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RELATIONS BETWEEN LENGTH AND INSTABILITY OF

TUBULAR EXTREMAL SURFACES

N.M. POLUBOYAROVA

Abstract. In the paper we study surfaces being extremals of the potential energy func-
tional. In our case, the potential energy is the sum of two functionals, one being a functional
of the area type, and the other being a functional of the volume density of forces. Extremal
surfaces are stable if the second variation of the functional is sign-definite, otherwise they
are unstable. In order to obtain the instability, we impose additional conditions on the
surface and integrands, then we apply the properties of positive definite symmetric ma-
trices, employ the Kronrod-Federer formula, the Cauchy-Bunyakovsky inequality, and the
Weingarten homomorphism estimate. This allows us to estimate the second variation of
the functional. Such technique, being a developing of an approach proposed by V.A. Kly-
achin, allows us to obtain conditions ensuring the instability. We establish that the length
of the tubular extremal surface can be estimated in terms of the minimal and maximal
(𝑛 − 1)-dimensional measure of the cross-sections of the surface by hyperplanes. The ob-
tained statement means that too long tubes with a non-zero mean curvature are unstable.
The physical aspects of this phenomenon were considered in a work by V.A. Saranin.

Keywords: variation of a functional, extremal surface, area-type functional, volume den-
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1. Introduction

The studies presented in this paper can be regarded as some generalizations of issues on sta-
bility and instability of minimal surfaces. The problem of stability of submanifolds of zero mean
curvature in Riemannian manifolds was studied rather deeply. For instance, works by J.L. Bar-
bosa and M.P. do Carmo, B. Lawson, A.V. Pogorelov, J. Simons, A.A. Tuzhilin, A.T. Fomenko
and others were devoted to this problem. The study of a similar problem for pseudo-Riemannian
manifolds was initiated rather recently, but there are already interesting approaches and results.
J.L. Barbosa and M.P. do Carmo showed that an oriented minimal surface in R3, for which
the area of the image under the Gauss mapping is less than 2𝜋, is stable. M.P. do Carmo and
C.K. Peng provided a generalization of the Bernstein problem in terms of stability: a plane
is the only complete stable minimal surface in R3, while in the Lobachevskii space there exist
one-parametric families of such surfaces. In work by A.A. Tuzhilin such families are described
in details by means of the notion of “index”, while the index of minimal revolution surfaces in
Lobachevskii space is studied by the method of Fourier series. Since the definitions of stability
of minimal surfaces given by various authors differ, we specify the terminology we use.
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The minimal surfaces are the extremals of the area functional and their stability is defined as
a positive definiteness of the second variation of this area functional. If one considers surfaces
having some density and being under external forces, the functional changes. As examples of
such surfaces physical equilibrium liquids in a gravitational field with a potential [1] or awning
covers. From the physical point of view, the stability of the mechanical system means a positive
definiteness of the second variation of the potential energy of the system.

In our case the potential energy is described by the sum of two functionals, one being an
area-type functional, while the other is the functional of force volume density. To obtain the
formulae for the first and second variations of the potential energy function we employ the
method proposed in [2]. Its matter is that the surface is deformed along unit normals by means
of a perturbing function with a compact support on the surface. We apply this method for the
hypersurfaces obtained by embedding the manifold in R𝑛+1. Earlier, this method was used for
the surfaces of zero mean curvature in curved Lorentz products in paper [3] by V.A. Klyachin
and V.M. Miklyukov as well as for the surfaces of a prescribed mean curvature in work [4] by
V.A. Klyachin. As a visualization of this method, we can suggest the picture of magnetic liquid
in a field with a potential provided in [5].

Once we obtain the second variation of the potential energy functional, we note that subject
to the sign-definiteness of the matrix of the second derivatives of the integrand in the area
type functional, one needs to consider the problem on either minimum or maximum of the
functional. Examples were given in [6]. In this work we consider positive definite matrices.

Studying the stability and instability of the extremals of the potential energy, we employ var-
ious methods: capacity technique, mapping with a bounded distortion, surfaces of 𝐺-parabolic
type. In the present work we apply the method of sectioning the surfaces by special planes
and for estimating the length of the tube, we employ the quotient of the maximal and mini-
mal measures of the sections of the surface. For instance, in work [5] by V.A. Saranin it was
experimentally proved that a liquid cylinder is unstable if its height is greater than the length
of the base. V.A. Klyachin in [4] stated that too lengthy tube of constant mean curvature
are unstable. On the base of these works, there was proposed a conjecture that a too lengthy
extremal tubular surface is also unstable. This conjecture is proved in the present work.

The results of the present work were announced on the International Conference “Complex
Analysis and Geometry” in Ufa [8].

2. Functional and its variations

Let 𝑀 be an 𝑛-dimensional connected oriented manifold of class 𝐶2. We consider an oriented
hypersurface ℳ = (𝑀,𝑢) obtained by 𝐶2-immersion 𝑢 : 𝑀 → R𝑛+1. Let 𝒩 ⊂ R𝑛+1 be some
domain such that ℳ ⊂ 𝜕𝒩 and Φ, Ψ: R𝑛+1 → R be 𝐶2-smooth functions. If 𝜉 is a field of unit
normals on the surface ℳ, then for each 𝐶2-smooth surface ℳ a potential energy functional
is well-defined

𝑊 (ℳ) =

∫︁
ℳ

Φ(𝜉) 𝑑ℳ +

∫︁
𝒩

Ψ(𝑥) 𝑑𝑥 (2.1)

independent on the choice of the normal 𝜉.
On the surface ℳ, a Riemannian metrics and an associated scalar product of tangential

vectors are induced; we shall denote the latter scalar product as the scalar product in R𝑛+1

by ⟨·, ·⟩. The symbols ∇ and ∇ stand for the Riemmanian connectivities in R𝑛+1 and ℳ,
repspectively. The following relations are known [10]

∇ℎ = (∇ℎ)𝑇 , ∇𝑋𝑌 = (∇𝑋𝑌 )𝑇
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to hold for arbitrary 𝐶1-smooth functions ℎ : R𝑛+1 → R and for 𝐶1-smooth vector
fields 𝑋 and 𝑌 tangential to ℳ. By the symbol 𝑣𝑇 we denote an orthogonal projec-
tion of the vector 𝑣 on the tangential plane 𝑇𝑚ℳ to the surface ℳ at a correspond-
ing point 𝑚 ∈ ℳ. Then the divergence of the vector field 𝑋, as a section of tangen-
tial bundle of the surface ℳ is determined as a trace of linear mapping 𝐸 → ∇𝐸𝑋
[9, Ch. VI, Sect. 4]. Choosing an orthonormalized basis {𝑍𝑖}𝑛𝑖=1 in the tangential space
𝑇𝑚ℳ, according [9, Ch. VI, Sect. 5], the divergence of a vector field 𝑋 can be written as

div𝑋 =
𝑛∑︁

𝑖=1

⟨∇𝑍𝑖
𝑋,𝑍𝑖⟩.

Let 𝑚 ∈ ℳ and let in some neighbourhood of a point 𝑢(𝑚) smooth vector fields 𝑋 and 𝑌
be defined. Then a bilinear form

𝐵(𝑋(𝑚), 𝑌 (𝑚)) = (∇𝑋𝑌 )(𝑢(𝑚)) − (∇𝑋𝑌 )𝑇 (𝑢(𝑚))

is called a second fundamental form of the surface ℳ, see [10]. The form 𝐵(𝑋, 𝑌 ) is symmetric
[10, Ch. VI, Sect. 3]. For a chosen orthonormalized basis in the tangential space 𝑇𝑚ℳ to the
surface ℳ at a point 𝑢(𝑚), the vector

�⃗�(𝑚) =
1

𝑛
tr𝐵 =

1

𝑛

𝑛∑︁
𝑖=1

𝐵(𝑍𝑖, 𝑍𝑖)

is called mean curvature normal [10, Ch. VII, Sect. 5] of surface ℳ at the point 𝑢(𝑚).
Let 𝑉 be 𝐶2-vector field defined in a neighbourhood of the surface ℳ such that 𝑉 |ℳ = ℎ · 𝜉,

where ℎ ∈ 𝐶1
0(ℳ), and 𝜉 be the field of unit normals to the surface and at that it is assumed

that the integral curves of the field 𝑉 are located on straight lines and along these lines the
identity |𝑉 | = const holds.

It is clear that if the surface ℳ is immersed, then each vector field 𝑉 = ℎ · 𝜉 defined along
ℳ can be continued into some neighbourhood ℳ so that the aforementioned conditions are
satisfied. We note that according work [2], the second variation is independent of the choice of
continuation.

Let 𝑈(ℳ) be a neighbourhood of the surface ℳ, in which the field 𝑉 is defined and 𝑔𝑡(𝑥) :
𝑈(ℳ) → R𝑛+1 be a one-parametric group of local diffeomorphisms generated by the vector
field 𝑉 . That is, 𝑔𝑡(𝑥) is a solution to the Cauchy problem:

𝑑𝑔𝑡(𝑥)

𝑑𝑡
= 𝑉 (𝑔𝑡(𝑥)), 𝑔𝑡(𝑥)|𝑡=0 = 𝑥.

We let ℳ𝑡 = 𝑔𝑡(ℳ) and 𝒩𝑡 = 𝑔𝑡(𝒩 ). It is clear that ℳ0 = ℳ, 𝒩0 = 𝒩 .

Definition 2.1. A surface ℳ is extremal if the second variation of functional (2.1) vanishes
for all infinitesimal deformations of the surface ℳ, that is,

𝑑𝑊 (𝑡)

𝑑𝑡

⃒⃒⃒⃒
𝑡=0

=
𝑑

𝑑𝑡

⎛⎝∫︁
ℳ𝑡

Φ(𝜉) 𝑑ℳ𝑡 +

∫︁
𝒩𝑡

Ψ(𝑥) 𝑑𝑥

⎞⎠⃒⃒⃒⃒⃒⃒
𝑡=0

= 0.

Definition 2.2. An extremal surface ℳ is stable if the second variation of functional (2.1)
is sign-definite for all infinitesimal deformations of the surface ℳ, otherwise it is unstable.

Definition 2.3. A surface ℳ is tubular [7] if there exist two numbers −∞ 6 𝑎 < 𝑏 6 +∞
such that for each hyperplane

Π𝑡 = {𝑥 ∈ R𝑛+1 : 𝑥𝑛+1 = 𝑡}



80 N.M. POLUBOYAROVA

orthogonal to the vector 𝑒𝑛+1 ∈ R𝑛+1, the section Σ(𝑡) = ℳ∩Π𝑡 is non-empty for all 𝑡 ∈ (𝑎; 𝑏)
and each portion between two hyperplanes Π𝑡1 and Π𝑡2 for 𝑎 < 𝑡1 < 𝑡2 < 𝑏 is a compact set.

The surface ℳ is totally tubular if 𝑎 = −∞ and 𝑏 = +∞. The simplest example of totally
tubular surface in R3 is catenoid.

The elements of the matrices 𝐺 are of form

𝐺𝑖𝑗 =
𝜕2Φ

𝜕𝜉𝑖𝜕𝜉𝑗
+ 𝛿𝑖𝑗(Φ − ⟨𝐷Φ, 𝜉⟩), (2.2)

where 𝐷Φ =

(︂
𝜕Φ

𝜕𝜉1
,
𝜕Φ

𝜕𝜉2
, . . . ,

𝜕Φ

𝜕𝜉𝑛+1

)︂
, where 𝛿𝑖𝑗 is the Kronecker delta.

We shall employ the following notations: 𝑘𝑖 are the principal curvature, 𝐸𝑖 are principal
directions of a surface, div is the divergence in the metrics of a surface ℳ, and 𝐻 = ⟨�⃗�, 𝜉⟩ is
the mean curvature of a surface ℳ with respect to the normal 𝜉.

Then the following theorem on variations of the potential energy functional hold.

Theorem 2.1. If 𝑊 (𝑡) = 𝑊 (ℳ𝑡), then

𝑊 ′(0) =

∫︁
ℳ

(div(𝐷Φ(𝜉))𝑇 − 𝑛𝐻Φ(𝜉) + Ψ(𝑥))ℎ(𝑥) 𝑑ℳ. (2.3)

Moreover, if 𝑊 ′(0) = 0 for each function ℎ(𝑥) ∈ 𝐶1
0(ℳ), then the identity holds:

𝑊 ′′(0) =

∫︁
ℳ

{︃
𝐺(∇ℎ,∇ℎ) + ℎ2

(︃
⟨∇Ψ(𝑥), 𝜉⟩ −

𝑛∑︁
𝑖=1

𝑘2
𝑖𝐺(𝐸𝑖, 𝐸𝑖)

)︃}︃
𝑑ℳ, (2.4)

where 𝐺 is a quadratic form associated with matrix (2.2).

Formula (2.3) for the first variation of functional (2.1) was proved in [11], while formula (2.4)
for the second variation was established in work [12].

3. Theorem on instability of tubular surfaces

Hereafter we assume that the matrix 𝐺 in (2.2) is positive definite, 𝜆(𝜉) and Λ(𝜉) are the
eigenvalues of the matrix 𝐺 with the minimal and maximal absolute values.

In order to prove the theorem on instability, we shall employ an extremal property of eigen-
values of positive definite matrices [13]. In the general case we have

𝜆(𝜉)|𝜂|2 6 𝐺(𝜂, 𝜂) 6 Λ(𝜉)|𝜂|2,

for all vectors 𝜉, 𝜂 ∈ R𝑛+1, where the matrix 𝐺 is evaluated at the point 𝜉. In particular, this
implies

𝜆(𝜉)|∇ℎ|2 6 𝐺(∇ℎ,∇ℎ) 6 Λ(𝜉)|∇ℎ|2, (3.1)

and

𝜆(𝜉) 6 𝐺(𝐸𝑖, 𝐸𝑖) 6 Λ(𝜉), (3.2)

since |𝐸𝑖|2 = 1.
Assume that along the surface the condition⟨︀

∇Ψ, 𝜉
⟩︀
6 0 (3.3)

holds. In fact, it relates the loads on the surface from outside and inside. The author does not
know the interpretation of this condition in application and it is needed exclusively because of
features of the method of proving, similar to work [4].
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Let 𝐿min, 𝐿max be the minimal and maximal (𝑛− 1)-dimensional measures of the section of
surface ℳ by the planes of form {𝑥 : 𝑥𝑛+1 = 𝑐𝑜𝑛𝑠𝑡} and

Λ2 = max
ℳ

Λ(𝜉), 𝜆2 = min
ℳ

𝜆(𝜉), 𝐻min = min
ℳ

|𝐻|.

The following theorem holds.

Theorem 3.1. Let ℳ be an immersed tubular surface extremal for functional (1), with
mean curvature 𝐻min ̸= 0 in R𝑛+1, along which the inequality

⟨︀
∇Ψ, 𝜉

⟩︀
6 0 holds and the edge

of the surface is located in the parallel planes 𝛼1 and 𝛼2 defined by the equations 𝑥𝑛+1 = 𝑎 and
𝑥𝑛+1 = 𝑏, respectively. If the distance between these planes satisfies the inequality

𝑏− 𝑎 >
2𝜋Λ𝐿𝑚𝑎𝑥√
𝑛𝐻min𝜆𝐿𝑚𝑖𝑛

,

then the surface ℳ is unstable.

Remark 3.1. A similar theorem for the surfaces of constant mean curvature was proved by
V.A. Klyachin in [4].

Proof. In order to prove the instability of a surface, it is sufficient to find a function ℎ : ℳ → R,
for which the second variation of the functional is negative as it is required by the definition of
the instability; we recall that we consider only positive definite matrices 𝐺. Since expression
(2.4) for the second variation holds for each function ℎ ∈ 𝐶1

0(ℳ), for the sake of brevity it is
necessary to clarify that a condition for the function ℎ(𝑥) is chosen by the identities

ℎ(𝑥)|𝜕ℳ = 0,

∫︁
ℳ

ℎ(𝑥) 𝑑ℳ = 0 (3.4)

for the cases of non-empty and empty boundary of the surface ℳ, respectively. Let us estimate
the second variation taking into consideration the conditions (3.1), (3.2), (3.3) and ‖𝐴‖2 =
𝑛∑︀

𝑖=1

𝑘2
𝑖 . We have:

𝐼(ℎ) =

∫︁
ℳ

(︃
𝐺(∇ℎ,∇ℎ) + ℎ2(

⟨︀
∇Ψ, 𝜉

⟩︀
−

𝑛∑︁
𝑖=1

𝑘2
𝑖𝐺(𝐸𝑖, 𝐸𝑖))

)︃
𝑑ℳ

6
∫︁
ℳ

(︃
𝐺(∇ℎ,∇ℎ) − ℎ2

𝑛∑︁
𝑖=1

𝑘2
𝑖𝐺(𝐸𝑖, 𝐸𝑖)

)︃
𝑑ℳ 6

∫︁
ℳ

(︀
Λ(𝜉)|∇ℎ|2 − ℎ2𝜆(𝜉)‖𝐴‖2

)︀
𝑑ℳ.

Let

Σ(𝑡) =
{︀
𝑥 ∈ ℳ : 𝑓(𝑥) = 𝑡

}︀
= ℳ

⋂︁{︀
𝑥 : 𝑥𝑛+1 = 𝑡

}︀
, 𝑓(𝑥) = 𝑥𝑛+1.

We seek a needed function ℎ as ℎ = ℎ(𝑓(𝑥)).
According Kronrod-Federer formula [14, Thm. 3.2.12], inequality ‖𝐴‖2 > 𝑛𝐻2

min and the
introduced notations Λ2 = maxℳ Λ(𝜉), 𝜆2 = minℳ 𝜆(𝜉), we have

𝐼(ℎ) 6
∫︁
ℳ

(︀
Λ(𝜉)|∇ℎ|2 − ℎ2𝜆(𝜉)‖𝐴‖2

)︀
𝑑ℳ

6Λ2

𝑏∫︁
𝑎

(ℎ′)2(𝜏)

∫︁
Σ(𝜏)

|∇𝑓 |𝑑Σ(𝜏)𝑑𝜏 − 𝑛𝐻2
min𝜆

2

𝑏∫︁
𝑎

ℎ2(𝜏)

∫︁
Σ(𝜏)

1

|∇𝑓 |
𝑑Σ(𝜏)𝑑𝜏.
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We introduce shorthand notations

𝜂(𝜏) =

∫︁
Σ(𝜏)

|∇𝑓 | 𝑑Σ(𝜏), 𝜈(𝜏) =

∫︁
Σ(𝜏)

1

|∇𝑓 |
𝑑Σ(𝜏)

and 𝑑Σ(𝑡) is the area element of the section Σ(𝑡). Then inequality becomes

𝐼(ℎ) 6 Λ2

𝑏∫︁
𝑎

(ℎ′)2(𝜏)𝜂(𝜏)𝑑𝜏 − 𝑛𝐻2
min𝜆

2

𝑏∫︁
𝑎

ℎ2(𝜏)𝜈(𝜏)𝑑𝜏.

We let

ℎ(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
sin

(︂
2𝜋𝜎

𝜎0

)︂
, 0 6 𝜎 <

𝜎0

2
,

𝜇 sin

(︂
2𝜋𝜎

𝜎0

)︂
,

𝜎0

2
6 𝜎 6 𝜎0,

where

𝜎(𝑡) =

𝑡∫︁
𝑎

𝑑𝜏

𝜂(𝜏)
, 𝜎0 =

𝑏∫︁
𝑎

𝑑𝜏

𝜂(𝜏)
,

𝜇 is a positive constant, which is chosen in view of (3.4):

∫︁
ℳ

ℎ(𝑥) 𝑑ℳ =

𝑏∫︁
𝑎

ℎ(𝜏)𝜈(𝜏) 𝑑𝜏 = 0.

The existence of such constant is obvious by construction of the function ℎ(𝑡).
We find the derivatives:

ℎ′(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
2𝜋

𝜎0

cos

(︂
2𝜋𝜎

𝜎0

)︂
𝜎′(𝑡) =

2𝜋

𝜎0

cos

(︂
2𝜋𝜎

𝜎0

)︂
1

𝜂(𝑡)
, 0 6 𝜎 <

𝜎0

2
,

𝜇
2𝜋

𝜎0

cos

(︂
2𝜋𝜎

𝜎0

)︂
𝜎′(𝑡) = 𝜇

2𝜋

𝜎0

cos

(︂
2𝜋𝜎

𝜎0

)︂
1

𝜂(𝑡)
,

𝜎0

2
6 𝜎 6 𝜎0.

Under the change of variable 𝑑𝜎(𝑡) = 𝑑𝑡/𝜂(𝑡), the inequality becomes:

𝐼(ℎ) 6

(︂
2𝜋

𝜎0

)︂2

Λ2

𝜎0
2∫︁

0

cos2
(︂

2𝜋𝜎

𝜎0

)︂
𝑑𝜎 − 𝑛𝐻2

min𝜆
2

𝜎0
2∫︁

0

sin2

(︂
2𝜋𝜎

𝜎0

)︂
𝜈(𝜏(𝜎))𝜂(𝜏(𝜎)) 𝑑𝜎

+ 𝜇2

(︂
2𝜋

𝜎0

)︂2

Λ2

𝜎0∫︁
𝜎0
2

cos2
(︂

2𝜋𝜎

𝜎0

)︂
𝑑𝜎 − 𝜇2𝑛𝐻2

min𝜆
2

𝜎0∫︁
𝜎0
2

sin2

(︂
2𝜋𝜎

𝜎0

)︂
𝜈(𝜏(𝜎))𝜂(𝜏(𝜎)) 𝑑𝜎.

By the Cauchy-Schwarz inequality, the (𝑛 − 1)-dimensional area 𝐿(𝑡) of section Σ(𝑡) can be
estimated as

𝐿(𝑡) =

∫︁
Σ(𝑡)

𝑑Σ(𝑡) 6

⎛⎜⎝ ∫︁
Σ(𝜏)

|∇𝑓 |𝑑Σ(𝜏)

⎞⎟⎠
1
2
⎛⎜⎝ ∫︁
Σ(𝜏)

1

|∇𝑓 |
𝑑Σ(𝜏)

⎞⎟⎠
1
2

=
√︀

𝜂(𝑡)𝜈(𝑡).
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This is why, letting 𝐿max = max[𝑎,𝑏] 𝐿(𝑡), 𝐿min = min[𝑎,𝑏] 𝐿(𝑡), we get:

𝐼(ℎ) 6

(︂
2𝜋

𝜎0

)︂2

Λ2

𝜎0
2∫︁

0

cos2
(︂

2𝜋𝜎

𝜎0

)︂
𝑑𝜎 − 𝐿2

min𝑛𝐻
2
min𝜆

2

𝜎0
2∫︁

0

sin2

(︂
2𝜋𝜎

𝜎0

)︂
𝑑𝜎

+ 𝜇2

(︂
2𝜋

𝜎0

)︂2

Λ2

𝜎0∫︁
𝜎0
2

cos2
(︂

2𝜋𝜎

𝜎0

)︂
𝑑𝜎 − 𝐿2

min𝜇
2𝑛𝐻2

min𝜆
2

𝜎0∫︁
𝜎0
2

sin2

(︂
2𝜋𝜎

𝜎0

)︂
𝑑𝜎.

Calculating the integrals, we obtain that they are equal to

𝜎0
2∫︁

0

cos2
(︂

2𝜋𝜎

𝜎0

)︂
𝑑𝜎 =

𝜎0

4
,

𝜎0∫︁
𝜎0
2

cos2
(︂

2𝜋𝜎

𝜎0

)︂
𝑑𝜎 =

𝜎0

4
,

𝜎0
2∫︁

0

sin2

(︂
2𝜋𝜎

𝜎0

)︂
𝑑𝜎 =

𝜎0

4
,

𝜎0∫︁
𝜎0
2

sin2

(︂
2𝜋𝜎

𝜎0

)︂
𝑑𝜎 =

𝜎0

4
,

and this is the inequality casts into the form:

𝐼(ℎ) 6
𝜎0

4
(1 + 𝜇2)

(︃(︂
2𝜋

𝜎0

)︂2

Λ2 − 𝑛𝐻2
min𝐿

2
min𝜆

2

)︃
.

Recalling that

𝜎0 =

𝑏∫︁
𝑎

𝑑𝑡

𝜂(𝑡)
>

𝑏∫︁
𝑎

𝑑𝑡

𝐿(𝑡)
>

𝑏− 𝑎

𝐿max

,

we finally get:

𝐼(ℎ) 6
𝜎0

4
(1 + 𝜇2)𝐿2

max

(︃(︂
2𝜋

𝑏− 𝑎

)︂2

Λ2 − 𝑛𝐻2
min

𝐿2
min

𝐿2
max

𝜆2

)︃
.

By the assumptions of the theorem, the surface is unstable and this implies that the second
variation is negative. Thus, (︂

2𝜋

𝑏− 𝑎

)︂2

Λ2 − 𝑛𝐻2
min

𝐿2
min

𝐿2
max

𝜆2 < 0.

Then, expressing the difference 𝑏 − 𝑎 from this inequality, we obtain the estimate from the
formulation of the theorem:

𝑏− 𝑎 >
2𝜋Λ𝐿max√
𝑛𝐻min𝜆𝐿min

.

The proof is complete.
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