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ON CONNECTION BETWEEN VARIATIONAL SYMMETRIES

AND ALGEBRAIC STRUCTURES

S.A. BUDOCHKINA

Abstract. In the work we present a rather general approach for finding connections be-
tween the symmetries of 𝐵𝑢-potentials, variational symmetries, and algebraic structures,
Lie-admissible algebras and Lie algebras. In order to do this, in the space of the generators
of the symmetries of the functionals we define such bilinear operations as (S,T)-product,
G-commutator, commutator. In the first part of the work, to provide a complete descrip-
tion, we recall needed facts on 𝐵𝑢-potential operators, invariant functionals and varia-
tional symmetries. In the second part we obtain conditions, under which (S,T)-product,
G-commutator, commutator of symmetry generators of 𝐵𝑢-potentials are also their sym-
metry generators. We prove that under some conditions (S,T)-product turns the linear
space of the symmetry generators of 𝐵𝑢-potentials into a Lie-admissible algebra, while G-
commutator and commutator do into a Lie algebra. As a corollary, similar results were
obtained for the symmetry generators of potentials, 𝐵𝑢 ≡ 𝐼, where the latter is the identity
operator. Apart of this, we find a connection between the symmetries of functionals with
Lie algebras, when they have bipotential gradients. Theoretical results are demonstrated
by examples.

Keywords: variational symmetry, transformation generator, Lie-admissible algebra, Lie
algebra, (S,T)-product, G-commutator, commutator.
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1. Introduction

Symmetries and the first integrals play an important role in mathematics, mechanics, physics.
After work [1], a high interest to studying symmetry properties and finding the conservation
laws is related with fundamental monographs [2], [3]. To find the first integrals by means of the
variational symmetries one has to study the question on existence of the action functional, that
is, to solve the inverse problem of the calculus of variations including that for the equations with
non-potential operators. The construction of direct and indirect variational formulations for
various types of equations and systems were studied, for instance, in works [4], [5], [6], [7], [8],
[9], [10], [11], [12]. In works [13], [14], there was established a relation between the symmetries of
Euler and non-Euler functionals with the first integrals of the corresponding motion equations.
The methods for studying symmetry properties of operator equations with the second time
derivative developed in [15], [16] allow one to find their first integrals including the case of
non-potentiality of the operators of these equations. It was shown in monograph [17] that
the symmetries of Euler functionals are also symmetries of the corresponding Euler-Lagrange
equations. In works [18], [19], similar results were obtained in the general case for non-Euler
functionals, to which equations with quasi-potential operators correspond. A role of algebraic
structures associated with motion equations is well-known in the mechanics of finite-dimensional
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and infinite-dimensional systems [6], [7], [17], [20], [21], [22], [23]. In work [7], there was studied
the invariance with respect to the divergence of the generalized in the Pfaff sense action, a
formula for finding the first integrals of the operator Birkhoff equation was obtained and it was
proved that the generators of the divergent symmetries of the functional form a Lie algebra
with respect to the commutator. These studies were continued in works [13], [14], [18], [19].
Moreover, in work [24], there were obtained the conditions under which the (S,T)-product,
the G-commutator, the commutator of the symmetry generators for the operator equations are
also the symmetry generators and a relation between the symmetries of operator equations and
Lie-admissible algebras and Lie algebras was found.

In view of the said above, there naturally arises a problem on establishing a relation between
the variational symmetries and algebraic structures, Lie-admissible algebras and Lie algebras.
The present work is devoted to this question.

Below we follow the notations and terminology of works [6], [19], [24].

2. Necessary definitions and theorems

Below we shall make use of the following definitions and theorems.
Let 𝑈 , 𝑉 be linear normed spaces over the field of real numbers R.

Definition 2.1 ([6]). An operator 𝑁 : 𝐷(𝑁) ⊂ 𝑈 → 𝑉 is called 𝐵𝑢-potential on the set
𝐷(𝑁) relative to a bilinear form Φ : 𝑉 × 𝑉 → R if there exist a linear operator 𝐵𝑢 : 𝐷(𝐵𝑢) ⊂
𝑉 → 𝑉 and a Gâteaux differentiable functional 𝐹𝑁 : 𝐷(𝐹𝑁) = 𝐷(𝑁) → R such that

𝛿𝐹𝑁 [𝑢, ℎ] = Φ(𝑁(𝑢), 𝐵𝑢ℎ) for all 𝑢 ∈ 𝐷(𝑁), ℎ ∈ 𝐷(𝑁 ′
𝑢, 𝐵𝑢),

where 𝐷(𝑁 ′
𝑢, 𝐵𝑢) = 𝐷(𝑁 ′

𝑢) ∩𝐷(𝐵𝑢).

A functional 𝐹𝑁 is called a 𝐵𝑢-potential of the operator 𝑁 and 𝑁 is called a 𝐵𝑢-gradient of
the functional 𝐹𝑁 .

Theorem 2.1 ([6]). Let a Gâteaux differentiable operator 𝑁 : 𝐷(𝑁) ⊂ 𝑈 → 𝑉 and a
bilinear form Φ : 𝑉 × 𝑉 → R be such that for all fixed elements 𝑢 ∈ 𝐷(𝑁), 𝑔, ℎ ∈ 𝐷(𝑁 ′

𝑢, 𝐵𝑢)
the function 𝜀→ Φ(𝑁(𝑢+𝜀ℎ), 𝐵𝑢𝑔) is a continuously differentiable on the segment [0, 1]. Then
the operator 𝑁 is 𝐵𝑢-potential in a simply connected domain 𝐷(𝑁) with respect to the above
bilinear form if and only if the condition holds:

Φ(𝑁 ′
𝑢ℎ,𝐵𝑢𝑔) + Φ(𝑁(𝑢), 𝐵′

𝑢(𝑔;ℎ)) = Φ(𝑁 ′
𝑢𝑔,𝐵𝑢ℎ) + Φ(𝑁(𝑢), 𝐵′

𝑢(ℎ; 𝑔)) (2.1)

for all 𝑢 ∈ 𝐷(𝑁), 𝑔, ℎ ∈ 𝐷(𝑁 ′
𝑢, 𝐵𝑢). At that, the 𝐵𝑢-potential of 𝐹𝑁 is determined by the

formula

𝐹𝑁 [𝑢] =

1∫︁
0

Φ(𝑁(�̃�(𝜆)), 𝐵�̃�(𝜆)(𝑢− 𝑢0)) 𝑑𝜆+ 𝐹𝑁 [𝑢0], (2.2)

where �̃�(𝜆) = 𝑢0 + 𝜆(𝑢− 𝑢0) and 𝑢0 is a fixed element in 𝐷(𝑁).

If 𝐵𝑢 ≡ 𝐼 is an identical operator, then functional (2.2) becomes

𝐹𝑁 [𝑢] =

1∫︁
0

Φ(𝑁(�̃�(𝜆)), 𝑢− 𝑢0) 𝑑𝜆+ 𝐹𝑁 [𝑢0]. (2.3)

On 𝐷(𝑁) we consider an infinitely small transformation defined by the formula

𝑢 = 𝑢+ 𝜀𝑆(𝑢). (2.4)

The operator 𝑆 is called the transformation generator.
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Definition 2.2 ([19]). Functional (2.2) is called invariant with respect to transformation
(2.4) if

𝐹𝑁 [𝑢+ 𝜀𝑆(𝑢)] = 𝐹𝑁 [𝑢] + 𝑟(𝑢, 𝜀𝑆(𝑢)) ∀ 𝑢 ∈ 𝐷(𝑁), (2.5)

and

lim
𝜀→0

𝑟(𝑢, 𝜀𝑆(𝑢))

𝜀
= 0.

We note that in this case transformation (2.4) is called a symmetry of functional (2.2) and
the operator 𝑆 is called the symmetry generator. The symmetries of the functionals are also
called variational symmetries.

Definition 2.3 ([19]). An operator 𝑁 : 𝐷(𝑁) ⊂ 𝑈 → 𝑉 is called quasi-𝐵𝑢-potential on
the set 𝐷(𝑁) with respect to a bilinear form Φ : 𝑉 × 𝑉 → R if there exists a linear operator
𝐵𝑢 : 𝐷(𝐵𝑢) ⊂ 𝑉 → 𝑉 , a Gâteaux differentiable functional 𝐹 : 𝐷(𝐹 ) = 𝐷(𝑁) → R and a
density of a non-𝐵𝑢-potential force Λ(𝑢) such that

𝛿𝐹 [𝑢, ℎ] + Φ(Λ(𝑢), 𝐵𝑢ℎ) = Φ(𝑁(𝑢), 𝐵𝑢ℎ) for all 𝑢 ∈ 𝐷(𝑁), ℎ ∈ 𝐷(𝑁 ′
𝑢, 𝐵𝑢).

Let an operator 𝑁 in an equation

𝑁(𝑢) = 0 (2.6)

is quasi-𝐵𝑢-potential on 𝐷(𝑁) with respect to a continuous non-degenerate bilinear form Φ :
𝑉 × 𝑉 → R.

This means that the operator �̃� = 𝑁 − Λ is 𝐵𝑢-potential on 𝐷(𝑁) with respect to Φ.
Then the corresponding functional reads as

𝐹 [𝑢] =

1∫︁
0

Φ(�̃�(�̃�(𝜆)), 𝐵�̃�(𝜆)(𝑢− 𝑢0)) 𝑑𝜆+ 𝐹 [𝑢0]. (2.7)

Theorem 2.2 ( [19]). Transformation (2.4) is a symmetry of functional (2.7) on 𝐷(𝑁) if
and only if

Φ(�̃�(𝑢), 𝐵𝑢𝑆(𝑢)) = 0 ∀ 𝑢 ∈ 𝐷(𝑁). (2.8)

Following [6], we denote by 𝐴(𝑈) the linear space of the operators mapping 𝑈 into 𝑈 with
the usual operation of summing operators and the multiplication by a number in the field R
and we define a (S,T)-product of two operators as

(𝑆1, 𝑆2)(𝑢) = 𝑆 ′
1𝑢S𝑢𝑆2(𝑢) − 𝑆 ′

2𝑢T𝑢𝑆1(𝑢), (2.9)

and a G-commutator as

[𝑆1, 𝑆2]G(𝑢) = 𝑆 ′
1𝑢G𝑢𝑆2(𝑢) − 𝑆 ′

2𝑢G𝑢𝑆1(𝑢) (2.10)

and a commutator

[𝑆1, 𝑆2](𝑢) = 𝑆 ′
1𝑢𝑆2(𝑢) − 𝑆 ′

2𝑢𝑆1(𝑢). (2.11)

It was proved in [6] that a linear space 𝐴(𝑈) is an algebra over the field R with respect to
the (S,T)-product. This algebra is denoted by ⟨𝐴(𝑈); (S,T)⟩.

Theorem 2.3 ( [6]). If linear operators S𝑢 : 𝑈 → 𝑈 and T𝑢 : 𝑈 → 𝑈 are such that the
condition holds:

G̃′
𝑢(𝑣; G̃𝑢ℎ) = G̃′

𝑢(ℎ; G̃𝑢𝑣) for all ℎ, 𝑢, 𝑣 ∈ 𝑈,

where G̃𝑢 ≡ S𝑢 + T𝑢, then the algebra ⟨𝐴(𝑈); (S,T)⟩ is a Lie-admissible algebra.
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3. Variational symmetries and Lie-admissible algebras

Theorem 3.1. If 𝑆1, 𝑆2 are symmetry generators of functional (2.7) and if there exist op-
erators S𝑢,T𝑢 : 𝐷(𝑁 ′

𝑢, 𝐵𝑢) → 𝐷(𝑁 ′
𝑢, 𝐵𝑢) such that for all 𝑢 ∈ 𝐷(𝑁), ℎ, 𝑣 ∈ 𝐷(𝑁 ′

𝑢, 𝐵𝑢) the
condition

Φ(�̃� ′
𝑢S𝑢ℎ,𝐵𝑢𝑣) + Φ(�̃�(𝑢), 𝐵′

𝑢(𝑣; S𝑢ℎ)) = Φ(�̃� ′
𝑢T𝑢𝑣,𝐵𝑢ℎ) + Φ(�̃�(𝑢), 𝐵′

𝑢(ℎ;T𝑢𝑣)), (3.1)

holds, then (S,T)-product (2.9) is also the symmetry generator of this functional.

Proof. We have

Φ(�̃�(𝑢+ 𝜀T𝑢𝑆1(𝑢)), 𝐵𝑢+𝜀T𝑢𝑆1(𝑢)𝑆2(𝑢+ 𝜀T𝑢𝑆1(𝑢))) = 0 for all 𝑢 ∈ 𝐷(𝑁),

or

Φ(�̃� ′
𝑢T𝑢𝑆1(𝑢), 𝐵𝑢𝑆2(𝑢)) + Φ(�̃�(𝑢), 𝐵′

𝑢(𝑆2(𝑢);T𝑢𝑆1(𝑢))) + Φ(�̃�(𝑢), 𝐵𝑢𝑆
′
2𝑢T𝑢𝑆1(𝑢)) = 0.

Similarly,

Φ(�̃� ′
𝑢S𝑢𝑆2(𝑢), 𝐵𝑢𝑆1(𝑢)) + Φ(�̃�(𝑢), 𝐵′

𝑢(𝑆1(𝑢); S𝑢𝑆2(𝑢))) + Φ(�̃�(𝑢), 𝐵𝑢𝑆
′
1𝑢S𝑢𝑆2(𝑢)) = 0.

Deducting the first identity from the second identity and taking into consideration condition
(3.1), we obtain:

Φ(�̃�(𝑢), 𝐵𝑢(𝑆1, 𝑆2)(𝑢)) = 0.

Thus, (S,T)-product (2.9) is also a symmetry generator of functional (2.7), see Theorem 2.2.
The proof is complete.

Theorem 3.2. If 𝑆1, 𝑆2 are the symmetry generators of functional (2.7) and if there exist
operators S𝑢,T𝑢 : 𝐷(𝑁 ′

𝑢, 𝐵𝑢) → 𝐷(𝑁 ′
𝑢, 𝐵𝑢) such that for all 𝑢 ∈ 𝐷(𝑁), ℎ, 𝑣 ∈ 𝐷(𝑁 ′

𝑢, 𝐵𝑢) the
conditions

Φ(�̃� ′
𝑢S𝑢ℎ,𝐵𝑢𝑣) + Φ(�̃�(𝑢), 𝐵′

𝑢(𝑣; S𝑢ℎ)) = Φ(�̃� ′
𝑢T𝑢𝑣,𝐵𝑢ℎ) + Φ(�̃�(𝑢), 𝐵′

𝑢(ℎ;T𝑢𝑣)), (3.2)

G̃′
𝑢(𝑣; G̃𝑢ℎ) = G̃′

𝑢(ℎ; G̃𝑢𝑣) (3.3)

hold, where G̃𝑢 ≡ S𝑢 + T𝑢, then the symmetry generators of functional (2.7) form a Lie-
admissible algebra with respect to (S,T)-product (2.9).

Proof. The statement follows from Theorems 3.1 and 2.3.

Let 𝐵𝑢 ≡ 𝐼 be the identity operator. In this case functional (2.7) casts into the form

𝐹 [𝑢] =

1∫︁
0

Φ(�̃�(�̃�(𝜆)), 𝑢− 𝑢0) 𝑑𝜆+ 𝐹 [𝑢0], (3.4)

and Theorems 3.1 and 3.2 are formulated as follows.

Theorem 3.3. If 𝑆1, 𝑆2 are symmetry generators of functional (3.4) and if there exist the
operators S𝑢,T𝑢 : 𝐷(𝑁 ′

𝑢) → 𝐷(𝑁 ′
𝑢) such that for all 𝑢 ∈ 𝐷(𝑁), ℎ, 𝑣 ∈ 𝐷(𝑁 ′

𝑢) the condition

Φ(�̃� ′
𝑢S𝑢ℎ, 𝑣) = Φ(�̃� ′

𝑢T𝑢𝑣, ℎ) (3.5)

holds, then (S,T)-product (2.9) is also the symmetry generator of this functional.

Theorem 3.4. If 𝑆1, 𝑆2 are symmetry generators of functional (3.4) and if there exist op-
erators S𝑢,T𝑢 : 𝐷(𝑁 ′

𝑢) → 𝐷(𝑁 ′
𝑢) such that for all 𝑢 ∈ 𝐷(𝑁), ℎ, 𝑣 ∈ 𝐷(𝑁 ′

𝑢) the conditions

Φ(�̃� ′
𝑢S𝑢ℎ, 𝑣) = Φ(�̃� ′

𝑢T𝑢𝑣, ℎ), (3.6)

G̃′
𝑢(𝑣; G̃𝑢ℎ) = G̃′

𝑢(ℎ; G̃𝑢𝑣) (3.7)

hold, where G̃𝑢 ≡ S𝑢 + T𝑢, then the symmetry generators of functional (3.4) form a Lie-
admissible algebra with respect to (S,T)-product (2.9).
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4. Variational symmetries and Lie algebras

Theorem 4.1. If 𝑆1, 𝑆2 are the symmetry generators of functional (2.7) and if there exist
an operator G𝑢 : 𝐷(𝑁 ′

𝑢, 𝐵𝑢) → 𝐷(𝑁 ′
𝑢, 𝐵𝑢) such that for all 𝑢 ∈ 𝐷(𝑁), ℎ, 𝑣 ∈ 𝐷(𝑁 ′

𝑢, 𝐵𝑢) the
condition

Φ(�̃� ′
𝑢G𝑢ℎ,𝐵𝑢𝑣) + Φ(�̃�(𝑢), 𝐵′

𝑢(𝑣;G𝑢ℎ)) = Φ(�̃� ′
𝑢G𝑢𝑣,𝐵𝑢ℎ) + Φ(�̃�(𝑢), 𝐵′

𝑢(ℎ;G𝑢𝑣)) (4.1)

holds, then G-commutator (2.10) is also the symmetry generator for this functional.

The proof of this theorem is similar to the proof of Theorem 3.1 as G𝑢 ≡ S𝑢 = T𝑢.

Theorem 4.2. If 𝑆1, 𝑆2 are symmetry generators of functional (2.7) and if there exists an
operator G𝑢 : 𝐷(𝑁 ′

𝑢, 𝐵𝑢) → 𝐷(𝑁 ′
𝑢, 𝐵𝑢) such that for all 𝑢 ∈ 𝐷(𝑁), ℎ, 𝑣 ∈ 𝐷(𝑁 ′

𝑢, 𝐵𝑢) the
conditions

Φ(�̃� ′
𝑢G𝑢ℎ,𝐵𝑢𝑣) + Φ(�̃�(𝑢), 𝐵′

𝑢(𝑣;G𝑢ℎ)) = Φ(�̃� ′
𝑢G𝑢𝑣,𝐵𝑢ℎ) + Φ(�̃�(𝑢), 𝐵′

𝑢(ℎ;G𝑢𝑣)), (4.2)

G′
𝑢(𝑣;G𝑢ℎ) = G′

𝑢(ℎ;G𝑢𝑣) (4.3)

hold, then the symmetry generators of functional (2.7) form a Lie algebra with respect to G-
commutator (2.10).

Proof. This statement follows from Theorems 4.1 and 2.3.

Theorem 4.3. If the operator 𝑁 in equation (2.6) is quasi-𝐵𝑖𝑢-potential (𝑖 = 1, 2) on 𝐷(𝑁)
with respect to a continuous non-degenerate bilinear form Φ : 𝑉 × 𝑉 → R, that is, the operator
�̃� = 𝑁 −Λ is bipotential, 𝑆1, 𝑆2 are symmetry generators of functional (2.7) as 𝐵𝑢 = 𝐵1𝑢, the
inverse operator 𝐵−1

1𝑢 is well-defined and for all 𝑢 ∈ 𝐷(𝑁), ℎ, 𝑣 ∈ 𝐷(𝑁 ′
𝑢, 𝐵1𝑢, 𝐵2𝑢) the condition

Φ(�̃�(𝑢), 𝐵1𝑢G
′
𝑢(𝑣;ℎ) −𝐵1𝑢G

′
𝑢(ℎ; 𝑣)) = 0 (4.4)

holds, where G𝑢 = 𝐵−1
1𝑢 𝐵2𝑢, then G-commutator (2.10) is also a symmetry generator of func-

tional (2.7). If moreover

G′
𝑢(𝑣;G𝑢ℎ) = G′

𝑢(ℎ;G𝑢𝑣) (4.5)

for all 𝑢 ∈ 𝐷(𝑁), ℎ, 𝑣 ∈ 𝐷(𝑁 ′
𝑢, 𝐵1𝑢, 𝐵2𝑢), then the symmetry generators of functional (2.7)

form a Lie algebra with respect to G-commutator (2.10).

Proof. By formula (2.1) we obtain

Φ(�̃� ′
𝑢G𝑢ℎ,𝐵1𝑢𝑣) + Φ(�̃�(𝑢),𝐵′

1𝑢(𝑣;G𝑢ℎ)) = Φ(�̃� ′
𝑢𝑣,𝐵1𝑢G𝑢ℎ) + Φ(�̃�(𝑢), 𝐵′

1𝑢(G𝑢ℎ; 𝑣))

=Φ(�̃� ′
𝑢𝑣,𝐵2𝑢ℎ) + Φ(�̃�(𝑢), 𝐵′

1𝑢(G𝑢ℎ; 𝑣))

=Φ(�̃� ′
𝑢ℎ,𝐵2𝑢𝑣) − Φ(�̃�(𝑢), 𝐵′

2𝑢(ℎ; 𝑣))

+ Φ(�̃�(𝑢), 𝐵′
2𝑢(𝑣;ℎ)) + Φ(�̃�(𝑢), 𝐵′

1𝑢(G𝑢ℎ; 𝑣))

=Φ(�̃� ′
𝑢ℎ,𝐵1𝑢G𝑢𝑣) − Φ(�̃�(𝑢), 𝐵′

1𝑢(G𝑢ℎ; 𝑣))

− Φ(�̃�(𝑢), 𝐵1𝑢G
′
𝑢(ℎ; 𝑣)) + Φ(�̃�(𝑢), 𝐵′

1𝑢(G𝑢𝑣;ℎ))

+ Φ(�̃�(𝑢), 𝐵1𝑢G
′
𝑢(𝑣;ℎ)) + Φ(�̃�(𝑢), 𝐵′

1𝑢(G𝑢ℎ; 𝑣))

=Φ(�̃� ′
𝑢G𝑢𝑣,𝐵1𝑢ℎ) + Φ(�̃�(𝑢), 𝐵′

1𝑢(ℎ;G𝑢𝑣))

− Φ(�̃�(𝑢), 𝐵′
1𝑢(G𝑢𝑣;ℎ)) − Φ(�̃�(𝑢), 𝐵1𝑢G

′
𝑢(ℎ; 𝑣))

+ Φ(�̃�(𝑢), 𝐵′
1𝑢(G𝑢𝑣;ℎ)) + Φ(�̃�(𝑢), 𝐵1𝑢G

′
𝑢(𝑣;ℎ))

=Φ(�̃� ′
𝑢G𝑢𝑣,𝐵1𝑢ℎ) + Φ(�̃�(𝑢), 𝐵′

1𝑢(ℎ;G𝑢𝑣))

+ Φ(�̃�(𝑢), 𝐵1𝑢G
′
𝑢(𝑣;ℎ)) − Φ(�̃�(𝑢), 𝐵1𝑢G

′
𝑢(ℎ; 𝑣)).

(4.6)
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In view of condition (4.4), identity (4.6) becomes

Φ(�̃� ′
𝑢G𝑢ℎ,𝐵1𝑢𝑣) + Φ(�̃�(𝑢), 𝐵′

1𝑢(𝑣;G𝑢ℎ)) = Φ(�̃� ′
𝑢G𝑢𝑣,𝐵1𝑢ℎ) + Φ(�̃�(𝑢), 𝐵′

1𝑢(ℎ;G𝑢𝑣)).

Therefore, condition (4.1) is satisfied and by Theorem 4.1, G-commutator (2.10) is also a sym-
metry generator of functional (2.7). If moreover condition (4.5) holds, then by Theorem 4.2
the symmetry generators of functional (2.7) form a Lie algebra with respect to G-commutator
(2.10). The proof is complete.

Theorem 4.4. If 𝑆1, 𝑆2 are the symmetry generators of functional (2.7), then commutator
(2.11) is also the symmetry generator of this functional.

Proof. The statement follows from Theorem 4.1. We note that G𝑢 ≡ 𝐼, where 𝐼 is the identity
operator and this is why condition (4.1) is satisfied since in this case it ensures quasi-𝐵𝑢-
potentiality of the operator 𝑁 in equation (2.6). The proof is complete.

Theorem 4.5. The symmetry generators of functional (2.7) form a Lie algebra with respect
to operation (2.11).

Proof. This statement follows from Theorems 4.2 and 4.4. In this case G′
𝑢 is the zero operator

and this is why condition (4.3) is satisfied identically. The proof is complete.

Thus, in certain cases, Theorems 3.1, 4.1 and 4.4 can be employed for constructing symmetry
generators of functional (2.7) by at least two known symmetry generators.

Let 𝐵𝑢 ≡ 𝐼 be the identity operator. In this case functional (2.7) becomes (3.4) and Theo-
rems 4.1, 4.2, 4.4, 4.5 are formulated as follows.

Theorem 4.6. If 𝑆1, 𝑆2 are symmetry generators of functional (3.4) and if there exists an
operator G𝑢 : 𝐷(𝑁 ′

𝑢) → 𝐷(𝑁 ′
𝑢) such that for all 𝑢 ∈ 𝐷(𝑁), ℎ, 𝑣 ∈ 𝐷(𝑁 ′

𝑢) the condition

Φ(�̃� ′
𝑢G𝑢ℎ, 𝑣) = Φ(�̃� ′

𝑢G𝑢𝑣, ℎ) (4.7)

holds, then G-commutator (2.10) is also a symmetry generator of this functional.

Theorem 4.7. If 𝑆1, 𝑆2 are symmetry generators of functional (3.4) and if there exists an
operator G𝑢 : 𝐷(𝑁 ′

𝑢) → 𝐷(𝑁 ′
𝑢) such that for all 𝑢 ∈ 𝐷(𝑁), ℎ, 𝑣 ∈ 𝐷(𝑁 ′

𝑢) the conditions

Φ(�̃� ′
𝑢G𝑢ℎ, 𝑣) = Φ(�̃� ′

𝑢G𝑢𝑣, ℎ), (4.8)

G′
𝑢(𝑣;G𝑢ℎ) = G′

𝑢(ℎ;G𝑢𝑣) (4.9)

hold, then the symmetry generators of functional (3.4) form a Lie algebra with respect to G-
commutator (2.10).

Theorem 4.8. If 𝑆1, 𝑆2 are symmetry generators of functional (3.4), then their commutator
(2.11) is also a symmetry generator for this functional.

Theorem 4.9. Symmetry generators of functional (3.4) form a Lie algebra with respect to
operation (2.11).

5. Examples

1. We consider an equation

𝑁(𝑢) ≡ 𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑢𝑥 = 0, (𝑥, 𝑡) ∈ Q = (𝑎, 𝑏) × (𝑡0, 𝑡1). (5.1)

We let
𝐷(𝑁) =

{︀
𝑢 ∈ 𝑈 = 𝐶∞(Q) : 𝑢|𝑡=𝑡0 = 𝜙1(𝑥), 𝑢|𝑡=𝑡1 = 𝜙2(𝑥) (𝑥 ∈ (𝑎, 𝑏)),

𝑢|𝑥=𝑎 = 𝜓1(𝑡), 𝑢|𝑥=𝑏 = 𝜓2(𝑡) (𝑡 ∈ (𝑡0, 𝑡1))} ,
(5.2)
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where 𝜙𝑖 ∈ 𝐶[𝑎, 𝑏], 𝜓𝑖 ∈ 𝐶[𝑡0, 𝑡1], 𝑖 = 1, 2. We observe that the operator 𝑁 in (5.1) is quasipo-
tential on set 𝐷(𝑁) (5.2) with respect to a classical bilinear form

Φ(𝑣, 𝑔) =

𝑡1∫︁
𝑡0

𝑏∫︁
𝑎

𝑣(𝑥, 𝑡)𝑔(𝑥, 𝑡) 𝑑𝑥𝑑𝑡.

In this case
�̃�(𝑢) = 𝑢𝑡𝑡 − 𝑢𝑥𝑥, Λ(𝑢) = 𝑢𝑥.

The corresponding functional is the form

𝐹 [𝑢] = −1

2

𝑡1∫︁
𝑡0

𝑏∫︁
𝑎

(︀
𝑢2𝑡 − 𝑢2𝑥

)︀
𝑑𝑥𝑑𝑡. (5.3)

We shall assume that 𝑢𝑥 ∈ 𝐷(𝑁 ′
𝑢) and 𝑢𝑡 ∈ 𝐷(𝑁 ′

𝑢).
The operators 𝑆1 = 𝐷𝑥 and 𝑆2 = 𝐷𝑡 are symmetry generators of functional (5.3). This is

implied by Theorem 2.2 as 𝐵𝑢 ≡ 𝐼 is the identity operator since

Φ(�̃�(𝑢), 𝑆1(𝑢)) =

𝑡1∫︁
𝑡0

𝑏∫︁
𝑎

(𝑢𝑡𝑡 − 𝑢𝑥𝑥)𝑢𝑥𝑑𝑥𝑑𝑡 =

𝑡1∫︁
𝑡0

𝑏∫︁
𝑎

(︂
−𝑢𝑡𝑢𝑡𝑥 −

1

2
𝐷𝑥

(︀
𝑢2𝑥
)︀)︂

𝑑𝑥𝑑𝑡

=

𝑡1∫︁
𝑡0

𝑏∫︁
𝑎

(︂
−1

2
𝐷𝑥

(︀
𝑢2𝑡
)︀
− 1

2
𝐷𝑥

(︀
𝑢2𝑥
)︀)︂

𝑑𝑥𝑑𝑡 = 0

and

Φ(�̃�(𝑢), 𝑆2(𝑢)) =

𝑡1∫︁
𝑡0

𝑏∫︁
𝑎

(𝑢𝑡𝑡 − 𝑢𝑥𝑥)𝑢𝑡𝑑𝑥𝑑𝑡 =

𝑡1∫︁
𝑡0

𝑏∫︁
𝑎

(︂
1

2
𝐷𝑡

(︀
𝑢2𝑡
)︀

+ 𝑢𝑥𝑢𝑡𝑥

)︂
𝑑𝑥𝑑𝑡

=

𝑡1∫︁
𝑡0

𝑏∫︁
𝑎

(︂
1

2
𝐷𝑡

(︀
𝑢2𝑡
)︀

+
1

2
𝐷𝑡

(︀
𝑢2𝑥
)︀)︂

𝑑𝑥𝑑𝑡 = 0.

Let us also assume that
𝜕𝑖+1𝑢

𝜕𝑡𝜕𝑥𝑖
∈ 𝐷(𝑁 ′

𝑢), 𝑖 ∈ N.

Condition (3.5) holds with S𝑢 ≡ S = 𝐷𝑥 and T𝑢 ≡ T = −𝐷𝑥. Indeed,

Φ(�̃� ′
𝑢Sℎ, 𝑣) =

𝑡1∫︁
𝑡0

𝑏∫︁
𝑎

(𝐷𝑡𝑡 −𝐷𝑥𝑥)ℎ𝑥 · 𝑣𝑑𝑥𝑑𝑡

=

𝑡1∫︁
𝑡0

𝑏∫︁
𝑎

(ℎ𝑡𝑡𝑥 − ℎ𝑥𝑥𝑥) 𝑣𝑑𝑥𝑑𝑡 = −
𝑡1∫︁

𝑡0

𝑏∫︁
𝑎

(𝑣𝑡𝑡𝑥 − 𝑣𝑥𝑥𝑥)ℎ𝑑𝑥𝑑𝑡

= −
𝑡1∫︁

𝑡0

𝑏∫︁
𝑎

(𝐷𝑡𝑡 −𝐷𝑥𝑥) 𝑣𝑥 · ℎ𝑑𝑥𝑑𝑡 = Φ(�̃� ′
𝑢T𝑣, ℎ).

Then by Theorem 3.3 (S,T)-product of generators 𝑆1 and 𝑆2

(𝑆1, 𝑆2)(𝑢) = 𝑆 ′
1𝑢S𝑆2(𝑢) − 𝑆 ′

2𝑢T𝑆1(𝑢) = 𝐷𝑥𝐷𝑥𝑢𝑡 −𝐷𝑡(−𝐷𝑥)𝑢𝑥 = 2𝑢𝑡𝑥𝑥

is also a symmetry generator of functional (5.3).
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In this case G̃𝑢 ≡ S + T = 𝐷𝑥 − 𝐷𝑥 = 0 and this is why condition (3.7) is also satisfied.
By Theorem 3.4, symmetry generators of functional (5.3) form a Lie-admissible algebra with
respect to (S,T)-product

(𝑆1, 𝑆2)(𝑢) = 𝑆 ′
1𝑢𝐷𝑥𝑆2(𝑢) + 𝑆 ′

2𝑢𝐷𝑥𝑆1(𝑢).

2. We consider an equation

𝑁(𝑢) ≡ 𝑢𝑡 + 𝑢𝑢𝑥𝑥 + 𝑢2𝑥 = 0, (𝑥, 𝑡) ∈ Q = (𝑎, 𝑏) × (𝑡0, 𝑡1). (5.4)

Let
𝐷(𝑁) =

{︀
𝑢 ∈ 𝑈 = 𝐶∞(Q) : 𝑢|𝑡=𝑡0 = 𝜙1(𝑥), 𝑢|𝑡=𝑡1 = 𝜙2(𝑥) (𝑥 ∈ (𝑎, 𝑏)),

𝑢|𝑥=𝑎 = 𝑢|𝑥=𝑏 = 0
}︀
,

(5.5)

where 𝜙𝑖 ∈ 𝐶[𝑎, 𝑏], 𝑖 = 1, 2.
We observe that operator 𝑁 of form (5.4) is quasi-𝐵1𝑢-potential on set 𝐷(𝑁) (5.5) with

respect to a classical bilinear form

Φ(𝑣, 𝑔) =

𝑡1∫︁
𝑡0

𝑏∫︁
𝑎

𝑣(𝑥, 𝑡)𝑔(𝑥, 𝑡)𝑑𝑥𝑑𝑡. (5.6)

In this case

�̃�(𝑢) = 𝑢𝑢𝑥𝑥 + 𝑢2𝑥, Λ(𝑢) = 𝑢𝑡, 𝐵1𝑢 ≡ 𝐵1 = 𝐷−1
𝑥 𝐷−1

𝑥 , (5.7)

where

𝐷−1
𝑥 𝑣(𝑥, 𝑡) =

𝑥∫︁
𝑎

𝑣(𝑦, 𝑡)𝑑𝑦.

The corresponding functional reads as

𝐹 [𝑢] =
1

6

𝑡1∫︁
𝑡0

𝑏∫︁
𝑎

𝑢3𝑑𝑥𝑑𝑡. (5.8)

Operator �̃� of form (5.7) is 𝐵2𝑢-potential on set 𝐷(𝑁) (5.5) with respect to bilinear form (5.6),
where 𝐵2𝑢 = 𝑢𝐼 and 𝐼 is the identity operator. Thus, operator 𝑁 in (5.4) is quasi-𝐵𝑖𝑢-potential
(𝑖 = 1, 2) on 𝐷(𝑁) (5.5) with respect to bilinear form (5.6).

The operators 𝑆1 = 𝐷𝑥 and 𝑆2(𝑢) = 𝑢𝑢𝑥 are the symmetry generators of functional (5.8).
This is implied from Theorem 2.2 since

Φ(�̃�(𝑢), 𝐵1𝑆1(𝑢)) =

𝑡1∫︁
𝑡0

𝑏∫︁
𝑎

(︀
𝑢𝑢𝑥𝑥 + 𝑢2𝑥

)︀
𝐷−1

𝑥 𝐷−1
𝑥 𝑢𝑥𝑑𝑥𝑑𝑡 =

1

2

𝑡1∫︁
𝑡0

𝑏∫︁
𝑎

𝐷𝑥𝑥𝑢
2 ·𝐷−1

𝑥 𝐷−1
𝑥 𝑢𝑥𝑑𝑥𝑑𝑡

=
1

2

𝑡1∫︁
𝑡0

𝑏∫︁
𝑎

𝑢2𝑢𝑥𝑑𝑥𝑑𝑡 =
1

6

𝑡1∫︁
𝑡0

𝑏∫︁
𝑎

𝐷𝑥𝑢
3𝑑𝑥𝑑𝑡 = 0

and

Φ(�̃�(𝑢), 𝐵1𝑆2(𝑢)) =

𝑡1∫︁
𝑡0

𝑏∫︁
𝑎

(︀
𝑢𝑢𝑥𝑥 + 𝑢2𝑥

)︀
𝐷−1

𝑥 𝐷−1
𝑥 (𝑢𝑢𝑥) 𝑑𝑥𝑑𝑡

=
1

2

𝑡1∫︁
𝑡0

𝑏∫︁
𝑎

𝐷𝑥𝑥𝑢
2 ·𝐷−1

𝑥 𝐷−1
𝑥 (𝑢𝑢𝑥) 𝑑𝑥𝑑𝑡
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=
1

2

𝑡1∫︁
𝑡0

𝑏∫︁
𝑎

𝑢3𝑢𝑥𝑑𝑥𝑑𝑡 =
1

8

𝑡1∫︁
𝑡0

𝑏∫︁
𝑎

𝐷𝑥𝑢
4𝑑𝑥𝑑𝑡 = 0.

Condition (4.4) holds since

G𝑢𝑣 = 𝐷𝑥𝑥 (𝑢𝑣) , G′
𝑢(𝑣;ℎ) = 𝐷𝑥𝑥 (𝑣ℎ)

and

𝐵1𝑢G
′
𝑢(𝑣;ℎ) −𝐵1𝑢G

′
𝑢(ℎ; 𝑣) = 𝐷−1

𝑥 𝐷−1
𝑥 (𝐷𝑥𝑥 (𝑣ℎ)) −𝐷−1

𝑥 𝐷−1
𝑥 (𝐷𝑥𝑥 (ℎ𝑣)) = 𝑣ℎ− ℎ𝑣 = 0.

Then by Theorem 4.3 G-commutator

[𝑆1, 𝑆2]G(𝑢) =𝑆 ′
1𝑢G𝑢𝑆2(𝑢) − 𝑆 ′

2𝑢G𝑢𝑆1(𝑢)

=𝐷𝑥𝐷𝑥𝑥

(︀
𝑢2𝑢𝑥

)︀
− (𝑢𝑥𝐼 + 𝑢𝐷𝑥)𝐷𝑥𝑥 (𝑢𝑢𝑥)

=9𝑢𝑥𝑥𝑢
2
𝑥 + 3𝑢𝑢𝑥𝑢𝑥𝑥𝑥 + 3𝑢𝑢2𝑥𝑥

is a symmetry generator of functional (5.8).
We note that in this case condition (4.5) is not satisfied since

G′
𝑢(𝑣;G𝑢ℎ) = 𝐷𝑥𝑥 (𝑣𝐷𝑥𝑥 (𝑢ℎ)) , G′

𝑢(ℎ;G𝑢𝑣) = 𝐷𝑥𝑥 (ℎ𝐷𝑥𝑥 (𝑢𝑣)) .
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