𝑡) are arbitrary smooth functions. In formula (3.7) and in solution (3.8)
we can pass to the limit as 𝑘 → 0. Then

𝑔2 −−→
𝑘→0

𝑔2 = −4

𝑥
, 𝑧 −−→

𝑘→0
𝑧 =

1

3
(𝑓 ′′ + 𝑔′′)𝑥2 − (𝑓 ′ + 𝑔′)𝑥 + 𝑓 + 𝑔.

Let 𝑚 = 2. In this case the expressions for 𝑔3 and 𝑧 are rather cumbersome but they can be
easily found by means of computer algebra. However, if we pass to the limit as 𝑘 → 0 in the
formulae for 𝑔3 and 𝑧, then we obtain:

𝑔3 = −6

𝑥
, 𝑧 = − 1

15
(𝑓 ′′′ + 𝑔′′′)𝑥3 +

2

5
(𝑓 ′′ + 𝑔′′)𝑥2 − (𝑓 ′ + 𝑔′)𝑥 + 𝑓 + 𝑔.

It is also possible to make the inverse passing from equation (1.3) to equation (1.1) by
transforming the independent variable. Indeed, let 𝑢(𝑡, 𝑥) = 𝑣(𝑡, 𝑦(𝑥)). Then we substitute the
derivatives

𝑢𝑡𝑡 = 𝑣𝑡𝑡, 𝑢𝑥 = 𝑦′𝑣𝑦, 𝑢𝑥𝑥 = 𝑦′
2
𝑣𝑦𝑦 + 𝑦′′𝑣𝑦

into (1.3) and we obtain

𝑣𝑡𝑡 = 𝑦′
2
𝑣𝑦𝑦 +

(︁
𝑦′′ + 𝑔𝑦′

)︁
𝑣𝑦.

Comparing with (1.1), we arrive at the system

𝑎𝑏 = 𝑦′
2
, 𝑎𝑏𝑦 = 𝑦′′ + 𝑔𝑦′, (3.9)

where 𝑎, 𝑏 are functions on 𝑦 and 𝑔 is a function of 𝑥. Expressing 𝑎 from the first equation in
(3.9) and substituting it into the second equation, we obtain:

𝑏𝑦
𝑏

=
𝑦′′ + 𝑔𝑦′

𝑦′2
. (3.10)

If we choose functions 𝑦(𝑥), 𝑔(𝑥) and then express the right hand side of (3.10) via 𝑦, we obtain
a linear second order differential equation for the function 𝑏. Solving it, we find 𝑏 and then
𝑎(𝑦).

Example 3. Let 𝑔 = − 2
𝑥
, 𝑦 = coth(𝑥). Then the equation for the function 𝑏

𝑏𝑦 =
2(2 coth2(𝑦) − 1)

coth(𝑦)
𝑏

has a solution

𝑏 = 𝐴
sinh4(𝑦)

cosh2(𝑦)
, 𝐴 ∈ R.

Therefore, the function 𝑎 is of the form

𝑎 =
cosh2(𝑦)

𝐴
.
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As it has been mentioned above, the general solution of the equation

𝑢𝑡𝑡 = 𝑢𝑥𝑥 −
2

𝑥
𝑢𝑥

is written in the form

𝑢 = 𝑥𝑉𝑥 − 𝑉,

where 𝑉 = 𝑓1(𝑥+ 𝑡) + 𝑓2(𝑥− 𝑡) and 𝑓1, 𝑓2 are arbitrary smooth functions. Therefore, a general
solution of the equation

𝑣𝑡𝑡 = cosh2(𝑦)
(︁ sinh4(𝑦)

cosh2(𝑦)
𝑣𝑦

)︁
𝑦

is of the form

𝑣 = coth(𝑦)
(︀
𝑓 ′
1(coth(𝑦) + 𝑡) + 𝑓 ′

2(coth(𝑦) − 𝑡)
)︀
−
(︁
𝑓1(coth(𝑦) + 𝑡) + 𝑓2(coth(𝑦) − 𝑡)

)︁
.

Example 4. Let 𝑔 = 2
𝑥
, 𝑦 = coth(𝑥). Then the equation for the function 𝑏

𝑏𝑦 =
2𝑏

coth(𝑦)
,

has a solution

𝑏 =
cosh2(𝑦)

𝐴
, 𝐴 ∈ R.

Therefore, the function 𝑎 reads as

𝑎 = 𝐴
sinh4(𝑦)

cosh2(𝑦)
.

As it has been mentioned above, the general solution of the equation

𝑢𝑡𝑡 = 𝑢𝑥𝑥 +
2

𝑥
𝑢𝑥

is written in the form

𝑢 =
𝑓1(𝑥 + 𝑡) + 𝑓2(𝑥− 𝑡)

𝑥
,

where 𝑓1, 𝑓2 are arbitrary smooth functions. Therefore, the general solution of the equation

𝑣𝑡𝑡 =
sinh4(𝑦)

cosh2(𝑦)

(︁
cosh2(𝑦)𝑣𝑦

)︁
𝑦

reads as

𝑣 =
𝑓1(coth(𝑦) + 𝑡) + 𝑓2(coth(𝑦) − 𝑡)

coth](𝑦)
.

Example 5. Let 𝑔 = 2
sinh(𝑥)

, 𝑦 = exp(𝑥). Then the function 𝑏 reads as

𝑏 = 𝐴
𝑦(𝑦 − 1)2

(𝑦 + 1)2
, (3.11)

where 𝐴 is an arbitrary constant. In this case the function 𝑎 is given by the formula

𝑎 =
𝑦(𝑦 + 1)2

𝐴(𝑦 − 1)2
. (3.12)

The general solution (1.3) with this function 𝑔 is given by formula (2.12). Substituting 𝑥 = ln 𝑦
and the found values of 𝑎, 𝑏, we obtain a general solution of equation (1.1) with functions (3.11),
(3.12).



40 O.V. KAPTSOV, M.M. MIRZAOKHMEDOV

BIBLIOGRAPHY

1. L.M. Brekhovskikh. Waves in layered media. Nauka, Moscow (1973). [Academic Press, New York
(1980).]

2. G. Darboux. Lectures on general theory of surfaces. V. 2. Inst. Comp. Stud., Moscow (2013).
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