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SHARP INEQUALITIES OF JACKSON-STECHKIN TYPE

AND WIDTHS OF CLASSES OF FUNCTIONS IN 𝐿2

M.R. LANGARSHOEV, S.S. KHORAZMSHOEV

Abstract. Some problems of the approximation theory require estimating the best ap-
proximation of 2𝜋-periodic functions by trigonometric polynomials in the space 𝐿2, and
while doing this, instead of the usual modulus of continuity 𝜔𝑚(𝑓, 𝑡), sometimes it is more
convenient to use an equivalent characteristic Ω𝑚(𝑓, 𝑡) called the generalized modulus of
continuity. Similar averaged characteristic of the smoothness of a function was considered
by K.V. Runovskiy and E.A. Storozhenko, V.G. Krotov and P. Oswald while studying im-
portant issues of constructive function theory in metric space 𝐿𝑝, 0 < 𝑝 < 1. In the space
𝐿2, in finding exact constants in the Jackson-type inequality, it was used by S.B. Vakarchuk.
We continue studies of problems approximation theory and consider new sharp inequalities
of the type Jackson–Stechkin relating the best approximations of differentiable periodic
functions by trigonometric polynomials with integrals containing generalized modules of
continuity. For classes of functions defined by means of these characteristics, we calculate
exact values of some known 𝑛-widths are calculated.

Keywords: best polynomial approximation, generalized modulus of continuity, extremal
characteristic, widths.
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1. Introduction

Let 𝐿2 = 𝐿2[0, 2𝜋] be the space of Lebesgue measurable 2𝜋-periodic functions equipped with
the norm

‖𝑓‖ =

(︂
1

𝜋

∫︁ 2𝜋

0

|𝑓(𝑥)|2𝑑𝑥
)︂ 1

2

< ∞.

By

𝐸𝑛−1(𝑓) = inf
{︁
‖𝑓 − 𝑇𝑛−1‖ : 𝑇𝑛−1(𝑥) ∈ 𝒯𝑛−1

}︁
= ‖𝑓 − 𝑆𝑛−1(𝑓)‖ =

(︃
∞∑︁
𝑘=𝑛

𝜌2𝑘

)︃ 1
2

(1)

we denote the best approximation of a function 𝑓 ∈ 𝐿2 by trigonometric polynomials of order
𝑛− 1, 𝑛 ∈ N in the space 𝐿2, where

𝑓(𝑥) ∼ 1

2
𝑎0 +

∞∑︁
𝑘=1

𝜌𝑘 cos(𝑘𝑥 + 𝜙𝑘),

𝒯𝑛−1 is the subspace consisting of all trigonometrical polynomials of order 𝑛 − 1 and 𝑆𝑛−1(𝑓)
is a partial sum of order 𝑛− 1 of the Fourier series of the function 𝑓 .

By 𝐿
(𝑟)
2 (𝑟 ∈ Z+; 𝐿0

2 ≡ 𝐿2) we denote the set of all functions 𝑓 ∈ 𝐿2 possessing absolutely
continuous derivatives of (𝑟− 1)th order, while the derivatives of 𝑟th order 𝑓 (𝑟) ̸= 𝑐𝑜𝑛𝑠𝑡 belong
to the space 𝐿2.
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For an arbitrary 𝑚 ∈ N the quantity

𝜔𝑚(𝑓, 𝜏) := sup {‖∆𝑚
ℎ (𝑓 ·)‖ : |ℎ| 6 𝜏} ,

where

∆𝑚
ℎ (𝑓, 𝑥) =

𝑚∑︁
𝑘=0

(−1)𝑚−𝑘

(︂
𝑚

𝑘

)︂
𝑓(𝑥 + 𝑘ℎ)

is an 𝑚th order finite difference of the function 𝑓 ∈ 𝐿2 at the point 𝑥 with the step ℎ, is called
an 𝑚th order continuity modulus of a function 𝑓 ∈ 𝐿2.

While solving the problems on calculating exact constants in inequalities of Jackson-Stechkin
type

𝐸𝑛−1(𝑓) 6 𝜒𝑛−𝑟𝜔𝑚

(︁
𝑓 (𝑟),

𝜏

𝑛

)︁
; 𝑟 ∈ Z+, 𝜏 > 0,

sometimes, instead of the usual continuity modulus 𝜔𝑚(𝑓, 𝜏), it is convenient to use the following
equivalent characteristics, a so-called generalized 𝑚th order continuity modulus

Ω𝑚(𝑓, 𝜏) =

⎧⎨⎩ 1

𝜏𝑚

𝜏∫︁
0

· · ·
𝜏∫︁

0

‖∆𝑚
ℎ
𝑓(·)‖2𝑑ℎ1 · · · 𝑑ℎ𝑚

⎫⎬⎭
1
2

,

where

𝜏 > 0, ℎ = (ℎ1, ℎ2, · · · , ℎ𝑚), ∆𝑚
ℎ

= ∆1
ℎ1

∘ · · · ∘ ∆1
ℎ𝑚

,

∆1
ℎ𝑗

(𝑓) = 𝑓(· + ℎ𝑗) − 𝑓(·), 𝑗 = 1,𝑚,

see, for instance, [1], [2]. Interesting results under applying the continuity modulus Ω𝑚(𝑓, 𝜏)
in problems on approximation 𝑓 ∈ 𝐿2 were obtained [3], [4], [5], [6], [7], [8]. In particular,

S.B. Vakarchuk and V.I. Zabutnaya [8] showed that as 0 < 𝑡 6
3𝜋

4
, the relation holds:

sup

⎧⎪⎪⎨⎪⎪⎩
𝑛𝑟𝐸𝑛−1(𝑓)

Ω𝑚

(︂
𝑓 (𝑟),

𝑡

𝑛

)︂
2

: 𝑓 ̸= 𝑐𝑜𝑛𝑠𝑡

⎫⎪⎪⎬⎪⎪⎭ =

{︂
2

(︂
1 − sin 𝑡

𝑡

)︂}︂−𝑚
2

,

where 𝑚,𝑛 ∈ N, 𝑟 ∈ Z+.
In 1967, N.I. Chernych [9] announced that in order to characterize the quantity 𝐸𝑛−1(𝑓),

instead of the Jackson functional 𝜔𝑚

(︀
𝑓 (𝑟), 𝜏

)︀
, it is more natural to use an averaged with the

weight 𝜙(𝜏) > 0, 0 < 𝜏 6 ℎ functional

Φ𝑚

(︀
𝑓 (𝑟), ℎ

)︀
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ℎ∫︁
0

𝜔2
𝑚

(︀
𝑓 (𝑟), 𝜏

)︀
𝜙(𝜏)𝑑𝜏

ℎ∫︁
0

𝜙(𝜏)𝑑𝜏

⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
2

.
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In view of the said above, we introduce the following extremal approximating characteristics

𝒦𝑚,𝑛,𝑟(ℎ) = sup
𝑓∈𝐿(𝑟)

2

𝑓(𝑟) ̸=𝑐𝑜𝑛𝑠𝑡

2
𝑚
2 𝑛𝑟𝐸𝑛−1(𝑓)⎛⎝ 2

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω
2
𝑚
𝑚

(︀
𝑓 (𝑟), 𝜏

)︀
𝑑𝜏

⎞⎠
𝑚
2

, (2)

𝜒𝑚,𝑛,𝑟(ℎ) = sup
𝑓∈𝐿(𝑟)

2

𝑓(𝑟) ̸=𝑐𝑜𝑛𝑠𝑡

2
𝑚
2 𝑛𝑟𝐸𝑛−1(𝑓)⎛⎝ 2

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω𝑝
𝑚

(︀
𝑓 (𝑟), 𝜏

)︀
𝑑𝜏

⎞⎠
1
𝑝

, (3)

involving a generalized continuity modulus with a weight function
2

ℎ2
(ℎ− 𝜏), where 0 < 𝜏 6 ℎ.

One more fact supporting the choice of the weight function

𝜙(𝜏) =
2

ℎ2
(ℎ− 𝜏), 0 < 𝜏 6 ℎ,

is work [10], in which an essential progress was made in solving problems on exact constant in
Jackson-Stechkin inequalinty in the space 𝐶[0, 2𝜋]. At that, an important role was played by
the aforementioned weight, by means of which the finite difference was averaged and not its
norm. For the usual continuity modulus 𝜔𝑚(𝑓, 𝜏) an approximating characteristics similar to
(2) was considered in work [11].

Let 𝑆 = {𝑥 : ‖𝑥‖ 6 1} be the unit ball in 𝐿2, and M be a convex central-symmetric subset
in 𝐿2. By Λ𝑛 ⊂ 𝐿2 we denote an 𝑛-dimensional subset, Λ𝑛 ⊂ 𝐿2 is a subspace of codimension
𝑛, while ℒ : 𝐿2 → Λ𝑛 is a continuous linear operator mapping the elements in the space 𝐿2

into Λ𝑛, while ℒ⊥ : 𝐿2 → Λ𝑛 is a continuous operator of linear projecting the space 𝐿2 on the
space Λ𝑛.

The quantities

𝑏𝑛(M, 𝐿2) = sup {sup {𝜀 > 0 : 𝜀𝑆 ∩ Λ𝑛+1 ⊂ M} : Λ𝑛+1 ⊂ 𝐿2} ,
𝑑𝑛(M, 𝐿2) = inf {sup {‖𝑓‖2 : 𝑓 ∈ M ∩ Λ𝑛} : Λ𝑛 ⊂ 𝐿2} ,
𝑑𝑛(M, 𝐿2) = inf {sup {inf {‖𝑓 − 𝜙‖2 : 𝜙 ∈ Λ𝑛} : 𝑓 ∈ M} : Λ𝑛 ⊂ 𝐿2} ,
𝜆𝑛(M, 𝐿2) = inf {inf {sup {‖𝑓 − ℒ𝑓‖2 : 𝑓 ∈ M} : ℒ𝐿2 ⊂ Λ𝑛} : Λ𝑛 ⊂ 𝐿2} ,
𝜋𝑛(M, 𝐿2) = inf

{︀
inf
{︀

sup
{︀
‖𝑓 − ℒ⊥𝑓‖2 : 𝑓 ∈ M

}︀
: ℒ⊥𝐿2 ⊂ Λ𝑛

}︀
: Λ𝑛 ⊂ 𝐿2

}︀
are respectively called Bernstein, Gelfand, Kolmogorov, linear and projective 𝑛-widths in the
space 𝐿2. Since 𝐿2 is a Hilbert space, the above 𝑛-widths satisfy the relations, see, for instance,
[12]:

𝑏𝑛(M, 𝐿2) 6 𝑑𝑛(M, 𝐿2) 6 𝑑𝑛(M, 𝐿2) = 𝜆𝑛(M, 𝐿2) = 𝜋𝑛(M, 𝐿2). (4)

We also let

𝐸𝑛−1(M) := sup{𝐸𝑛−1(𝑓) : 𝑓 ∈ M}.

A continuous increasing on the semi-segment 0 6 𝜏 < ∞ function Φ(𝜏) such that Φ(0) = 0 is
called majorant. For arbitrary 𝑚 ∈ N, 𝑟 ∈ Z+ and ℎ > 0 we introduce the following classes of
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functions:

𝑊 (𝑟)
𝑚 (ℎ) :=

⎧⎨⎩𝑓 ∈ 𝐿
(𝑟)
2 :

2

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω
2
𝑚
𝑚

(︀
𝑓 (𝑟), 𝜏

)︀
𝑑𝜏 6 1

⎫⎬⎭ ,

𝑊 (𝑟)
𝑚 (Φ) :=

⎧⎪⎨⎪⎩𝑓 ∈ 𝐿
(𝑟)
2 :

⎛⎝ 2

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω
2
𝑚
𝑚

(︀
𝑓 (𝑟), 𝜏

)︀
𝑑𝜏

⎞⎠
𝑚
2

6 Φ(ℎ)

⎫⎪⎬⎪⎭ ,

𝑊 (𝑟)
𝑝 (Φ) :=

⎧⎪⎨⎪⎩𝑓 ∈ 𝐿
(𝑟)
2 :

⎛⎝ 2

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω𝑝
𝑚

(︀
𝑓 (𝑟), 𝜏

)︀
𝑑𝜏

⎞⎠
1
𝑝

6 Φ(ℎ)

⎫⎪⎬⎪⎭ .

By 𝜏* we denote the value of the argument of the function sin 𝜏
𝜏

, at which it attains its
minimal value on the semi-segment [0,∞). At that, 𝜏* is a minimal positive root of the equation
tan 𝜏

𝜏
= 1, 4.49 < 𝜏* < 4.51, see [5]. We let

(︂
1 − sin 𝜏

𝜏

)︂
*

:=

⎧⎪⎨⎪⎩
1 − sin 𝜏

𝜏
if 0 6 𝜏 6 𝜏*;

1 − sin 𝜏*
𝜏*

if 𝜏 > 𝜏*.

This function will play an important role in finding the values of the aforementioned widths of
the above classes of the functions.

2. Main results

Theorem 2.1. Let 𝑚,𝑛 ∈ N, 𝑟 ∈ Z+ and ℎ ∈ R+. Then the following identity holds:

𝒦𝑚,𝑛,𝑟(ℎ) =

⎛⎜⎝1 − 2 Si(𝑛ℎ)

𝑛ℎ
+

4 sin2 𝑛ℎ

2
𝑛2ℎ2

⎞⎟⎠
−𝑚

2

, (5)

where Si(𝜏) =

𝜏∫︁
0

𝑥−1 sin𝑥𝑑𝑥 is the integral sine.

Proof. Given a function 𝑓 ∈ 𝐿
(𝑟)
2 , let

𝑓(𝑥) ∼ 1

2
𝑎0(𝑓) +

∞∑︁
𝑘=1

(𝑎𝑘(𝑓) cos 𝑘𝑥 + 𝑏𝑘(𝑓) sin 𝑘𝑥)

be its Fourier series 𝑓(𝑥). Then

Ω2
𝑚

(︀
𝑓 (𝑟), 𝜏

)︀
= 2𝑚

∞∑︁
𝑘=1

𝑘2𝑟𝜌2𝑘

(︂
1 − sin 𝑘𝜏

𝑘𝜏

)︂𝑚

, (6)

where 𝜌2𝑘 = 𝜌2𝑘(𝑓) = 𝑎2𝑘(𝑓) + 𝑏2𝑘(𝑓), 𝑘 ∈ N. By the Hölder inequality for the sums, for each
natural 𝑚 we employ relations (6) and (1) to get:

𝐸2
𝑛−1(𝑓) 6

∞∑︁
𝑘=𝑛

𝜌2𝑘
sin 𝑘𝜏

𝑘𝜏
+
(︀
𝐸2

𝑛−1(𝑓)
)︀1− 1

𝑚
1

2𝑛
2𝑟
𝑚

Ω
2
𝑚
𝑚

(︀
𝑓 (𝑟); 𝜏

)︀
. (7)
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We multiply both sides of inequality (7) by the function ℎ − 𝜏 , integrate then the obtained
identity with respect to the variable 𝜏 from 0 to ℎ and employ the definition of the integral
sine. Then we get:

𝐸2
𝑛−1(𝑓) 6 2

∞∑︁
𝑘=𝑛

𝜌2𝑘
Si(𝑘ℎ)

𝑘ℎ
−

∞∑︁
𝑘=𝑛

𝜌2𝑘

4 sin2 𝑘ℎ

2
𝑘2ℎ2

+ 𝐸
2− 2

𝑚
𝑛−1 (𝑓)

1

𝑛
2𝑟
𝑚 ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω
2
𝑚
𝑚

(︀
𝑓 (𝑟); 𝜏

)︀
𝑑𝜏. (8)

Employing that the function
Si(𝑥)

𝑥
is non-increasing on [0,∞), we get:

max

{︂
Si(𝑘ℎ)

𝑘ℎ
: 𝑘 > 𝑛

}︂
=

Si(𝑛ℎ)

𝑛ℎ
, 0 < 𝑛ℎ 6 𝜋.

Using then the identity

sup

{︂
sin𝑥

𝑥
:
𝑛ℎ

2
6 𝑥 < ∞

}︂
=

2 sin
𝑛ℎ

2
𝑛ℎ

,

by inequality (8) we obtain:⎛⎜⎝1 − 2 Si(𝑛ℎ)

𝑛ℎ
+

4 sin2 𝑛ℎ

2
𝑛2ℎ2

⎞⎟⎠𝐸2
𝑛−1(𝑓) 6 𝐸

2− 2
𝑚

𝑛−1 (𝑓)
1

𝑛
2𝑟
𝑚 ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω
2
𝑚
𝑚

(︀
𝑓 (𝑟); 𝜏

)︀
𝑑𝜏. (9)

It follows from inequality (9) that

2
𝑚
2 𝑛𝑟𝐸𝑛−1(𝑓)⎛⎝ 2

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω
2
𝑚
𝑚

(︀
𝑓 (𝑟); 𝜏

)︀
𝑑𝜏

⎞⎠
𝑚
2

6

⎛⎜⎝1 − 2 Si(𝑛ℎ)

𝑛ℎ
+

4 sin2 𝑛ℎ

2
𝑛2ℎ2

⎞⎟⎠
−𝑚

2

, (10)

and in view of the definition of quantity (2), we arrive at an upper bound:

𝒦𝑚,𝑛,𝑟(ℎ) 6

⎛⎜⎝1 − 2 Si(𝑛ℎ)

𝑛ℎ
+

4 sin2 𝑛ℎ

2
𝑛2ℎ2

⎞⎟⎠
−𝑚

2

. (11)

In order to establish identity (5), it is sufficient to consider the function 𝑓0(𝑥) = cos𝑛𝑥 ∈ 𝐿
(𝑟)
2 ,

for which we have:

𝐸𝑛−1(𝑓0) = 1, Ω2
𝑚

(︁
𝑓
(𝑟)
0 ; 𝜏

)︁
= 2𝑚𝑛2𝑟

(︂
1 − sin𝑛𝜏

𝑛𝜏

)︂𝑚

, 0 < 𝑛𝜏 6 𝜋.

In view of formula (2), this gives the following lower bound:

𝒦𝑚,𝑛,𝑟(ℎ) >
2

𝑚
2 𝑛𝑟𝐸𝑛−1(𝑓0)⎛⎝ 2

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω
2
𝑚
𝑚

(︁
𝑓
(𝑟)
0 , 𝜏

)︁
𝑑𝜏

⎞⎠
𝑚
2

=

⎛⎜⎝1 − 2 Si(𝑛ℎ)

𝑛ℎ
+

4 sin2 𝑛ℎ

2
𝑛2ℎ2

⎞⎟⎠
−𝑚

2

. (12)

Needed inequality (5) is obtained by comparing inequalities (11) and (12) and this completes
the proof.
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Theorem 2.2. Let 𝑚,𝑛 ∈ N, 𝑟 ∈ Z+, 0 < 𝑝 6 2. Then for an arbitrary ℎ, 0 < ℎ 6 𝜋/𝑛,
the identity holds:

𝜒𝑚,𝑛,𝑟(ℎ) =

⎛⎝ 1

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)

(︂
1 − sin𝑛𝜏

𝑛𝜏

)︂𝑚𝑝/2

𝑑𝜏

⎞⎠−1/𝑝

. (13)

Proof. We raise identity (6) into the power
𝑝

2
, 0 < 𝑝 6 2, multiply then by the weight function

2

ℎ2
(ℎ − 𝜏), 0 < 𝜏 6 ℎ, and integrate with respect to 𝜏 over the segment [0, ℎ]. Then we raise

the obtained inequality into the power
1

𝑝
. As a result we obtain:(︃

2

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω𝑝
𝑚

(︀
𝑓 (𝑟), 𝜏

)︀
𝑑𝜏

)︃ 1
𝑝

= 2
𝑚
2
+ 1

𝑝

⎡⎣ 1

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)

(︃
∞∑︁
𝑘=𝑛

𝑘2𝑟𝜌2𝑘

(︂
1 − sin 𝑘𝜏

𝑘𝜏

)︂𝑚
)︃ 𝑝

2

𝑑𝜏

⎤⎦
1
𝑝

.

(14)

Then we make use of the following simplified version of the known Minkowskii inequality [13]:⎛⎝ ℎ∫︁
0

(︃
∞∑︁
𝑘=𝑛

|𝑓𝑘(𝜏)|2
)︃ 𝑝

2

𝑑𝜏

⎞⎠
1
𝑝

>

⎛⎜⎝ ∞∑︁
𝑘=𝑛

⎛⎝ ℎ∫︁
0

|𝑓𝑘(𝜏)|𝑝𝑑𝜏

⎞⎠
2
𝑝

⎞⎟⎠
1
2

,

which holds for 0 < 𝑝 6 2 and each ℎ > 0. By identity (14) we get:(︃
2

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω𝑝
𝑚

(︀
𝑓 (𝑟), 𝜏

)︀
𝑑𝜏

)︃ 1
𝑝

> 2
𝑚
2
+ 1

𝑝

⎡⎢⎣ ∞∑︁
𝑘=𝑛

𝜌2𝑘

⎛⎝𝑘𝑟𝑝 1

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)

(︂
1 − sin 𝑘𝜏

𝑘𝜏

)︂𝑚𝑝
2

𝑑𝜏

⎞⎠
2
𝑝

⎤⎥⎦
1
2

.

(15)

We consider a function

𝜙(𝑥) = 𝑥2𝑟

⎛⎝ 1

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)

(︂
1 − sin𝑥𝜏

𝑥𝜏

)︂𝑚𝑝
2

𝑑𝜏

⎞⎠
1
𝑝

and we are going to show that in the domain 𝑄𝑛 = {𝑥 : 𝑥 > 𝑛}, 𝑛 ∈ N, it is monotonically
increasing

min {𝜙(𝑥) : 𝑥 ∈ 𝑄𝑛} = 𝜙(𝑛) = 𝑛2𝑟

⎛⎝ 1

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)

(︂
1 − sin𝑛𝜏

𝑛𝜏

)︂𝑚𝑝
2

𝑑𝜏

⎞⎠
1
𝑝

.

We follow the lines of work [8]. It was proved in this work that for all 𝜈, 𝛼 ∈ R+, 𝑥 > 1 and

0 < 𝑦 6
3𝜋

4
the inequality holds:

𝑥𝜈

(︂
1 − sin𝑥𝑦

𝑥𝑦

)︂𝛼

>

(︂
1 − sin 𝑦

𝑦

)︂𝛼

.
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By this inequality with 𝑥 =
𝑘

𝑛
, 𝑘, 𝑛 ∈ N, 𝑘 > 𝑛 and 𝑦 = 𝑛𝜏 , 0 < 𝜏 6 ℎ, 𝜈 = 𝑟𝑝, 𝛼 =

𝑚𝑝

2
,

𝑚 ∈ N we immediately get:

𝑘𝑟𝑝

(︂
1 − sin 𝑘𝜏

𝑘𝜏

)︂𝑚𝑝
2

> 𝑛𝑟𝑝

(︂
1 − sin𝑛𝜏

𝑛𝜏

)︂𝑚𝑝
2

. (16)

We multiply both sides of inequality (16) by a positive function
1

ℎ2
(ℎ− 𝜏), 0 < 𝜏 6 ℎ, integrate

then with respect to 𝜏 from 0 to ℎ and raise in the power
1

𝑝
. As a result, for arbitrary 𝑘 > 𝑛,

𝑘, 𝑛 ∈ N we get:(︃
𝑘𝑟𝑝 1

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)

(︂
1 − sin 𝑘𝜏

𝑘𝜏

)︂𝑚𝑝
2

𝑑𝜏

)︃ 1
𝑝

>

⎛⎝𝑛𝑟𝑝 1

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)

(︂
1 − sin𝑛𝜏

𝑛𝜏

)︂𝑚𝑝
2

𝑑𝜏

⎞⎠
1
𝑝

. (17)

Comparing relations (17) and (15), we find:(︃
2

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω𝑝
𝑚

(︀
𝑓 (𝑟), 𝜏

)︀
𝑑𝜏

)︃ 1
𝑝

> 2
𝑚
2
+ 1

𝑝𝑛𝑟

·

⎡⎢⎣
⎛⎝ 1

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)

(︂
1 − sin𝑛𝜏

𝑛𝜏

)︂𝑚𝑝
2

𝑑𝜏

⎞⎠
2
𝑝

⎤⎥⎦
1
2 (︃

∞∑︁
𝑘=𝑛

𝜌2𝑘

)︃ 1
2

.

(18)

Owing to formula (1), by inequality (18) we finally obtain:

2
𝑚
2
+ 1

𝑝𝑛𝑟𝐸𝑛−1(𝑓)(︃
2

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω𝑝
𝑚

(︀
𝑓 (𝑟), 𝜏

)︀
𝑑𝜏

)︃ 1
𝑝

6

⎛⎝ 1

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)

(︂
1 − sin𝑛𝜏

𝑛𝜏

)︂𝑚𝑝
2

𝑑𝜏

⎞⎠− 1
𝑝

.
(19)

Therefore, according the definition of quantity (3), by inequality (19) we obtain an upper bound
for the extremal characteristics 𝜒𝑚,𝑛,𝑟(ℎ), namely,

𝜒𝑚,𝑛,𝑟(ℎ) 6

⎛⎝ 1

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)

(︂
1 − sin𝑛𝜏

𝑛𝜏

)︂𝑚𝑝
2

𝑑𝜏

⎞⎠− 1
𝑝

. (20)

In order to obtain the lower bounds for the quantity 𝜒𝑚,𝑛,𝑟(ℎ), it is sufficient to consider the

function 𝑓0(𝑥) = cos𝑛𝑥 ∈ 𝐿
(𝑟)
2 , for which we have:

𝐸𝑛−1(𝑓0) = 1, Ω𝑚

(︁
𝑓
(𝑟)
0 ; 𝜏

)︁
= 2

𝑚
2 𝑛𝑟

(︂
1 − sin𝑛𝜏

𝑛𝜏

)︂𝑚
2

, 0 < 𝑛𝜏 6 𝜋.

In view of formula (3) we have:

𝜒𝑚,𝑛,𝑟(ℎ) > 2
𝑚
2
+ 1

𝑝𝑛𝑟𝐸𝑛−1(𝑓0)

⎛⎝ 2

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω𝑝
𝑚

(︁
𝑓
(𝑟)
0 , 𝜏

)︁
𝑑𝜏

⎞⎠− 1
𝑝

=

⎛⎝ 1

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)

(︂
1 − sin𝑛𝜏

𝑛𝜏

)︂𝑚𝑝
2

𝑑𝜏

⎞⎠− 1
𝑝

.

(21)
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Needed inequality (13) is implied by comparing inequalities (20) and (21), which completes the
proof.

Theorem 2.3. Let 𝑚,𝑛, 𝑟 ∈ N and ℎ > 0. Then the identities hold:

𝜎2𝑛

(︀
𝑊 (𝑟)

𝑚 (ℎ), 𝐿2

)︀
= 𝜎2𝑛−1

(︀
𝑊 (𝑟)

𝑚 (ℎ), 𝐿2

)︀
= 𝐸2𝑛−1

(︀
𝑊 (𝑟)

𝑚 (ℎ)
)︀

=
1

2
𝑚
2 𝑛𝑟

⎛⎜⎝1 − 2 Si(𝑛ℎ)

𝑛ℎ
+

4 sin2 𝑛ℎ

2
𝑛2ℎ2

⎞⎟⎠
−𝑚

2

,

where 𝜎𝑛(·) stands for each of the aforementioned 𝑛-widths.

Proof. The upper bound for the projection 𝑛-width is obtained by inequality (10) in view of

the definition of the class of functions 𝑊
(𝑟)
𝑚 (ℎ):

𝜋2𝑛

(︀
𝑊 (𝑟)

𝑚 (ℎ), 𝐿2

)︀
6 𝜋2𝑛−1

(︀
𝑊 (𝑟)

𝑚 (ℎ), 𝐿2

)︀
6 𝐸2𝑛−1

(︀
𝑊 (𝑟)

𝑚 (ℎ)
)︀

=
1

2
𝑚
2 𝑛𝑟

⎛⎜⎝1 − 2 Si(𝑛ℎ)

𝑛ℎ
+

4 sin2 𝑛ℎ

2
𝑛2ℎ2

⎞⎟⎠
−𝑚

2

.
(22)

In order to obtain lower bound for Bernstein 𝑛-width, we introduce a (2𝑛 + 1)-dimensional
ball of polynomials 𝑆2𝑛+1 ∈ 𝒯2𝑛−1

⋂︀
𝐿2:

𝑆2𝑛+1 =

⎧⎪⎪⎨⎪⎪⎩𝑇𝑛(𝑥) : ‖𝑇𝑛(𝑥)‖ 6
1

2
𝑚
2 𝑛𝑟

⎛⎜⎝1 − 2 Si(𝑛ℎ)

𝑛ℎ
+

4 sin2 𝑛ℎ

2
𝑛2ℎ2

⎞⎟⎠
−𝑚

2

⎫⎪⎪⎬⎪⎪⎭
and we are going to show that it belongs to the class 𝑊

(𝑟)
𝑚 (ℎ). In work [5], for an arbitrary

trigonometric polynomial 𝑇𝑛(𝑥) ∈ 𝒯2𝑛−1, the inequality

Ω𝑚

(︀
𝑇 (𝑟)
𝑛 , 𝜏

)︀
6 2

𝑚
2 𝑛𝑟

(︂
1 − sin𝑛𝜏

𝑛𝜏

)︂𝑚
2

*
‖𝑇𝑛‖ (23)

was proved. Employing this inequality, we find:

2

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω
2
𝑚
𝑚

(︀
𝑇 (𝑟)
𝑛 , 𝜏

)︀
𝑑𝜏 6

4

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)𝑛
2𝑟
𝑚

(︂
1 − sin𝑛𝜏

𝑛𝜏

)︂
𝑑𝜏‖𝑇𝑛‖

2
𝑚 = 1,

and this implies that 𝑆2𝑛+1 ∈ 𝑊
(𝑟)
𝑚 (ℎ). By the definition of Bernstein 𝑛-width we obtain the

lower bound

𝑏2𝑛
(︀
𝑊 (𝑟)

𝑚 (ℎ), 𝐿2

)︀
> 𝑏2𝑛−1

(︀
𝑊 (𝑟)

𝑚 (ℎ), 𝐿2

)︀
> 𝑏2𝑛 (𝑆2𝑛+1, 𝐿2)

=
1

2
𝑚
2 𝑛𝑟

⎛⎜⎝1 − 2 Si(𝑛ℎ)

𝑛ℎ
+

4 sin2 𝑛ℎ

2
𝑛2ℎ2

⎞⎟⎠
−𝑚

2

.
(24)

Statement of the theorem now follows by comparing inequalities (22) and (24).
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Theorem 2.4. Let 𝑚,𝑛, 𝑟 ∈ N and a function Φ obeys the condition

Φ(ℎ)

Φ(𝜋/𝑛)
>

(︂
𝜋2

𝜋2 − 2𝜋 Si(𝜋) + 4

)︂𝑚
2

·

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝1 − 2 Si(𝑛ℎ)

𝑛ℎ
+

4 sin2 𝑛ℎ

2
𝑛2ℎ2

⎞⎟⎠
𝑚
2

if 0 6 ℎ 6
𝜋

𝑛
,

(︂
1 − 2𝜋

𝑛ℎ
+

2𝜋2 − 2𝜋 Si(𝜋) + 4

𝑛2ℎ2

)︂𝑚
2

if ℎ >
𝜋

𝑛
.

(25)

Then the inequalities

𝛾2𝑛
(︀
𝑊 (𝑟)

𝑚 (Φ);𝐿2

)︀
= 𝛾2𝑛−1

(︀
𝑊 (𝑟)

𝑚 (Φ);𝐿2

)︀
= 𝐸𝑛−1

(︀
𝑊 (𝑟)

𝑚 (Φ)
)︀

=
𝜋𝑚

2
𝑚
2 𝑛𝑟

(︂
1

𝜋2 − 2𝜋 Si(𝜋) + 4

)︂𝑚
2

Φ
(︁𝜋
𝑛

)︁ (26)

hold, where 𝛾𝑛(·) stands for each of aforementioned 𝑛-widths.

Proof. By inequality (10) for an arbitrary function 𝑓 ∈ 𝐿
(𝑟)
2 we obtain:

𝐸𝑛−1(𝑓) 6
1

2
𝑚
2 𝑛𝑟

⎛⎜⎝1 − 2 Si(𝑛ℎ)

𝑛ℎ
+

4 sin2 𝑛ℎ

2
𝑛2ℎ2

⎞⎟⎠
−𝑚

2 ⎛⎝ 2

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω
2
𝑚
𝑚 (𝑓 (𝑟), 𝜏)𝑑𝜏

⎞⎠
𝑚
2

.

Letting in this inequality ℎ =
𝜋

𝑛
and taking into consideration the definition of the class 𝑊

(𝑟)
𝑚 (Φ)

and relation (4) for the aforementioned 𝑛-widths, we obtain the upper bound

𝛾2𝑛
(︀
𝑊 (𝑟)

𝑚 (Φ);𝐿2

)︀
6 𝛾2𝑛−1

(︀
𝑊 (𝑟)

𝑚 (Φ);𝐿2

)︀
6 𝑑2𝑛−1

(︀
𝑊 (𝑟)

𝑚 (Φ);𝐿2

)︀
6 𝐸𝑛−1

(︀
𝑊 (𝑟)

𝑚 (Φ)
)︀
6

𝜋𝑚

2
𝑚
2 𝑛𝑟

(︂
1

𝜋2 − 2𝜋 Si(𝜋) + 4

)︂𝑚
2

Φ
(︁𝜋
𝑛

)︁
.

(27)

In order to obtain the lower bound, we introduce a ball of trigonometric polynomials

𝑆2𝑛+1 :=

{︃
𝑇𝑛 ∈ 𝒯2𝑛+1 : ‖𝑇𝑛‖ 6

𝜋𝑚

2
𝑚
2 𝑛𝑟

(︂
1

𝜋2 − 2𝜋 Si(𝜋) + 4

)︂𝑚
2

Φ
(︁𝜋
𝑛

)︁}︃
and employing inequality (23), we are going to show that the ball 𝑆2𝑛+1 belongs to the class

𝑊
(𝑟)
𝑚 (Φ). We consider two cases: as 0 6 ℎ 6

𝜋

𝑛
and as ℎ >

𝜋

𝑛
.

Let 0 6 ℎ 6
𝜋

𝑛
. Employing the definition of class 𝑊

(𝑟)
𝑚 (Φ) and the first condition in (25), for

an arbitrary polynomial 𝑇𝑛 ∈ 𝑆2𝑛+1 we have:(︃
2

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω
2
𝑚
𝑚

(︀
𝑇 (𝑟)
𝑛 , 𝜏

)︀
𝑑𝜏

)︃𝑚
2

6

(︂
4𝑛2𝑟/𝑚

ℎ2
‖𝑇𝑛‖

2
𝑚

)︂𝑚
2

⎛⎝ ℎ∫︁
0

(ℎ− 𝜏)

(︂
1 − sin𝑛𝜏

𝑛𝜏

)︂
*
𝑑𝜏

⎞⎠
𝑚
2

=

(︂
𝜋2

𝜋2 − 2𝜋 Si(𝜋) + 4

)︂𝑚
2

Φ
(︁𝜋
𝑛

)︁⎛⎜⎝1 − 2 Si(𝑛ℎ)

𝑛ℎ
+

4 sin2 𝑛ℎ

2
𝑛2ℎ2

⎞⎟⎠
𝑚
2

6 Φ(ℎ).

(28)
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Let ℎ >
𝜋

𝑛
. Employing the definition of the class 𝑊

(𝑟)
𝑚 (Φ), inequality (23) and the second

inequality in (25), we obtain:(︃
2

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω
2
𝑚
𝑚

(︀
𝑇 (𝑟)
𝑛 , 𝜏

)︀
𝑑𝜏

)︃𝑚
2

6

(︂
4𝑛2𝑟/𝑚

ℎ2
‖𝑇𝑛‖

2
𝑚

)︂𝑚
2

·

⎛⎜⎝ 𝜋/𝑛∫︁
0

(︁𝜋
𝑛
− 𝜏
)︁(︂

1 − sin𝑛𝜏

𝑛𝜏

)︂
*
𝑑𝜏 +

ℎ∫︁
𝜋/𝑛

(ℎ− 𝜏)𝑑𝜏

⎞⎟⎠
𝑚
2

=

(︂
𝜋2

𝜋2 − 2𝜋 Si(𝜋) + 4

)︂𝑚
2

Φ
(︁𝜋
𝑛

)︁(︂
1 − 2𝜋

𝑛ℎ
+

2𝜋2 − 2𝜋 Si(𝜋) + 4

𝑛2ℎ2

)︂𝑚
2

6 Φ(ℎ).

(29)

Inequalities (28) and (29) show that 𝑆2𝑛+1 ⊂ 𝑊
(𝑟)
𝑚 (Φ). By the definition of the Bernstein

𝑛-width and inequalities (4), we write lower bound for the considered 𝑛-widths

𝛾2𝑛
(︀
𝑊 (𝑟)

𝑚 (Φ);𝐿2

)︀
> 𝛾2𝑛−1

(︀
𝑊 (𝑟)

𝑚 (Φ;𝐿2

)︀
> 𝑏2𝑛

(︀
𝑊 (𝑟)

𝑚 (Φ);𝐿2

)︀
> 𝑏2𝑛 (𝑆2𝑛+1;𝐿2)

>
𝜋𝑚

2
𝑚
2 𝑛𝑟

{︂
1

𝜋2 − 2𝜋 Si(𝜋) + 4

}︂𝑚
2

Φ
(︁𝜋
𝑛

)︁
.

(30)

Comparing upper bounds (27) and lower bounds (30), we arrive at required inequalities (26).
The proof is complete.

Theorem 2.5. If for each 0 < ℎ 6
𝜋

𝑛
the majorant Φ(ℎ) satisfies the restriction

Φ(ℎ)

Φ(𝜋/𝑛)
>

⎛⎝ ℎ∫︁
0

(ℎ− 𝜏)

(︂
1 − sin𝑛𝜏

𝑛𝜏

)︂𝑚𝑝
2

*
𝑑𝜏

⎞⎠
1
𝑝

2
1
𝑝

⎛⎝ 1

𝜋2

𝜋∫︁
0

𝜏

(︂
1 − sin 𝜏

𝜋 − 𝜏

)︂𝑚𝑝
2

𝑑𝜏

⎞⎠ 1
𝑝

, (31)

then for all 𝑚,𝑛 ∈ N, 𝑟 ∈ Z+ the identities

𝛿2𝑛
(︀
𝑊 (𝑟)

𝑝 (Φ);𝐿2

)︀
= 𝛿2𝑛−1

(︀
𝑊 (𝑟)

𝑝 (Φ);𝐿2

)︀
= 𝐸𝑛

(︀
𝑊 (𝑟)

𝑝 (Φ)
)︀

=
1

2
𝑚
2
+ 1

𝑝𝑛𝑟

⎛⎝ 1

𝜋2

𝜋∫︁
0

𝜏

(︂
1 − sin 𝜏

𝜋 − 𝜏

)︂𝑚𝑝
2

𝑑𝜏

⎞⎠− 1
𝑝

(32)

hold, where 𝛿𝑛(·) stands for each of the aforementioned 𝑛-widths.

Proof. We shall make use of inequality (19) writing it as

𝐸𝑛−1(𝑓) 6
1

2
𝑚
2
+ 1

𝑝𝑛𝑟

⎛⎝ 1

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)

(︂
1 − sin𝑛𝜏

𝑛𝜏

)︂𝑚𝑝
2

𝑑𝜏

⎞⎠− 1
𝑝
⎛⎝ 2

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω𝑝
𝑚

(︀
𝑓 (𝑟), 𝜏

)︀
𝑑𝜏

⎞⎠
1
𝑝

.
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Letting in this inequality ℎ =
𝜋

𝑛
, according the definition of the class 𝑊

(𝑟)
𝑝 (Φ), we have:

𝐸𝑛−1(𝑓) 6
1

2
𝑚
2
+ 1

𝑝𝑛𝑟

⎛⎝ 1

𝜋2

𝜋∫︁
0

𝜏

(︂
1 − sin 𝜏

𝜋 − 𝜏

)︂𝑚𝑝
2

𝑑𝜏

⎞⎠− 1
𝑝

Φ
(︁𝜋
𝑛

)︁
. (33)

By inequality (33) and relation (4) between the aforementioned 𝑛-widths we obtain the upper
bound

𝛿2𝑛
(︀
𝑊 (𝑟)

𝑝 (Φ);𝐿2

)︀
6 𝛿2𝑛−1

(︀
𝑊 (𝑟)

𝑝 (Φ);𝐿2

)︀
6 𝜋2𝑛−1

(︀
𝑊 (𝑟)

𝑝 (Φ);𝐿2

)︀
6 𝐸𝑛

(︀
𝑊 (𝑟)

𝑝 (Φ)
)︀
𝐿2

6
1

2
𝑚
2
+ 1

𝑝𝑛𝑟

⎛⎝ 1

𝜋2

𝜋∫︁
0

𝜏

(︂
1 − sin 𝜏

𝜋 − 𝜏

)︂𝑚𝑝
2

𝑑𝜏

⎞⎠− 1
𝑝

Φ
(︁𝜋
𝑛

)︁
.

(34)

In order to obtain the lower bound, we introduce a (2𝑛 + 1)-dimensional ball of polynomials

𝑆2𝑛+1 =

⎧⎪⎨⎪⎩𝑇𝑛(𝑥) : ‖𝑇𝑛‖ 6
1

2
𝑚
2
+ 1

𝑝𝑛𝑟

⎛⎝ 1

𝜋2

𝜋∫︁
0

𝜏

(︂
1 − sin 𝜏

𝜋 − 𝜏

)︂𝑚𝑝
2

𝑑𝜏

⎞⎠− 1
𝑝

Φ
(︁𝜋
𝑛

)︁⎫⎪⎬⎪⎭
and we are going to show that it belongs to the class 𝑊

(𝑟)
𝑝 (Φ). Employing (23), we are going

to prove that an arbitrary 𝑇𝑛(𝑥) ∈ 𝑆2𝑛+1 satisfies the relation⎛⎝ 2

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω𝑝
𝑚

(︀
𝑇 (𝑟)
𝑛 , 𝜏

)︀
𝑑𝜏

⎞⎠
1
𝑝

6 Φ(ℎ).

Indeed, according inequality (23) and restriction (31) on Φ(ℎ), we have⎛⎝ 2

ℎ2

ℎ∫︁
0

(ℎ− 𝜏)Ω𝑝
𝑚

(︀
𝑇 (𝑟)
𝑛 , 𝜏

)︀
𝑑𝜏

⎞⎠
1
𝑝

6

⎛⎝2
𝑚𝑝
2 𝑛𝑝𝑟

ℎ∫︁
0

(ℎ− 𝜏)

(︂
1 − sin𝑛𝜏

𝑛𝜏

)︂𝑚𝑝
2

*
𝑑𝜏

⎞⎠
1
𝑝

‖𝑇𝑛‖

=2
𝑚
2 𝑛𝑟

⎛⎝ ℎ∫︁
0

(ℎ− 𝜏)

(︂
1 − sin𝑛𝜏

𝑛𝜏

)︂𝑚𝑝
2

*
𝑑𝜏

⎞⎠
1
𝑝

·
Φ
(︁𝜋
𝑛

)︁
2

𝑚
2
+ 1

𝑝𝑛𝑟

⎛⎝ 1

𝜋2

𝜋∫︁
0

𝜏

(︂
1 − sin 𝜏

𝜋 − 𝜏

)︂𝑚𝑝
2

𝑑𝜏

⎞⎠ 1
𝑝

6 Φ(ℎ),

and this means that 𝑆2𝑛+1 ∈ 𝑊
(𝑟)
𝑝 (Φ). Employing the definition of the Bernstein 𝑛-width, we

write the corresponding lower bound

𝛿2𝑛
(︀
𝑊 (𝑟)

𝑝 (Φ);𝐿2

)︀
> 𝑏2𝑛

(︀
𝑊 (𝑟)

𝑝 (Φ);𝐿2

)︀
> 𝑏2𝑛 (𝑆2𝑛+1;𝐿2)

>
1

2
𝑚
2
+ 1

𝑝𝑛𝑟

⎛⎝ 1

𝜋2

𝜋∫︁
0

𝜏

(︂
1 − sin 𝜏

𝜋 − 𝜏

)︂𝑚𝑝
2

𝑑𝜏

⎞⎠− 1
𝑝

Φ
(︁𝜋
𝑛

)︁
.

(35)

Comparing relations (34) and (35), by inequality (4) we obtain required identities (32). The
proof is complete.

The authors thank the referee for valuable advices and comments used in the work.
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