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GENERALIZATION OF HADAMARD-TYPE TRAPEZOID

INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATORS

B. BAYRAKTAR, M. EMIN ÖZDEMIR

Abstract. The role of convexity theory in applied problems, especially in optimization
problems, is well known. The integral Hermite-Hadamard inequality has a special place in
this theory since it provides an upper bound for the mean value of a function. In solving
applied problems from different fields of science and technology, along with the classical
integro-differential calculus, fractional calculus plays an important role. A lot of research is
devoted to obtaining an upper bound in the Hermite-Hadamard inequality using operators
of fractional calculus.

The article formulates and proves the identity with the participation of the fractional
integration operator. Based on this identity, new generalized Hadamard-type integral in-
equalities are obtained for functions for which the second derivatives are convex and take
values at intermediate points of the integration interval. These results are obtained using
the convexity property of a function and two classical integral inequalities, the Hermite-
Hadamard integral inequality and its other form, the power mean inequality. It is shown
that the upper limit of the absolute error of inequality decreases in approximately 𝑛2 times,
where 𝑛 is the number of intermediate points. In a particular case, the obtained estimates
are consistent with known estimates in the literature. The results obtained in the article
can be used in further researches in the integro-differential fractional calculus.

Keywords: convexity, Hermite–Hadamard inequality, Hölder inequality, power–mean in-
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1. Introduction

The theory of integral inequalities is being actively developed since it is attracts a lot in
interest. In recent decades, by using various methods, inequalities for different classes of convex
functions were obtained. These classes of convex functions are based on the definition of the
classical convexity of a function. This definition reads as follows (see, for instance, [1] and its
references):

Definition 1. The function 𝑓 : [𝑎, 𝑏] → R is said to be convex if we have

𝑓 (𝑡𝜉 + (1 − 𝑡) 𝜁) 6 𝑡𝑓 (𝜉) + (1 − 𝑡) 𝑓 (𝜁) (1.1)

for all 𝜉, 𝜁 ∈ [𝑎, 𝑏] and 𝑡 ∈ [0, 1] .

One of the most important inequalities in convex analysis is the Hermite-Hadamard integral
inequality. This inequality is as follows [2]:
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Theorem 1.1. Let 𝑓 : 𝐼 ⊂ R → R be a convex function and let 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏. Then
the following double inequality holds:

𝑓

(︂
𝑎 + 𝑏

2

)︂
6

1

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓 (𝑥) 𝑑𝑥 6
𝑓 (𝑎) + 𝑓 (𝑏)

2
. (1.2)

A natural extension of classical analysis is the integro–differential calculus. This theory plays
a very important role in classical and applied mathematics( [3, 4]). In mathematical modeling
of complex systems and processes, the application of fractional calculus theory allows one to
reflect adequately the properties of real systems and processes in models [4].

Butkovsky et al. [5], along with problems in the theory of fractional calculus, gave examples
of real systems in which it is necessary to use that theory.

In the literature, there are various definitions of the fractional integral (see, for example, [6,7]),
but the Riemann-Liouville definition is widely used in most applications of fractional calculus.

Definition 2. ( [3]) Let 𝑓 ∈ 𝐿1 [𝑎, 𝑏]. The Riemann-Liouville integrals 𝐽𝛼
𝑎+𝑓 and 𝐽𝛼

𝑏−𝑓 in
order 𝛼 > 0 are defined respectively by

𝐽𝛼
𝑎+𝑓 (𝜉) =

1

Γ (𝛼)

𝜉∫︁
𝑎

(𝜉 − 𝑡)𝛼−1 𝑓 (𝑡) 𝑑𝑡, 𝜉 > 𝑎,

and

𝐽𝛼
𝑏−𝑓 (𝜉) =

1

Γ (𝛼)

𝑏∫︁
𝜉

(𝑡− 𝜉)𝛼−1 𝑓 (𝑡) 𝑑𝑡, 𝜉 < 𝑏,

where Γ (𝛼) =
∞∫︀
0

𝑒−𝑢𝑢𝛼−1𝑑𝑢 is the well known Gamma function. Here for

𝐽0
𝑎+𝑓 (𝜉) = 𝐽0

𝑏−𝑓 (𝜉) = 𝑓 (𝜉)

as 𝛼 = 0 and

𝐽1
𝑎+𝑓 (𝜉) = 𝐽1

𝑏−𝑓 (𝜉) =

𝑏∫︁
𝑎

𝑓 (𝜉) 𝑑𝜉

as 𝛼 = 1.

Two classical inequalities are used in the vast majority of studies on the theory of integral
inequality. These are Hölder inequality and, its other form, the power mean inequality.

Theorem 1.2. (Hölder inequality [8]) Let 𝑝 > 1 and 1
𝑝

+ 1
𝑞

= 1. If 𝑓(𝜉) and 𝑔(𝜉) are real

functions defined on [𝑎, 𝑏] and if |𝑓 |𝑝, |𝑔|𝑞 ∈ 𝐿[𝑎, 𝑏], then

𝑏∫︁
𝑎

|𝑓 (𝜉) 𝑔(𝜉)| 𝑑𝜉 6

⎛⎝ 𝑏∫︁
𝑎

|𝑓 (𝜉)|𝑝 𝑑𝜉

⎞⎠
1
𝑝
⎛⎝ 𝑏∫︁

𝑎

|𝑔(𝜉)|𝑞 𝑑𝜉

⎞⎠
1
𝑞

(1.3)

with equality holds if and only if 𝐴|𝑓(𝜉)|𝑝 = 𝐵|𝑔(𝜉)|𝑞 almost everywhere, where 𝐴 and 𝐵 are
constants.

Theorem 1.3. (Power mean inequality [8]) Let 𝑞 > 1 and 1
𝑝

+ 1
𝑞

= 1. If 𝑓(𝜉) and 𝑔(𝜉) are

real functions defined on [𝑎, 𝑏] and if |𝑓 |𝑝, |𝑔|𝑞 ∈ 𝐿[𝑎, 𝑏], then

𝑏∫︁
𝑎

|𝑓 (𝜉) 𝑔(𝜉)| 𝑑𝜉 6

⎛⎝ 𝑏∫︁
𝑎

|𝑓 (𝜉)| 𝑑𝜉

⎞⎠1− 1
𝑞
⎛⎝ 𝑏∫︁

𝑎

|𝑓 (𝜉)| |𝑔(𝜉)|𝑞 𝑑𝜉

⎞⎠
1
𝑞

. (1.4)
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In recent years, many authors (see [7–18] and references therein) studied Hermite–Hadamard-
type inequalities for improvements and generalizations. In these papers, new inequalities for
functions from various convexity classes were obtained.

In the studies [14–16], generalizations of an Hadamard–type integral inequality are given for
functions with convex first derivatives taking values at intermediate points. In this study, by
using the formulated identity, we obtain some new generalizations of Hadamard-type inequal-
ities for functions such that the absolute values of the second derivatives are convex and take
values at intermediate points of the interval. In addition, some applications to special means
are given.

2. Main results

Let 𝑛 ∈ N and 𝑎, 𝑏 ∈ R and 𝑎 < 𝑏. The interval [𝑎, 𝑏] with a uniform step ℎ = 𝑏−𝑎
𝑛

is divided

into 𝑛 subintervals: [𝑎, 𝑏] =
𝑛⋃︀

𝑘=1

[𝜉𝑘−1, 𝜉𝑘], where 𝜉𝑖 = 𝑎 + 𝑖ℎ, 𝑖 = 0, 1, 2, . . . , 𝑛.

To avoid some repetitions, we use the following notation:

𝐴(., .) is the arithmetic means of real numbers,

𝑦𝑘 =
𝑓(𝜉𝑘−1) + 𝑓(𝜉𝑘)

2
,

𝑈𝑘 =
𝛼

ℎ

(︁
𝐽𝛼−1

𝜉+𝑘−1

𝑓(𝜉𝑘) + 𝐽𝛼−1

𝜉−𝑘
𝑓(𝜉𝑘−1)

)︁
−
(︁
𝐽𝛼−2

𝜉+𝑘−1

𝑓(𝜉𝑘) + 𝐽𝛼−2
𝜉−
𝑘

𝑓(𝜉𝑘−1)
)︁
, 𝑘 = 1, 2, . . . , 𝑛.

The following theorem can be easily proved.

Theorem 2.1. Let 𝑓 : [𝑎, 𝑏] → R be a differentiable function on [𝑎, 𝑏]. If 𝑓 ∈ 𝐿[𝑎, 𝑏], then
for all 𝛼 > 0 the following inequality holds:

𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑛) 6
Γ(𝛼 + 1)

2
𝐴(𝑠1, 𝑠2, . . . , 𝑠𝑛) 6 𝐴(𝑦1, 𝑦2, . . . , 𝑦𝑛), (2.1)

where

𝑥𝑘 = 𝑓

(︂
𝜉𝑘−1 + 𝜉𝑘

2

)︂
, 𝑠𝑘 =

1

(𝜉𝑘 − 𝜉𝑘−1)
𝛼

(︁
𝐽𝛼
𝜉+𝑘−1

𝑓(𝜉𝑘) + 𝐽𝛼
𝜉−𝑘
𝑓(𝜉𝑘−1)

)︁
.

Remark 1. Inequality (2.1) can be treated as a corollary of Theorem 2 in [9]. For 𝑛 = 1,
by (2.1), we get:

𝑓

(︂
𝑎 + 𝑏

2

)︂
6

Γ(𝛼 + 1)

2(𝑏− 𝑎)𝛼
[𝐽𝛼

𝑎+𝑓(𝑏) + 𝐽𝛼
𝑏−𝑓(𝑎)] 6

𝑓(𝑎) + 𝑓(𝑏)

2
.

Lemma 2.1. Let 𝑓 : 𝐼 ⊂ R → R be a twice differentiable mapping on 𝐼∘, where 𝐼∘ is the
interior of 𝐼. If 𝑓 ′′ ∈ 𝐿[𝑎, 𝑏], where 𝑎, 𝑏 ∈ 𝐼, then for all 𝛼 > 2, the following identity holds

𝑛∑︁
𝑘=1

𝑓(𝜉𝑘−1) + 𝑓(𝜉𝑘)

2
− Γ(𝛼)

2ℎ𝛼−2

𝑛∑︁
𝑘=1

𝑈𝑘 =
ℎ2

2

𝑛∑︁
𝑘=1

(𝐼1𝑘 + 𝐼2𝑘) , (2.2)

where

𝐼1𝑘 =

1∫︁
0

(︀
𝑡𝛼−1 − 𝑡𝛼

)︀
𝑓 ′′(𝑡𝜉𝑘−1 + (1 − 𝑡)𝜉𝑘)𝑑𝑡,

𝐼2𝑘 =

1∫︁
0

(︀
𝑡𝛼−1 − 𝑡𝛼

)︀
𝑓 ′′((1 − 𝑡)𝜉𝑘−1 + 𝑡𝜉𝑘)𝑑𝑡.
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Proof. By taking into account that ℎ = 𝜉𝑘 − 𝜉𝑘−1 and integrating by parts twice integral 𝐼1𝑘,
we obtain

𝐼1𝑘 =

1∫︁
0

(︀
𝑡𝛼−1 − 𝑡𝛼

)︀
𝑓 ′′(𝑡𝜉𝑘−1 + (1 − 𝑡)𝜉𝑘)𝑑𝑡

= − 𝑡𝛼−1 − 𝑡𝛼

ℎ
𝑓 ′(𝑡𝜉𝑘−1 + (1 − 𝑡)𝜉𝑘)

⃒⃒1
0

+
1

ℎ

1∫︁
0

(︀
(𝛼− 1) 𝑡𝛼−2 − 𝛼𝑡𝛼−1

)︀
𝑓 ′(𝑡𝜉𝑘−1 + (1 − 𝑡)𝜉𝑘)𝑑𝑡

=
1

ℎ

(︂
−(𝛼− 1) 𝑡𝛼−2 − 𝛼𝑡𝛼−1

ℎ
𝑓(𝑡𝜉𝑘−1 + (1 − 𝑡)𝜉𝑘)|10

+
1

ℎ
(𝛼− 1)

1∫︁
0

(︀
(𝛼− 2) 𝑡𝛼−3 − 𝛼𝑡𝛼−2

)︀
𝑓(𝑡𝜉𝑘−1 + (1 − 𝑡)𝜉𝑘)𝑑𝑡

⎞⎠
=
𝑓(𝜉𝑘−1)

ℎ2
+

(𝛼− 1)

ℎ2

⎛⎝(𝛼− 2)

1∫︁
0

𝑡𝛼−3𝑓(𝑡𝜉𝑘−1 + (1 − 𝑡)𝜉𝑘)𝑑𝑡

−𝛼

1∫︁
0

𝑡𝛼−2𝑓(𝑡𝜉𝑘−1 + (1 − 𝑡)𝜉𝑘)𝑑𝑡

⎞⎠ .

In the obtained integrals, we change the variables 𝑡𝜉𝑘−1 + (1 − 𝑡)𝜉𝑘 = 𝑥 and by taking into
account the properties of the gamma function (𝑠Γ(𝑠) = Γ(𝑠 + 1)), we obtain

𝐼1𝑘 =
𝑓(𝜉𝑘−1)

ℎ2
+

(𝛼− 1)

ℎ𝛼

⎛⎜⎝(𝛼− 2)

𝜉𝑘∫︁
𝜉𝑘−1

(𝜉𝑘 − 𝑥)𝛼−3𝑓(𝑥)𝑑𝑥− 𝛼

ℎ

𝜉𝑘∫︁
𝜉𝑘−1

(𝜉𝑘 − 𝑥)𝛼−2𝑓(𝑥)𝑑𝑥

⎞⎟⎠
=
𝑓(𝜉𝑘−1)

ℎ2
+

Γ(𝛼)

ℎ𝛼

(︂
𝐽𝛼−2

𝜉+
𝑘−1

𝑓(𝜉𝑘) − 𝛼

ℎ
𝐽𝛼−1

𝜉+
𝑘−1

𝑓(𝜉𝑘)

)︂
.

Similarly, for the other integral

𝐼2𝑘 =
𝑓(𝜉𝑘)

ℎ2
+

Γ(𝛼)

ℎ𝛼

(︁
𝐽𝛼−2

𝜉−𝑘
𝑓(𝜉𝑘−1) −

𝛼

ℎ
𝐽𝛼−1

𝜉−𝑘
𝑓(𝜉𝑘−1)

)︁
.

By summing these identities, we obtain

𝐼1𝑘 + 𝐼2𝑘 =
𝑓(𝜉𝑘−1) + 𝑓(𝜉𝑘)

ℎ2
− Γ(𝛼)

ℎ𝛼

(︂
𝛼

ℎ

(︂
𝐽𝛼−1

𝜉+
𝑘−1

𝑓(𝜉𝑘) + 𝐽𝛼−1

𝜉−𝑘
𝑓(𝜉𝑘−1)

)︂
−
(︂
𝐽𝛼−2

𝜉+
𝑘−1

𝑓(𝜉𝑘) + 𝐽𝛼−2

𝜉−𝑘
𝑓(𝜉𝑘−1)

)︂)︂
or

𝐼1𝑘 + 𝐼2𝑘 =
𝑓(𝜉𝑘−1) + 𝑓(𝜉𝑘)

ℎ2
− Γ(𝛼)

ℎ𝛼
· 𝑈𝑘. (2.3)

By multiplying both sides of the equality (2.3) by the expression ℎ2

2
and taking the sum over

𝑘, we obtain (2.2). This completes the proof.

Theorem 2.2. Let 𝑓 : 𝐼 ⊂ R → R be twice differentiable function on 𝐼∘. If 𝑓 ′′ ∈ 𝐿[𝑎, 𝑏],
where 𝑎, 𝑏 ∈ 𝐼 and |𝑓 ′′| is a convex function, then for all 𝛼 > 2 the following inequality holds:⃒⃒⃒⃒

⃒
𝑛∑︁

𝑘=1

𝑓(𝜉𝑘−1) + 𝑓(𝜉𝑘)

2
− Γ(𝛼)

2ℎ𝛼−2

𝑛∑︁
𝑘=1

𝑈𝑘

⃒⃒⃒⃒
⃒ 6 ℎ2

2𝛼 (𝛼 + 1)

𝑛∑︁
𝑘=1

(|𝑓 ′′(𝜉𝑘−1)| + |𝑓 ′′(𝜉𝑘)|) . (2.4)



GENERALIZATION OF HADAMARD-TYPE TRAPEZOID INEQUALITIES ... 123

Proof. By Lemma 2.1 and the triangle inequality, we obtain

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑘=1

𝑓(𝜉𝑘−1) + 𝑓(𝜉𝑘)

2
− Γ(𝛼)

2ℎ𝛼−2

𝑛∑︁
𝑘=1

𝑈𝑘

⃒⃒⃒⃒
⃒ 6 ℎ2

2

𝑛∑︁
𝑘=1

(|𝐼1𝑘| + |𝐼2𝑘|) . (2.5)

Since |𝑓 ′′| is convex with the account of inequality (1.1), we can write

|𝐼1𝑘| =

⃒⃒⃒⃒
⃒⃒

1∫︁
0

(︀
𝑡𝛼−1 − 𝑡𝛼

)︀
𝑓 ′′(𝑡𝜉𝑘−1 + (1 − 𝑡)𝜉𝑘)𝑑𝑡

⃒⃒⃒⃒
⃒⃒

6 |𝑓 ′′(𝜉𝑘−1)|
1∫︁

0

𝑡
(︀
𝑡𝛼−1 − 𝑡𝛼

)︀
𝑑𝑡 + |𝑓 ′′ (𝜉𝑘)|

1∫︁
0

(︀
𝑡𝛼−1 − 𝑡𝛼

)︀
(1 − 𝑡)𝑑𝑡

=
1

(𝛼 + 1) (𝛼 + 2)
|𝑓 ′′(𝜉𝑘−1)| +

2

𝛼 (𝛼 + 1) (𝛼 + 2)
|𝑓 ′′ (𝜉𝑘)| .

Hence, for the integral 𝐼1𝑘 we obtain

|𝐼1𝑘| 6
1

(𝛼 + 1) (𝛼 + 2)

(︂
|𝑓 ′′(𝜉𝑘−1)| +

2

𝛼
|𝑓 ′′ (𝜉𝑘)|

)︂
.

Similarly, for the second integral |𝐼2𝑘| we can write

|𝐼2𝑘| 6
1

(𝛼 + 1) (𝛼 + 2)

(︂
2

𝛼
|𝑓 ′′(𝜉𝑘−1)| + |𝑓 ′′ (𝜉𝑘)|

)︂
.

By adding the last two inequalities, we get

|𝐼1𝑘| + |𝐼2𝑘| 6
1

𝛼 (𝛼 + 1)
(|𝑓 ′′(𝜉𝑘−1)| + |𝑓 ′′ (𝜉𝑘)|) . (2.6)

By multiplying both sides of inequality (2.6) by the expression ℎ2

2
and taking into account

inequality (2.5), we obtain (2.4). The proof is complete.

Corollary 1. If we choose 𝛼 = 2, then from (2.4), we get

⃒⃒⃒⃒
⃒⃒𝐴(𝑦1, 𝑦2, . . . , 𝑦𝑛) − 1

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓(𝑥)𝑑𝑥

⃒⃒⃒⃒
⃒⃒ 6 (𝑏− 𝑎)2

24𝑛2
𝐴(𝑧1, 𝑧2, . . . , 𝑧𝑛), (2.7)

where

𝑧𝑘 = |𝑓 ′′(𝜉𝑘−1)| + |𝑓 ′′(𝜉𝑘)| , 𝑘 = 1, 2, . . . , 𝑛.
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Proof. Since ℎ = 𝜉𝑘− 𝜉𝑘−1 = 𝑏−𝑎
𝑛

and 𝛼 = 2, for the second expression under the absolute value
in the right hand side of inequality (2.4) we have:

Γ(𝛼)

2ℎ𝛼−2

𝑛∑︁
𝑘=1

𝑈𝑘 =
Γ(𝛼)

2ℎ𝛼−2

𝑛∑︁
𝑘=1

(︁𝛼
ℎ

(︁
𝐽𝛼−1

𝜉+𝑘−1

𝑓(𝜉𝑘) + 𝐽𝛼−1

𝜉−𝑘
𝑓(𝜉𝑘−1)

)︁
−
(︁
𝐽𝛼−2

𝜉+𝑘−1

𝑓(𝜉𝑘) + 𝐽𝛼−2
𝜉−
𝑘

𝑓(𝜉𝑘−1)
)︁)︁

=
1

2

(︃
𝑛∑︁

𝑘=1

2

ℎ

(︁
𝐽1
𝜉+𝑘−1

𝑓(𝜉𝑘) + 𝐽1
𝜉−𝑘
𝑓(𝜉𝑘−1)

)︁
−
(︁
𝐽0
𝜉+𝑘−1

𝑓(𝜉𝑘) + 𝐽0
𝜉−
𝑘
𝑓(𝜉𝑘−1)

)︁)︃

=
1

2

⎛⎜⎝ 2𝑛

𝑏− 𝑎

𝑛∑︁
𝑘=1

⎛⎜⎝ 𝜉𝑘∫︁
𝜉𝑘−1

𝑓(𝑥)𝑑𝑥 +

𝜉𝑘∫︁
𝜉𝑘−1

𝑓(𝑥)𝑑𝑥

⎞⎟⎠−
𝑛∑︁

𝑘=1

(𝑓(𝜉𝑘) + 𝑓(𝜉𝑘−1))

⎞⎟⎠
=

1

2

⎛⎜⎝ 4𝑛

𝑏− 𝑎

𝑛∑︁
𝑘=1

⎛⎜⎝ 𝜉𝑘∫︁
𝜉𝑘−1

𝑓(𝑥)𝑑𝑥

⎞⎟⎠−
𝑛∑︁

𝑘=1

(𝑓(𝜉𝑘) + 𝑓(𝜉𝑘−1))

⎞⎟⎠
=

1

2

⎛⎝ 4𝑛

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓(𝑥)𝑑𝑥−
𝑛∑︁

𝑘=1

(𝑓(𝜉𝑘) + 𝑓(𝜉𝑘−1))

⎞⎠
=

2𝑛

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓(𝑥)𝑑𝑥− 1

2

𝑛∑︁
𝑘=1

(𝑓(𝜉𝑘) + 𝑓(𝜉𝑘−1)) .

Thus, we can rewrite inequality (2.4) as⃒⃒⃒⃒
⃒

𝑛∑︁
𝑘=1

𝑓(𝜉𝑘−1) + 𝑓(𝜉𝑘)

2
− Γ(𝛼)

2ℎ𝛼−2

𝑛∑︁
𝑘=1

𝑈𝑘

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒⃒ 𝑛∑︁
𝑘=1

𝑓(𝜉𝑘−1) + 𝑓(𝜉𝑘)

2
−

⎛⎝ 2𝑛

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓(𝑥)𝑑𝑥− 1

2

𝑛∑︁
𝑘=1

(𝑓(𝜉𝑘) + 𝑓(𝜉𝑘−1))

⎞⎠⃒⃒⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒⃒ 𝑛∑︁
𝑘=1

(𝑓(𝜉𝑘−1) + 𝑓(𝜉𝑘)) − 2𝑛

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓(𝑥)𝑑𝑥

⃒⃒⃒⃒
⃒⃒

6
(𝑏− 𝑎)2

12𝑛2

𝑛∑︁
𝑘=1

(|𝑓 ′′(𝜉𝑘−1)| + |𝑓 ′′(𝜉𝑘)|)

or ⃒⃒⃒⃒
⃒⃒ 𝑛∑︁
𝑘=1

𝑓(𝜉𝑘−1) + 𝑓(𝜉𝑘)

2
− 𝑛

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓(𝑥)𝑑𝑥

⃒⃒⃒⃒
⃒⃒ 6 (𝑏− 𝑎)2

24𝑛2

𝑛∑︁
𝑘=1

(|𝑓 ′′(𝜉𝑘−1)| + |𝑓 ′′(𝜉𝑘)|) .

By dividing both sides of the last inequality by 𝑛, we obtain (2.7). The proof is completed.

Corollary 2. If we choose 𝑛 = 1, by (2.7) we get⃒⃒⃒⃒
⃒⃒𝑓(𝑎) + 𝑓(𝑏)

2
− 1

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓(𝑥)𝑑𝑥

⃒⃒⃒⃒
⃒⃒ 6 (𝑏− 𝑎)2

24
(|𝑓 ′′(𝑎)| + |𝑓 ′′(𝑏)|) . (2.8)

This inequality for convex functions was obtained by M. Sarıkaya and N. Aktan, see
[18, Prop. 2], and in [11, Cor. 3.1].
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Proposition 1. Let 𝜀 ∈ (0, 1) and 𝑛 ∈ 𝑁 . In order to satisfy the inequality,⃒⃒⃒⃒
⃒⃒𝐴(𝑦1, 𝑦2, . . . , 𝑦𝑛) − 1

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓(𝑥)𝑑𝑥

⃒⃒⃒⃒
⃒⃒ < 𝜀,

it is sufficient to

𝑛 >

(︃⃒⃒⃒⃒
⃒𝑏− 𝑎

2

√︂
‖𝑓 ′′‖
3𝜀

⃒⃒⃒⃒
⃒
)︃
, (2.9)

where ‖𝑓 ′′‖ = sup
𝑥∈(𝑎,𝑏)

|𝑓 ′′(𝑥)| .

Proof. From the right hand side of the inequality (2.7), we have

(𝑏− 𝑎)2

24𝑛2
𝐴(𝑧1, 𝑧2, . . . , 𝑧𝑛) =

(𝑏− 𝑎)2

24𝑛3

𝑛∑︁
𝑘=1

(|𝑓 ′′ (𝜉𝑘−1)| + |𝑓 ′′ (𝜉𝑘)|) (2.10)

6
(𝑏− 𝑎)2

24𝑛3
(2𝑛 ‖𝑓 ′′‖) =

(𝑏− 𝑎)2

12𝑛2
‖𝑓 ′′‖

and since
(𝑏− 𝑎)2

12𝑛2
‖𝑓 ′′‖ 6 𝜀,

then for 𝑛 we get

𝑛 >

⃦⃦⃦⃦
⃦𝑏− 𝑎

2

√︂
‖𝑓 ′′‖
3𝜀

⃦⃦⃦⃦
⃦ .

The proof is complete.

Remark 2. Let 𝑅(𝑓, ℎ) be the estimation error of the Trapezoidal rule of numerical integra-
tion, then by (2.7) we obtain the estimate for the error known in the literature:

𝑅(𝑓, ℎ) =
𝑏− 𝑎

12
ℎ2 ‖𝑓 ′′‖ .

Remark 3. If ‖𝑓 ′′‖ = sup
𝑥∈[𝑎,𝑏)

|𝑓 ′′(𝑥)|, then from inequality (2.8), it follows that⃒⃒⃒⃒
⃒⃒𝑓(𝑎) + 𝑓(𝑏)

2
− 1

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓(𝑥)𝑑𝑥

⃒⃒⃒⃒
⃒⃒ 6 (𝑏− 𝑎)2

12
‖𝑓 ′′‖ (2.11)

and from (2.7), by taken into account inequality (2.10), we get⃒⃒⃒⃒
⃒⃒𝐴 (𝑦1, 𝑦2, . . . , 𝑦𝑛) − 1

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓(𝑥)𝑑𝑥

⃒⃒⃒⃒
⃒⃒ 6 (𝑏− 𝑎)2

12𝑛2
‖𝑓 ′′‖ . (2.12)

These two inequalities show that when the interval is divided into 𝑛 sub-intervals, the error of
an Hadamard–type inequality decreases in 𝑛2 times.

Theorem 2.3. Let 𝑓 : 𝐼 ⊂ R → R be a twice differentiable function on 𝐼∘. If 𝑓 ′′ ∈ 𝐿 [𝑎, 𝑏] ,
where 𝑎, 𝑏 ∈ 𝐼 and | 𝑓 ′′|𝑞 is a convex function on [𝑎, 𝑏], then for all 𝛼 > 2, 𝑞 > 1, and
1
𝑝

+ 1
𝑞

= 1 the following inequality holds⃒⃒⃒⃒
⃒

𝑛∑︁
𝑘=1

𝑓(𝜉𝑘−1) + 𝑓(𝜉𝑘)

2
− Γ(𝛼)

2ℎ𝛼−2

𝑛∑︁
𝑘=1

𝑈𝑘

⃒⃒⃒⃒
⃒ 6 ℎ2𝜛

2𝛼

𝑛∑︁
𝑘=1

𝐷𝑘, (2.13)
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where

𝜛 =

(︂
Γ(𝛼 + 1)Γ(𝑞 + 1)

Γ(𝛼 + 𝑞 + 2)

)︂ 1
𝑞

,

𝐷𝑘 =
(︀
𝛼 |𝑓 ′′(𝜉𝑘−1)|𝑞 + (𝑞 + 1) |𝑓 ′′(𝜉𝑘−1)|𝑞

)︀ 1
𝑞

+
(︀
(𝑞 + 1) |𝑓 ′′(𝜉𝑘−1)|𝑞 + 𝛼 |𝑓 ′′(𝜉𝑘−1)|𝑞

)︀ 1
𝑞 .

Proof. By Lemma 2.1 and the triangle inequality, we obtain⃒⃒⃒⃒
⃒

𝑛∑︁
𝑘=1

𝑓(𝜉𝑘−1) + 𝑓(𝜉𝑘)

2
− Γ(𝛼)

2ℎ𝛼−2

𝑛∑︁
𝑘=1

𝑈𝑘

⃒⃒⃒⃒
⃒ 6 (𝑏− 𝑎)2

2
(|𝐼1𝑘| + |𝐼2𝑘|) . (2.14)

By using the Hölder integral inequality (1.3) and since | 𝑓 ′′|𝑞 is a convex function, we have

|𝐼1𝑘| =

⃒⃒⃒⃒
⃒⃒

1∫︁
0

𝑡𝛼−1 (1 − 𝑡) 𝑓 ′′(𝑡𝜉𝑘−1 + (1 − 𝑡)𝜉𝑘)𝑑𝑡

⃒⃒⃒⃒
⃒⃒

6

1∫︁
0

𝑡
𝛼−1
𝑝 𝑡

𝛼−1
𝑞 (1 − 𝑡) |𝑓 ′′(𝑡𝜉𝑘−1 + (1 − 𝑡)𝜉𝑘)| 𝑑𝑡

6

⎛⎝ 1∫︁
0

𝑡𝛼−1𝑑𝑡

⎞⎠
1
𝑝
⎛⎝ 1∫︁

0

𝑡𝛼−1(1 − 𝑡)𝑞
(︀
𝑡 |𝑓 ′′(𝜉𝑘−1)|𝑞 + (1 − 𝑡) |𝑓 ′′ (𝜉𝑘)|𝑞

)︀
𝑑𝑡

⎞⎠
1
𝑞

= 𝛼− 1
𝑝

⎛⎝|𝑓 ′′(𝜉𝑘−1)|𝑞
1∫︁

0

𝑡𝛼(1 − 𝑡)𝑞𝑑𝑡 + |𝑓 ′′(𝜉𝑘−1)|𝑞
1∫︁

0

𝑡𝛼−1(1 − 𝑡)𝑞+1𝑑𝑡

⎞⎠
1
𝑞

= 𝛼− 1
𝑝
(︀
𝐵 (𝛼 + 1, 𝑞 + 1) |𝑓 ′′(𝜉𝑘−1)|𝑞 + |𝑓 ′′(𝜉𝑘)|𝑞 𝐵 (𝛼, 𝑞 + 2)

)︀
,

where 𝐵 (., .) is the Euler Beta functions.
By the Euler functions properties

𝐵 (𝛼 + 1, 𝑞 + 1) =
Γ(𝛼 + 1)Γ(𝑞 + 1)

Γ(𝛼 + 𝑞 + 2)
=

𝛼Γ(𝛼)Γ(𝑞 + 1)

Γ(𝛼 + 𝑞 + 2)
,

𝐵 (𝛼, 𝑞 + 2) =
Γ(𝛼)Γ(𝑞 + 2)

Γ(𝛼 + 𝑞 + 2)
=

(𝑞 + 1)Γ(𝛼)Γ(𝑞 + 1)

Γ(𝛼 + 𝑞 + 2)
,

for the first integral, we get

|𝐼1𝑘| 6
(︂

1

𝛼

)︂1− 1
𝑞
(︂

Γ(𝛼)Γ(𝑞 + 1)

Γ(𝛼 + 𝑞 + 2)

)︂ 1
𝑞 (︀

𝛼 |𝑓 ′′(𝜉𝑘−1)|𝑞 + (𝑞 + 1) |𝑓 ′′(𝜉𝑘−1)|𝑞
)︀ 1

𝑞

=
1

𝛼

(︂
Γ(𝛼 + 1)Γ(𝑞 + 1)

Γ(𝛼 + 𝑞 + 2)

)︂ 1
𝑞 (︀

𝛼 |𝑓 ′′(𝜉𝑘−1)|𝑞 + (𝑞 + 1) |𝑓 ′′(𝜉𝑘−1)|𝑞
)︀ 1

𝑞 |𝐼1𝑘|

6
𝜛

𝛼
·
(︀
𝛼 |𝑓 ′′(𝜉𝑘−1)|𝑞 + (𝑞 + 1) |𝑓 ′′(𝜉𝑘−1)|𝑞

)︀ 1
𝑞 .

Similarly, for the second integral 𝐼2𝑘, we can write

|𝐼2𝑘| 6
𝜛

𝛼
·
(︀
(𝑞 + 1) |𝑓 ′′(𝜉𝑘−1)|𝑞 + 𝛼 |𝑓 ′′(𝜉𝑘−1)|𝑞

)︀ 1
𝑞 .

By adding the last inequalities, we get

|𝐼1𝑘| + |𝐼2𝑘| 6
𝜛

𝛼
·𝐷𝑘. (2.15)
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By multiplying both sides of inequality (2.15) by the expression ℎ2

2
and taking into account

(2.14), we obtain inequality (2.13). The proof is complete.

Corollary 3. If 𝛼 = 2, then from (2.13), we get⃒⃒⃒⃒
⃒⃒𝐴(𝑦1, 𝑦2, . . . , 𝑦𝑛) − 1

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓(𝑥)𝑑𝑥

⃒⃒⃒⃒
⃒⃒ 6 (𝑏− 𝑎)2𝜛(𝑞)

8𝑛2
𝐴(𝐷1, 𝐷2, . . . , 𝐷𝑛), (2.16)

where

𝜛(𝑞) =

(︂
2

(𝑞 + 1)(𝑞 + 2)(𝑞 + 3)

)︂ 1
𝑞

,

𝐷𝑘 =
(︀
2 |𝑓 ′′(𝜉𝑘−1)|𝑞 + (𝑞 + 1) |𝑓 ′′(𝜉𝑘)|𝑞

)︀ 1
𝑞 +

(︀
(𝑞 + 1) |𝑓 ′′(𝜉𝑘−1)|𝑞 + 2 |𝑓 ′′(𝜉𝑘)|𝑞

)︀ 1
𝑞 .

Proof. For 𝛼 = 2 as shown in Corollary 1, the left hand side of the inequality (2.13) will be⃒⃒⃒⃒
⃒

𝑛∑︁
𝑘=1

𝑓(𝜉𝑘−1) + 𝑓(𝜉𝑘)

2
− Γ(𝛼)

2ℎ𝛼−2

𝑛∑︁
𝑘=1

𝑈𝑘

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒⃒ 𝑛∑︁
𝑘=1

(𝑓(𝜉𝑘) + 𝑓(𝜉𝑘−1)) −
2𝑛

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓(𝑥)𝑑𝑥

⃒⃒⃒⃒
⃒⃒ . (2.17)

For the right hand side of inequality (2.13), we get

𝜛(𝑞) =

(︂
Γ(𝛼 + 1)Γ(𝑞 + 1)

Γ(𝛼 + 𝑞 + 2)

)︂ 1
𝑞

=

(︂
Γ(3)Γ(𝑞 + 1)

Γ(𝑞 + 4)

)︂ 1
𝑞

=

(︂
2𝑞Γ(𝑞)

(𝑞 + 3)(𝑞 + 2)(𝑞 + 1)𝑞Γ(𝑞)

)︂ 1
𝑞

=

(︂
2

(𝑞 + 3)(𝑞 + 2)(𝑞 + 1)

)︂ 1
𝑞

.

Hence, inequality (2.13) becomes

2𝑛

⃒⃒⃒⃒
⃒⃒ 1𝑛

𝑛∑︁
𝑘=1

(︂
𝑓(𝜉𝑘) + 𝑓(𝜉𝑘−1)

2

)︂
− 1

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓(𝑥)𝑑𝑥

⃒⃒⃒⃒
⃒⃒ 6 ℎ2𝜛(𝑞)

4

𝑛∑︁
𝑘=1

𝐷𝑘.

By dividing both sides of the last inequality by 2𝑛, we get (2.16).

Remark 4. For 𝑛 = 1, by (2.16) we get⃒⃒⃒⃒
⃒⃒𝑓(𝑎) + 𝑓(𝑏)

2
− 1

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓(𝑥)𝑑𝑥

⃒⃒⃒⃒
⃒⃒ 6 (𝑏− 𝑎)2

8
𝜛(𝑞) ·𝐷1, (2.18)

where

𝜛(𝑞) =

(︂
2

(𝑞 + 1)(𝑞 + 2)(𝑞 + 3)

)︂ 1
𝑞

,

𝐷1 =
(︀
2 |𝑓 ′′(𝑎)|𝑞 + (𝑞 + 1) |𝑓 ′′(𝑏)|𝑞

)︀ 1
𝑞 +

(︀
(𝑞 + 1) |𝑓 ′′(𝑎)|𝑞 + 2 |𝑓 ′′(𝑏)|𝑞

)︀ 1
𝑞 .

Since the

lim
𝑞→1+

(︂
2

(𝑞 + 1)(𝑞 + 2)(𝑞 + 3)

)︂ 1
𝑞

=
1

12

and

lim
𝑞→∞

(︂
2

(𝑞 + 1)(𝑞 + 2)(𝑞 + 3)

)︂ 1
𝑞

= 1,
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we hence have

1

12
6

(︂
3

(𝑞 + 1)(𝑞 + 2)(𝑞 + 3)

)︂ 1
𝑞

< 1

for all 𝑞 > 1. For 𝑞 → 1+, by (2.18) we get (2.8).

Theorem 2.4. Let 𝑓 : 𝐼 ⊂ R→ R be a twice differentiable function on 𝐼∘. If 𝑓 ′′ ∈ 𝐿 [𝑎, 𝑏],
where 𝑎, 𝑏 ∈ 𝐼 and | 𝑓 ′′|𝑞 is a convex function on [𝑎, 𝑏], then for all 𝛼 > 2 and 𝑞 > 1 the
following inequality holds⃒⃒⃒⃒

⃒
𝑛∑︁

𝑘=1

𝑓(𝜉𝑘−1) + 𝑓(𝜉𝑘)

2
− Γ(𝛼)

2ℎ𝛼−2

𝑛∑︁
𝑘=1

𝑈𝑘

⃒⃒⃒⃒
⃒ 6 ℎ2𝜗

2

𝑛∑︁
𝑘=1

𝑉𝑘, (2.19)

where

𝜗 =
1

𝛼(𝛼 + 1)

(︂
𝛼

𝛼 + 2

)︂ 1
𝑞

,

𝑉𝑘 =

(︂
|𝑓 ′′(𝜉𝑘−1)|𝑞 +

2

𝛼
|𝑓 ′′ (𝜉𝑘)|𝑞

)︂ 1
𝑞

+

(︂
2

𝛼
|𝑓 ′′(𝜉𝑘−1)|𝑞 + |𝑓 ′′ (𝜉𝑘)|𝑞

)︂ 1
𝑞

.

Proof. Owing to identity (2.2) and the triangle inequality, we can write:⃒⃒⃒⃒
⃒

𝑛∑︁
𝑘=1

𝑓(𝜉𝑘−1) + 𝑓(𝜉𝑘)

2
− Γ(𝛼)

2ℎ𝛼−2

𝑛∑︁
𝑘=1

𝑈𝑘

⃒⃒⃒⃒
⃒ 6 (𝑏− 𝑎)2

2
(|𝐼1𝑘| + |𝐼2𝑘|) . (2.20)

By using the well-known power mean integral inequality (1.4) and since |𝑓 ′′|𝑞 is a convex
function, we have

|𝐼1𝑘| =

⃒⃒⃒⃒
⃒⃒

1∫︁
0

𝑡𝛼−1 (1 − 𝑡) 𝑓 ′′(𝑡𝜉𝑘−1 + (1 − 𝑡)𝜉𝑘)𝑑𝑡

⃒⃒⃒⃒
⃒⃒ 6

⎛⎝ 1∫︁
0

𝑡𝛼−1 (1 − 𝑡) 𝑑𝑡

⎞⎠1− 1
𝑞

·

⎛⎝ 1∫︁
0

𝑡𝛼−1 (1 − 𝑡)
(︀
𝑡 |𝑓 ′′(𝜉𝑘−1)|𝑞 + (1 − 𝑡) |𝑓 ′′ (𝜉𝑘)|𝑞

)︀
𝑑𝑡

⎞⎠
1
𝑞

=

(︂
1

𝛼(𝛼 + 1)

)︂1− 1
𝑞

⎛⎝|𝑓 ′′(𝜉𝑘−1)|𝑞
1∫︁

0

(1 − 𝑡)𝑡𝛼𝑑𝑡 + |𝑓 ′′ (𝜉𝑘)|𝑞
1∫︁

0

𝑡𝛼−1(1 − 𝑡)2𝑑𝑡
1
𝑞

⎞⎠
=

(︂
1

𝛼(𝛼 + 1)

)︂1− 1
𝑞
(︂

1

(𝛼 + 1)(𝛼 + 2)
|𝑓 ′′(𝜉𝑘−1)|𝑞 +

2

𝛼(𝛼 + 1)(𝛼 + 2)
|𝑓 ′′ (𝜉𝑘)|𝑞

)︂ 1
𝑞

=

(︂
1

𝛼(𝛼 + 1)

)︂1− 1
𝑞
(︂

1

(𝛼 + 1)(𝛼 + 2)

)︂ 1
𝑞
(︂
|𝑓 ′′(𝜉𝑘−1)|𝑞 +

2

𝛼
|𝑓 ′′ (𝜉𝑘)|𝑞

)︂ 1
𝑞

or

|𝐼1𝑘| 6
1

𝛼(𝛼 + 1)

(︂
𝛼

𝛼 + 2

)︂ 1
𝑞
(︂
|𝑓 ′′(𝜉𝑘−1)|𝑞 +

2

𝛼
|𝑓 ′′ (𝜉𝑘)|𝑞

)︂ 1
𝑞

. (2.21)

Similarly, for the second integral, we can write

|𝐼2𝑘| 6
1

𝛼(𝛼 + 1)

(︂
𝛼

𝛼 + 2

)︂ 1
𝑞
(︂

2

𝛼
|𝑓 ′′(𝜉𝑘−1)|𝑞 + |𝑓 ′′ (𝜉𝑘)|𝑞

)︂ 1
𝑞

. (2.22)



GENERALIZATION OF HADAMARD-TYPE TRAPEZOID INEQUALITIES ... 129

By adding side by side the last inequalites (2.21) and (2.22), we get

|𝐼1𝑘| + |𝐼2𝑘| 6
1

𝛼(𝛼 + 1)

(︂
𝛼

𝛼 + 2

)︂ 1
𝑞

𝑉𝑘. (2.23)

By multiplying both sides of inequality (2.23) by the expression ℎ2

2
and taking into account

(2.20), we obtain inequality (2.19). The proof is completed.

Corollary 4. For 𝛼 = 2, from Theorem 2.4, we get⃒⃒⃒⃒
⃒⃒𝐴(𝑦1, 𝑦2, . . . , 𝑦𝑛) − 1

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓(𝑥)𝑑𝑥

⃒⃒⃒⃒
⃒⃒ 6 (𝑏− 𝑎)2

12𝑛2
𝐴(𝑣1, 𝑣2, . . . , 𝑣𝑛), (2.24)

where

𝑣𝑘 =

(︂
|𝑓 ′′(𝜉𝑘−1)|𝑞 + |𝑓 ′′ (𝜉𝑘)|𝑞

2

)︂ 1
𝑞

, 𝑘 = 1, 2, . . . , 𝑛.

Proof. If we take 𝛼 = 2, then from Theorem 2.4, we have

𝜗 =
1

𝛼(𝛼 + 1)

(︂
𝛼

𝛼 + 2

)︂ 1
𝑞

=
1

6

(︂
1

2

)︂ 1
𝑞

,

𝑉𝑘 =

(︂
|𝑓 ′′(𝜉𝑘−1)|𝑞 +

2

𝛼
|𝑓 ′′ (𝜉𝑘)|𝑞

)︂ 1
𝑞

+

(︂
2

𝛼
|𝑓 ′′(𝜉𝑘−1)|𝑞 + |𝑓 ′′ (𝜉𝑘)|𝑞

)︂ 1
𝑞

= 2
(︀
|𝑓 ′′(𝜉𝑘−1)|𝑞 + |𝑓 ′′ (𝜉𝑘)|𝑞

)︀ 1
𝑞

and, in view of (2.17), we can write⃒⃒⃒⃒
⃒⃒ 𝑛∑︁
𝑘=1

(𝑓(𝜉𝑘) + 𝑓(𝜉𝑘−1)) −
2𝑛

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓(𝑥)𝑑𝑥

⃒⃒⃒⃒
⃒⃒ 6 (𝑏− 𝑎)2

12𝑛2

(︂
1

2

)︂ 1
𝑞

𝑛∑︁
𝑘=1

𝑉𝑘 =
(𝑏− 𝑎)2

6𝑛2

𝑛∑︁
𝑘=1

𝑣𝑘.

By dividing both sides of the last inequality by 2𝑛, we get (2.24).

Remark 5. If we choose 𝑛 = 1, from (2.24), we get⃒⃒⃒⃒
⃒⃒𝑓(𝑎) + 𝑓(𝑏)

2
− 1

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓(𝑥)𝑑𝑥

⃒⃒⃒⃒
⃒⃒ 6 (𝑏− 𝑎)2

12

(︂
|𝑓 ′′(𝑎)|𝑞 + |𝑓 ′′(𝑏)|𝑞

2

)︂ 1
𝑞

. (2.25)

For 𝑞 = 1, from (2.25), we get (2.8).
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