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EXTREMAL PROBLEMS IN THEORY OF

CENTRAL WIMAN-VALIRON INDEX

K.G. MALYUTIN, M.V. KABANKO, V.A. MALIUTIN

Abstract. We consider some properties of central index in Wiman-Valiron index. We

introduce the notion of a determining sequence of a central index 𝜈(𝑟) corresponding to a

fixed transcendental function 𝑓 and the notion of a determining sequence for an arbitrary

fixed central index 𝜈(𝑟). Let 𝜌1, 𝜌2, . . . , 𝜌𝑠, . . . be the points of the jumps of the function

𝜈(𝑟) taken counting their multiplicities. This means that if at a point 𝜌𝑠 the jump is equal

to 𝑚𝑠, then the quantity 𝜌𝑠 appears 𝑚𝑠 times in this sequence. Such sequence is called

determining sequence of the function 𝜈(𝑟). We introduce the notion of the regularization of

the function 𝜈(𝑟), which is employed for proving main statements. We study two extremal

problems in the class of functions with a prescribed central index. We obtain the expression

for the maximum of the modulus of the extremal function in terms of its central index.

The main obtained results are as follows. Let 𝑇𝜈 be the set of all transcendental functions

𝑓 with a prescribed central index 𝜈(𝑟), 𝑀(𝑟, 𝑓) = max{|𝑓(𝑟𝑒𝑖𝜃)| : 0 6 𝜃 6 2𝜋}, and let

𝑀(𝑟, 𝜈) = sup{𝑀(𝑟, 𝑓) : 𝑓 ∈ 𝑇𝜈}. Then for each 𝑟 > 0, in the class of the functions

𝑇𝜈 , the quantity 𝑀(𝑟, 𝜈) is attained at the same function for all 𝑟 > 0. We describe

the form of such extremal function. We also prove that for each fixed 𝑟0 > 0 and for

each prescribed central index 𝜈(𝑟), in the class 𝑇𝜈 there exists a function 𝑓0(𝑧) such that

𝑀(𝑟0, 𝑓0) = inf{𝑀(𝑟0, 𝑓) : 𝑓 ∈ 𝑇𝜈}.
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1. Introduction

Let

𝑓(𝑧) =
∞∑︁
𝑛=0

𝑎𝑛𝑧
𝑛 (1.1)

be an entire transcendental functional not coincinding with a polynomial, that is, this is an
entire function such that infinitely many coefficients 𝑎𝑛 in expansion (1.1) are non-zero. As it
is known, see, for instance, [1], the maximal term of the function 𝑓(𝑧) is determined by the
formula

𝜇(𝑟, 𝑓) = max
𝑛

|𝑎𝑛|𝑟𝑛, 𝑟 > 0, (1.2)

while the central index is defined as

𝜈(𝑟, 𝑓) = max{𝑛 : |𝑎𝑛|𝑟𝑛 = 𝜇(𝑟, 𝑓)}. (1.3)
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In what follows, if it is clear from the context which function is discussed, we shall omit the
symbol 𝑓 in the notation of the maximal term of the function 𝑓(𝑧) and of its central index and
we shall write 𝜇(𝑟), 𝜈(𝑟) instead of 𝜇(𝑟, 𝑓) and 𝜈(𝑟, 𝑓).

Thus, the central index 𝜈(𝑟, 𝑓) is characterized by two properties:
1) for a fixed 𝑟 we have |𝑎𝜈(𝑟)|𝑟𝜈(𝑟) = max

𝑛
|𝑎𝑛|𝑟𝑛;

2) 𝜈(𝑟) is the maximal index possessing property 1).
For polynomials 𝑃𝑛(𝑧) = 𝑎𝑛𝑧

𝑛 + · · ·+𝑎0 of degree 𝑛, starting from some 𝑟 > 0, the role of the
central index is played by the degree 𝑛: 𝜈(𝑟, 𝑃𝑛) = 𝑛. For each entire transcendental function
we have 𝜈(𝑟, 𝑓) ↑ +∞ as 𝑟 → +∞, see Lemma 2.1.

Since an arbitrary entire function 𝑓(𝑧) can be represented as 𝑓(𝑧) = 𝑐𝑧𝑚𝑓0(𝑧), where 𝑓0(0) =
1, then without loss of generality we can assume that 𝑎0 = 1 in representation (1.1). This yields
that

𝜈(0) = 0, 𝜇(0) = 1. (1.4)

In what follows, without saying explicitly, condition (1.4) is supposed to hold.
The theory of maximal term and central index and its role in the theory of entire and mero-

moprhic functions and in various applications like ordinary differential equations, probability
theory and others, was well described in the aforementioned classical monograph by H. Wit-
tich [1]. The relations between the maximal term 𝜇(𝑟, 𝑓) and the maximal absolute value

𝑀(𝑟, 𝑓) = max
06𝜃62𝜋

|𝑓(𝑟𝑒𝑖𝜃)|

were studied in details in the theory of central index of Wiman [2], [3] and Valiron [4].
In the theory of ordinary differential equations, a special role is played by the fact that the

derivative of a transcendental function 𝑓(𝑧) can be expressed via 𝑓(𝑧) and its central index
𝜈(𝑟, 𝑓). In particular, if 𝜁 is a point of the maximum of the function 𝑓(𝑧) on the circumference
|𝜁| = 𝑟, that is, |𝑓(𝜁)| = 𝑀(|𝜁|, 𝑓), then the relation

𝑓 ′(𝜁)

𝑓(𝜁)
=

𝜈(𝑟, 𝑓)

𝜁
(1 + 𝑜(𝜁)), 𝜁 → ∞,

holds as well as corresponding formulae for higher derivatives.
By means of the theory of central index one can also prove a little Picard theorem [1]:
An entire transcendental function 𝑓(𝑧) admits at most one finite value.
A lot of attention was paid to studying the relations between the maximal term and the maxi-

mal absolute value of the transcendental function, we mention only some works by P.C. Rosen-
bloom [5], R. London [6], P. Lockhart and E.G. Straus [7], M. Sheremeta [8], [9], [10], [11],
P. Filevich [12], [13], [14] and many others. At the same time, in our opinion, essentially less
attention was paid to the central index. We know only work by P. Filevich [15], in which it was
studied how the growth of the maximum of the absolute value of an entire function depended
on growth of its central index.

The present work is aimed also on covering partially this gap. We express our gratitude to

A.F. Grishin , whose ideas stimulated this work.
Our main obtained results are as follows. Let 𝑇𝜈 be the set of all transcendental functions

with a prescribed central index 𝜈(𝑟). We denote:

𝑀(𝑟, 𝜈) = sup
𝑓∈𝑇𝜈

𝑀(𝑟, 𝑓).

Then for each 𝑟 > 0, the quantity 𝑀(𝑟, 𝜈) is attained in the class of functions 𝑇𝜈 on the same
function for all 𝑟 > 0. We provide the form of such extremal function, see Theorems 2.2, 2.3.
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We also prove that for each fixed 𝑟0 > 0 and each prescribed central index 𝜈(𝑟), there exists a
function 𝑓0(𝑧) in the class 𝑇𝜈 such that

𝑀(𝑟0, 𝑓0) = inf
𝑓∈𝑇𝜈

𝑀(𝑟0, 𝑓),

see Theorem 3.1.
We provide two lemmata, namely, Lemma 3.1 and Lemma 3.2 on the existence of a function

𝑓0(𝑧) ∈ 𝑇𝜈 such that

𝑀(𝑟0, 𝑓0) = inf
𝑓∈𝑇𝜈(𝑟0)

𝑀(𝑟0, 𝑓),

𝑀(𝑟0, 𝑓0) = sup
𝑓∈𝑇𝜈(𝑟0)

𝑀(𝑟0, 𝑓).

In conclusion of this section let us briefly describe the structure of the paper. In the next
section we introduce the main notations and consider the first extremal problem. In the third
section we consider the second extremal work.

2. First extremal problem

First of all we formulate a lemma on characterization of the central index.

Lemma 2.1. The central index is a non-decreasing, right continuous function on the interval
(0; +∞).

Proof. Since

ln𝜇(𝑒𝑥) = max
𝑛

(ln |𝑎𝑛| + 𝑛𝑥),

the function ln𝜇(𝑒𝑥) is strictly increasing and convex.
Let 𝑟0 > 0, 𝜈 = 𝜈(𝑟0) and 𝑚 < 𝜈. Then, employing Properties 1) and 2) of the central index,

for 𝑟 > 𝑟0 we obtain ⃒⃒⃒⃒
𝑎𝑚
𝑎𝜈

⃒⃒⃒⃒
𝑟𝑚−𝜈 <

⃒⃒⃒⃒
𝑎𝑚
𝑎𝜈

⃒⃒⃒⃒
𝑟𝑚−𝜈
0 =

|𝑎𝑚|𝑟𝑚0
|𝑎𝜈 |𝑟𝜈0

6 1

and this implies that

|𝑎𝑚|𝑟𝑚 6 |𝑎𝜈 |𝑟𝜈 .
This is why 𝜈(𝑟) ̸= 𝑚 for each 𝑚 < 𝜈 and therefore,

𝜈(𝑟) > 𝜈 = 𝜈(𝑟0).

This proves that 𝜈(𝑟) is a non-decreasing function. In particular, the inequality

𝜈(𝑟0 + 0) > 𝜈(𝑟0)

holds true.
Let us show that this relation is in fact an identity. Since the function ln𝜇(𝑟) is convex and

this is why it is continuous, we have

ln |𝑎𝜈(𝑟0+0)| + 𝜈(𝑟0 + 0) ln 𝑟0 = ln |𝑎𝜈(𝑟0)| + 𝜈(𝑟0) ln 𝑟0

and this is why

|𝑎𝜈(𝑟0+0)|𝑟𝜈(𝑟0+0)
0 = |𝑎𝜈(𝑟0)|𝑟

𝜈(𝑟0)
0 .

The inequality

𝜈(𝑟0 + 0) > 𝜈(𝑟0)

The properties formulated in Lemma 2.1 are well-known, see, for instance, [16, Ch. IV], and are often cited.

However, we have never seen their detailed proof. This is why, not pretending for the authorship, we decide to

formulate them as a lemma.
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contradicts the definition of 𝜈(𝑟0). Thus, the function 𝜈(𝑟) is right continuous. The proof is
complete.

Let us find the right derivative of the function ln𝜇(𝑟). Let ℎ > 0 be a sufficiently small
number. We have:

1

ℎ
(ln𝜇(𝑟 + ℎ) − ln𝜇(𝑟)) =

1

ℎ
𝜈(𝑟)(ln(𝑟 + ℎ) − ln 𝑟).

Then

(ln𝜇(𝑟))′+ =
𝜈(𝑟)

𝑟
. (2.1)

Now it follows from (1.4) and (2.1) that

ln𝜇(𝑟) =

𝑟∫︁
0

𝜈(𝑡)

𝑡
𝑑𝑡 =

𝑟∫︁
0

𝜈(𝑡) 𝑑(ln 𝑡).

Integrating by parts, we then get:

ln𝜇(𝑟) = (𝜈(𝑡) ln 𝑡) |𝑟0 −
𝑟∫︁

0

ln 𝑡 𝑑𝜈(𝑡) = 𝜈(𝑟) ln 𝑟 −
𝑟∫︁

0

ln 𝑡 𝑑𝜈(𝑡). (2.2)

Let us introduce the notion of the determining sequence of the function 𝜈(𝑟). Let 𝜌1, 𝜌2,
. . . , 𝜌𝑠, . . . be points of the jumps of the function 𝜈(𝑟) taken counting their multiplicities. This
means that if at a point 𝜌𝑠 the jump is equal to 𝑚𝑠, then in the above sequence the quantity
𝜌𝑠 appears 𝑚𝑠 times. Such sequence will be called a determining sequence of the function
𝜈(𝑟). Such definition is justified by the fact the function 𝜈(𝑟) is determined uniquely by its
determining sequence. Indeed, for each 𝑟 > 𝜌1, there exists an index 𝑠 such that 𝜌𝑠 6 𝑟 < 𝜌𝑠+1.
Then 𝜈(𝑟) = 𝑚𝑠 if 𝑟 ∈ [𝜌𝑠; 𝜌𝑠+1). But if 𝑟 ∈ [0; 𝜌1), then 𝜈(𝑟) = 0.

We also note that since for the transcendental function 𝑓(𝑧) the following limit is infinite
[16, Ch. IV]

lim
𝑟→∞

𝜈(𝑟, 𝑓) = +∞,

then

lim
𝑠→∞

𝜌𝑠 = +∞.

We also note the identity
𝑟∫︁

0

ln 𝑡 𝑑𝜈(𝑡) = ln

𝜈(𝑟)∏︁
𝑠=1

𝜌𝑠. (2.3)

Since it follows from formulae (1.2) and (1.3) that

ln𝜇(𝑟) = ln |𝑎𝜈(𝑟)| + 𝜈(𝑟) ln 𝑟,

together with formulae (2.2) and (2.3) this gives

|𝑎𝜈(𝑟)| =

𝜈(𝑟)∏︁
𝑠=1

1

𝜌𝑠
. (2.4)
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Let 𝑛 ∈ (𝜈(𝑟 − 0); 𝜈(𝑟)). Then taking into consideration identity (2.4), we have:

|𝑎𝑛|𝑟𝑛 6 |𝑎𝜈(𝑟)|𝑟𝜈(𝑟),

|𝑎𝑛| 6|𝑎𝜈(𝑟)|𝑟𝜈(𝑟)−𝑛 =

𝜈(𝑟)∏︁
𝑠=1

1

𝜌𝑠
𝑟𝜈(𝑟)−𝑛

=

𝜈(𝑟−0)∏︁
𝑠=1

1

𝜌𝑠

(︂
1

𝑟

)︂𝜈(𝑟)−𝜈(𝑟−0)

𝑟𝜈(𝑟)−𝑛

=

𝜈(𝑟−0)∏︁
𝑠=1

1

𝜌𝑠

(︂
1

𝑟

)︂𝑛−𝜈(𝑟−0)

=
𝑛∏︁

𝑠=1

1

𝜌𝑠
.

Thus, we obtain the inequality

|𝑎𝑛| 6
𝑛∏︁

𝑠=1

1

𝜌𝑠
. (2.5)

We note that if 𝑛 = 𝜈(𝑟) for some 𝑟 > 0, then inequality (2.5) becomes an identity.
We denote

�̃�𝑛 =
𝑛∏︁

𝑠=1

1

𝜌𝑠
. (2.6)

Definition 2.1. A sequence {�̃�𝑛}∞𝑛=1 determined by identity (2.6) is called a convex regular-
ization of the sequence {𝑎𝑛}∞𝑛=1.

It is clear that
|𝑎𝑛| 6 �̃�𝑛, (2.7)

and if 𝑛 = 𝜈(𝑟) for some 𝑟 > 0, then inequality (2.7) becomes an identity. Generally speaking,
inequality (2.7) can become an identity also for other 𝑛.

The above arguing implies the following theorem.

Theorem 2.1. Let

𝑓(𝑧) =
∞∑︁
𝑛=0

𝑎𝑛𝑧
𝑛, 𝑓1(𝑧) =

∞∑︁
𝑛=0

𝑏𝑛𝑧
𝑛,

be transcendental functions, 𝜈(𝑟, 𝑓) be the central index of the function 𝑓(𝑧) and 𝜈(𝑟, 𝑓1) be the
central index of the function 𝑓1(𝑧). Let the inequality |𝑏𝑛| 6 �̃�𝑛 hold, where {�̃�𝑛}∞𝑛=1 is a convex
regularization of the sequence {𝑎𝑛}∞𝑛=1 and if 𝑛 = 𝜈(𝑟, 𝑓) for some 𝑟 > 0, then |𝑏𝑛| = �̃�𝑛. Then
𝜈(𝑟, 𝑓1) = 𝜈(𝑟, 𝑓).

We give the following definition.

Definition 2.2. Suppose that we are given a central index 𝜈(𝑟) and let {𝜌𝑠}∞𝑠=1 be the deter-
mining sequence of the function 𝜈(𝑟). The sequence {�̃�𝑛}∞𝑛=1 defined by identity (2.6) is called
a convex regularization of the function 𝜈(𝑟).

We note that Definition 2.1 corresponds to a given transcendental function

𝑓(𝑧) =
∞∑︁
𝑛=0

𝑎𝑛𝑧
𝑛,

while Definition 2.2 corresponds to the given central index 𝜈(𝑟).
We denote by 𝑇𝜈 the set of all transcendental functions with a prescribed central index 𝜈(𝑟)

and let 𝑀(𝑟, 𝜈) = sup
𝑓∈𝑇𝜈

𝑀(𝑟, 𝑓). Theorem 2.1 provides a solution to the following extremal

problem.
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Theorem 2.2. Suppose that we are given a central index 𝜈(𝑟). Then for each 𝑟 > 0 the
quantity 𝑀(𝑟, 𝜈) is attained in the class of functions 𝑇𝜈 at the same function for all 𝑟 > 0:

𝑓(𝑧) =
∞∑︁
𝑛=0

�̃�𝑛𝑧
𝑛,

where {�̃�𝑛}∞𝑛=1 is a convex regularization of the function 𝜈(𝑟).

Proof. It is clear that 𝑓(𝑧) ∈ 𝑇𝜈 . By inequality (2.7) we obtain that for each function 𝑓 ∈ 𝑇𝜈 ,

𝑓(𝑧) =
∞∑︀
𝑛=0

𝑎𝑛𝑧
𝑛, the relation

𝑀(𝑟, 𝑓) 6
∞∑︁
𝑛=0

|𝑎|𝑛𝑟𝑛 6
∞∑︁
𝑛=0

�̃�𝑛𝑟
𝑛 = 𝑀(𝑟, 𝑓)

holds. The proof is complete.

The next theorem provides a representation for quantity 𝑀(𝑟, 𝑓).

Theorem 2.3. Let 𝑓(𝑧) =
∞∑︀
𝑛=0

𝑎𝑛𝑧
𝑛 be a transcendental function, 𝜈(𝑟) = 𝜈(𝑟, 𝑓) be its central

index, {𝜌𝑛}∞𝑛=1 be the determining sequence of the jump points of the functions 𝜈(𝑟). Then

𝑀(𝑟, 𝑓) =
∞∑︁
𝑛=0

�̃�𝑛𝑟
𝑛 = 1 +

∞∑︁
𝑛=1

𝑛∏︁
𝑚=1

(︂
𝑟

𝜌𝑚

)︂
. (2.8)

In the case, when the jumps of the function 𝜈(𝑟) are equal to 1, we have

𝑀(𝑟, 𝑓) =
∞∑︁
𝑛=0

�̃�𝑛𝑟
𝑛 = 1 +

∞∫︁
0

exp

⎛⎜⎝∫︁
[0,𝑠]

ln
𝑟

𝑡
𝑑𝜈(𝑡)

⎞⎟⎠ 𝑑𝜈(𝑠) = 1 +

∞∫︁
0

𝜇(𝑠)
(︁𝑟
𝑠

)︁𝜈(𝑠)
𝑑𝜈(𝑠). (2.9)

Proof. Identity (2.8) is an implication of identity (2.6). In the case if 𝜌𝑛 < 𝜌𝑛+1, then

𝑛∏︁
𝑚=1

(︂
𝑟

𝜌𝑚

)︂
= exp

(︃
𝑛∑︁

𝑚=1

ln
𝑟

𝜌𝑚

)︃
= exp

⎛⎜⎝ ∫︁
[0;𝜌𝑛]

ln
𝑟

𝜌𝑚
𝑑𝜈(𝑡)

⎞⎟⎠ .

This relation implies the second identity in (2.9).
We then have ∫︁

[0,𝑠]

ln
𝑟

𝑡
𝑑𝜈(𝑡) = 𝜈(𝑠) ln

𝑟

𝑠
+

𝑠∫︁
0

𝜈(𝑡)

𝑡
𝑑𝑡 = ln𝜇(𝑠) + 𝜈(𝑠) ln

𝑟

𝑠
.

This gives:

𝑀(𝑟, 𝑓) = 1 +

∞∫︁
0

𝜇(𝑠)
(︁𝑟
𝑠

)︁𝜈(𝑠)
𝑑𝜈(𝑠).

We also observe that if 𝜈(𝑠) = 0 as 𝑠 < 1, then

𝑠
𝜇(𝑠)
𝜈(𝑠) = exp

⎛⎝ 𝑠∫︁
1

𝜈(𝑡) − 𝜈(𝑠)

𝑡
𝑑𝜈(𝑡)

⎞⎠ 6 1.

The proof is complete.
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Remark 2.1. In the case when not all jumps of the function 𝜈(𝑟) are equal to 1, the function

𝑀(𝑟, 𝑓) is not represented by an integral with respect to the measure 𝜈.

3. Second extremal problem

The central index of each transcendental function 𝑓(𝑧), 𝑓(0) = 1, is an integer-valued in-
creasing right continuous function 𝜈(𝑟) on the semi-axis [0;∞) and 𝜈(0) = 0. And vice versa,
each such function 𝜈(𝑟) is a central index of some transcendental function 𝑓(𝑧), 𝑓(0) = 1. As in
Section 2, let 𝑇𝜈 be the set of all transcendental functions with a prescribed central index 𝜈(𝑟).

This class is easily described in terms of the coefficients of the power series
∞∑︀
𝑛=0

𝑎𝑛𝑧
𝑛, 𝑎0 = 1.

We denote by 𝒩𝜈 the set of all values of the function 𝜈(𝑟) and let {𝜌𝑛}∞𝑛=1 be the determining
sequence of the jump points of the function 𝜈(𝑟),

�̃�𝑛 =
𝑛∏︁

𝑠=1

1

𝜌𝑠
.

Then 𝑓(𝑧) ∈ 𝑇𝜈 if and only if |𝑎𝑛| 6 �̃�𝑛, while in the case 𝑛 ∈ 𝒩𝜈 the inequality should be
become the identity.

Theorem 3.1. Let 𝑟0 > 0 and 𝜈(𝑟) be a given central index. Then in the class 𝑇𝜈, there
exists a function 𝑓0(𝑧) such that

𝑀(𝑟0, 𝑓0) = inf
𝑓∈𝑇𝜈

𝑀(𝑟0, 𝑓).

Proof. Let {𝑓𝑚(𝑧)}∞𝑚=1 ⊂ 𝑇𝜈 , 𝑓𝑚(𝑧) =
∞∑︀
𝑛=0

𝑎𝑚,𝑛𝑧
𝑛 be a minimizing sequence of functions such

that

lim
𝑚→∞

𝑀(𝑟0, 𝑓𝑚) = inf
𝑓∈𝑇𝜈

𝑀(𝑟0, 𝑓).

It follows from inequality |𝑎𝑚,𝑛| 6 �̃�𝑛 that the sequence {𝑓𝑚(𝑧)}∞𝑚=1 is a compact one in the
topology of uniform convergence on compact sets. This is why, without loss of generality, we
can suppose that the sequence {𝑓𝑚(𝑧)}∞𝑚=1 is uniformly converging on an arbitrary compact
set in the complex plane. Let

𝑓0(𝑧) =
∞∑︁
𝑛=0

𝑎𝑛𝑧
𝑛 = lim

𝑚→∞
𝑓𝑚(𝑧).

Then

𝑀(𝑟0, 𝑓0) = lim
𝑚→∞

𝑀(𝑟0, 𝑓𝑚), 𝑎𝑛 = lim
𝑚→∞

𝑎𝑚,𝑛.

Since |𝑎𝑚,𝑛| 6 �̃�𝑛, then |𝑎𝑛| 6 �̃�𝑛. Moreover, since |𝑎𝑚,𝑛| = �̃�𝑛 as 𝑛 ∈ 𝒩𝜈 , then for such 𝑛 we
also have |𝑎𝑛| = �̃�𝑛. Thus, 𝑓0(𝑧) ∈ 𝑇𝜈 . The proof is complete.

Given a fixed 𝑧0 ̸= 0, |𝑧0| = 𝑟0, we denote by 𝑇𝜈(𝑟0) the set of functions 𝑓(𝑧) ∈ 𝑇𝜈 such that
𝑀(|𝑧0|, 𝑓) = |𝑓(𝑧0)|; it is clear that the set 𝑇𝜈(𝑟0) is non-empty. We consider the following
problems.

Problem 1. Whether there exists a function 𝑓0(𝑧) ∈ 𝑇𝜈(𝑟0) such that

𝑀(𝑟0, 𝑓0) = inf
𝑓∈𝑇𝜈(𝑟0)

𝑀(𝑟0, 𝑓)?

Problem 2. Whether there exists a function 𝑓0(𝑧) ∈ 𝑇𝜈(𝑟0) such that

𝑀(𝑟0, 𝑓0) = sup
𝑓∈𝑇𝜈(𝑟0)

𝑀(𝑟0, 𝑓)?
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The arguing in the proof of Theorem 3.1 show that Problems 1 and 2 are solvable. Namely,
the following statements are true.

Lemma 3.1. Let 𝑇𝜈(𝑟0) be the set of functions 𝑓(𝑧) ∈ 𝑇𝜈 such that

𝑀(|𝑧0|, 𝑓) = |𝑓(𝑧0)|.

Then there exists a function 𝑓0(𝑧) ∈ 𝑇𝜈(𝑟0) such that

𝑀(𝑟0, 𝑓0) = inf
𝑓∈𝑇𝜈(𝑟0)

𝑀(𝑟0, 𝑓).

Lemma 3.2. Let 𝑇𝜈(𝑟0) be the set of functions 𝑓(𝑧) ∈ 𝑇𝜈 such that

𝑀(|𝑧0|, 𝑓) = |𝑓(𝑧0)|.

Then there exists a function 𝑓0(𝑧) ∈ 𝑇𝜈(𝑟0) such that

𝑀(𝑟0, 𝑓0) = sup
𝑓∈𝑇𝜈(𝑟0)

𝑀(𝑟0, 𝑓).

Remark 3.1. In Lemmata 3.1, 3.2, instead of the class 𝑇𝜈(𝑟0), it is possible to consider the
class of functions 𝑇 *

𝜈 (𝑟0) = {𝑓 ∈ 𝑇𝜈 : 𝑀(|𝑧0|, 𝑓) = 𝑓(𝑧0)}; this set is non-empty for each 𝑧0 ̸= 0.
In this case, the statements of Lemmata 3.1, 3.2 remain true.
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