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STUDY OF APPROXIMATE SOLUTION TO

INTEGRAL EQUATION ASSOCIATED WITH

MIXED BOUNDARY VALUE PROBLEM FOR

LAPLACE EQUATION

E.H. KHALILOV, M.N. BAKHSHALIYEVA

Abstract. We consider an approximate solution of the integral equation arising after
reduction of a mixed problem for the Laplace equation. The main advantage of applying
the method of integral equations to studying external boundary value problems is that such
approach allows one to reduce the problem posed in an unbounded domain to a problem
in a domain of a smaller dimension. In the work we study an approximate solution to
the integral equation, to which the mixed problem for the Laplace equation is reduced.
We seek its solution as a combination of logarithmic single layer potentials and double
layer potential, we reduce the problem to an integral equations depending not only on
the operators generated by the logarithmic potentials but also on the composition of such
operators. We prove that the obtained integral equation has the unique solution in the
space of continuous functions. Since the integral equations can be solved in the closed form
only in very rare cases, it is of a high importance to develop approximate methods for
solving integral equations and give their appropriate theoretical justification. We partition
a curve into elementary parts and by certain nodes we construct quadrature formulae
for a class of curvilinear potentials and for the composition of the integrals generated
by logarithmic potentials and we also estimate the errors of these formulae. Employing
these quadrature formulae, the obtained integral equation is replaced by the system of
algebraic equations. Then by means of Vainikko’s convergence theorem for linear operator
equations, we establish the existence and uniqueness of solutions to this system. We prove
the convergence of the obtained system of algebraic equations to the values of the exact
solution of the integral equation at the chosen nodes. Moreover, we find the convergence
rate of this method. As a result, we find a sequence converging to the solution of the mixed
boundary value problem for the Laplace equation and its convergence rate is known.

Keywords: curvilinear integral, integral equation method, collocation method, mixed
boundary value problem, Laplace equation.
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1. Introduction and formulation of problem

Let 𝐷 ⊂ R2 be a bounded domain with a twice differentiable boundary 𝐿.
We consider a mixed boundary value problem for the Laplace equation: find a function

𝑢 ∈ 𝐶(2)
(︀
R2 ∖ �̄�

)︀⋂︀
𝐶 (R2 ∖𝐷) possessing a normal derivative in the sense of the uniform

convergence, satisfying the Laplace equation ∆𝑢 = 0 in R2 ∖ �̄�, the Sommerfeld radiation
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condition (︂
𝑥

|𝑥|
, grad𝑢 (𝑥)

)︂
= 𝑜

(︃
1

|𝑥|
1
2

)︃
, 𝑥→ ∞,

uniformly over all directions 𝑥/ |𝑥|, and the boundary condition

𝜕𝑢 (𝑥)

𝜕�⃗� (𝑥)
+ 𝜆𝑢 (𝑥) = 𝑓 (𝑥) on 𝐿,

where �⃗� (𝑥) is the unit normal vector at a point 𝑥 ∈ 𝐿, the symbol 𝜆 denotes a given number,
while 𝑓 stands for a given continuous function on 𝐿. One of the methods of solving a mixed
boundary value problem for the Laplace equation is reducing it to an integral equation. It is
known that the main advantage of applying the method of integral equations to studying the
outer boundary value problems is that such approach allows one to reduce the problem posed
for an unbounded domain to a problem in a bounded domain of a smaller dimension.

Let Φ(𝑥, 𝑦) be a fundamental solution of the Laplace equation, 𝑣 (𝑥, 𝜌) be the logarithmic
single layer potential, while 𝑤 (𝑥, 𝜌) be the double layer logarithmic potential, that is,

Φ(𝑥, 𝑦) =
1

2𝜋
ln

1

|𝑥− 𝑦|
, 𝑥, 𝑦 ∈ R2, 𝑥 ̸= 𝑦,

𝑣 (𝑥, 𝜌) =

∫︁
𝐿

Φ (𝑥, 𝑦) 𝜌 (𝑦) 𝑑𝐿𝑦, 𝑤 (𝑥, 𝜌) =

∫︁
𝐿

𝜕Φ (𝑥, 𝑦)

𝜕�⃗� (𝑦)
𝜌 (𝑦) 𝑑𝐿𝑦.

It is obvious that then

𝑤 (𝑥, 𝑣) =

∫︁
𝐿

𝜕Φ (𝑥, 𝑦)

𝜕�⃗� (𝑦)

⎛⎝∫︁
𝐿

Φ (𝑦, 𝑡) 𝜌 (𝑡) 𝑑𝐿𝑡

⎞⎠ 𝑑𝐿𝑦, 𝑥 ∈ R2.

Taking into consideration the limiting values of the logarithmic potentials and proceeding as
in work [1], it is easy to show that the function

𝑢 (𝑥) = 𝑣 (𝑥, 𝜌) + 𝑖𝜇𝑤 (𝑥, 𝑣) , 𝑥 ∈ R2 ∖ �̄�,
where 𝜇 ̸= 0 is an arbitrary real number solves the mixed boundary value problem for the
Laplace equation if the density 𝜌 is a solution to a uniquely solvable integral equation

𝜌+ 𝐴𝜌 = 𝜙, (1.1)

where

𝐴 = − (2 + 𝑖𝜇)−1
(︁

2�̃� + 4𝑖𝜇𝑅 + 𝜆 (2 + 𝑖𝜇)𝑆 + 4𝑖𝜆𝜇𝑄
)︁
,

𝜙 = −4 (2 + 𝑖𝜇)−1 𝑓,

(𝑆𝜌) (𝑥) = 2

∫︁
𝐿

Φ (𝑥, 𝑦) 𝜌 (𝑦) 𝑑𝐿𝑦, 𝑥 ∈ 𝐿,

(�̃�𝜌) (𝑥) = 2

∫︁
𝐿

𝜕Φ (𝑥, 𝑦)

𝜕�⃗� (𝑥)
𝜌 (𝑦) 𝑑𝐿𝑦, 𝑥 ∈ 𝐿,

(𝑄𝜌) (𝑥) =

∫︁
𝐿

𝜕Φ (𝑥, 𝑦)

𝜕�⃗� (𝑦)

⎛⎝∫︁
𝐿

Φ (𝑦, 𝑡) 𝜌 (𝑡) 𝑑𝐿𝑡

⎞⎠ 𝑑𝐿𝑦, 𝑥 ∈ 𝐿,

(𝑅𝜌) (𝑥) =

∫︁
𝐿

𝜕Φ (𝑥, 𝑦)

𝜕�⃗� (𝑥)

⎛⎝∫︁
𝐿

𝜕Φ (𝑦, 𝑡)

𝜕�⃗� (𝑦)
𝜌 (𝑡) 𝑑𝐿𝑡

⎞⎠ 𝑑𝐿𝑦, 𝑥 ∈ 𝐿.
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Since integral equations are solved in closed form in very rare cases, it is highly important
to develop approximate methods of solving integral equations with a corresponding theoretical
justification. We note that a series of works [2]–[5] was devoted to studying approximate
solutions to integral equations associated with various boundary value problems. However, the
approximate solving of integral equation (1.1), to which the mixed boundary value problems
for the Laplace equation is reduced, has not been studied yet. Our work is devoted to covering
this gap.

2. Construction of quadrature formula

Assume that the curve 𝐿 is given by the parametric equation 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡)), 𝑡 ∈ [𝑎, 𝑏].
We partition the segment [𝑎, 𝑏] into

𝑛 > 2𝑀1
𝑏− 𝑎

𝑑
identical parts:

𝑡𝑘 = 𝑎+
(𝑏− 𝑎) 𝑘

𝑛
, 𝑘 = 0, 𝑛,

where [6, Ch. VI]

𝑀1 = max
𝑡∈[𝑎,𝑏]

√︁
(𝑥′1 (𝑡))2 + (𝑥′2 (𝑡))2 < +∞

and 𝑑 is a standard radius [6, Ch. I], [7, Ch. V]. As nodes we choose 𝑥 (𝜏𝑘), 𝑘 = 1, 𝑛, where

𝜏𝑘 = 𝑎+
(𝑏− 𝑎) (2𝑘 − 1)

2𝑛
.

Then the curve 𝐿 is partitioned into elementary parts: 𝐿 =
⋃︀𝑛

𝑙=1 𝐿𝑙, where

𝐿𝑘 = {𝑥 (𝑡) : 𝑡𝑘−1 6 𝑡 6 𝑡𝑘} .
It is known that [8]
(1) for each 𝑘 ∈ {1, 2, . . . , 𝑛}, the relation holds: 𝑟𝑘(𝑛) ∼ 𝑅𝑘(𝑛)1, where

𝑟𝑘(𝑛) = min {|𝑥(𝜏𝑘) − 𝑥(𝑡𝑘−1)|, |𝑥(𝑡𝑘) − 𝑥(𝜏𝑘)|} ,
𝑅𝑘(𝑛) = max {|𝑥(𝜏𝑘) − 𝑥(𝑡𝑘−1)|, |𝑥(𝑡𝑘) − 𝑥(𝜏𝑘)|} ;

(2) for each 𝑘 ∈ {1, 2, . . . , 𝑛} the inequality 𝑅𝑘 (𝑛) 6 𝑑
2

holds;
(3) for all 𝑘, 𝑗 ∈ {1, 2, . . . , 𝑛} the relation 𝑟𝑗 (𝑛) ∼ 𝑟𝑘 (𝑛) holds;
(4) 𝑟 (𝑛) ∼ 𝑅 (𝑛) ∼ 1

𝑛
, where

𝑅 (𝑛) = max
𝑘=1,𝑛

𝑅𝑘 (𝑛) , 𝑟 (𝑛) = min
𝑘=1,𝑛

𝑟𝑘 (𝑛) .

Lemma 2.1 ([3],[9]). There exist constants 𝐶 ′
0 > 0 and 𝐶 ′

1 > 0 independent of 𝑛, such that
for all 𝑘, 𝑗 ∈ {1, 2, . . . , 𝑛}, 𝑗 ̸= 𝑘 and 𝑦 ∈ 𝐿𝑗 the following inequality holds:

𝐶 ′
0 |𝑦 − 𝑥 (𝜏𝑘)| 6 |𝑥 (𝜏𝑗) − 𝑥 (𝜏𝑘)| 6 𝐶 ′

1 |𝑦 − 𝑥 (𝜏𝑘)| .
For a function 𝜙(𝑥) ∈ 𝐶 (𝐿) we introduce a continuity modulus of form

𝜔(𝜙, 𝛿) = 𝛿 sup
𝜏>𝛿

�̄�(𝜙, 𝜏)

𝜏
, 𝛿 > 0,

where

�̄�(𝜙, 𝜏) = max
|𝑥−𝑦|6𝜏
𝑥,𝑦∈𝐿

|𝜙(𝑥) − 𝜙(𝑦)| .

1𝑎 (𝑛) ∼ 𝑏 (𝑛) means that 𝐶1 6 𝑎(𝑛)
𝑏(𝑛) 6 𝐶2, where 𝐶1 and 𝐶2 are positive constants independent of 𝑛.
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We consider the matrix 𝐴𝑛 = (𝑎𝑙𝑗)
𝑛
𝑙,𝑗=1 with the entries

𝑎𝑙𝑗 = − (2 + 𝑖𝜇)−1

(︃
2𝑏𝑖𝑗 + 4𝑖𝜇

𝑛∑︁
𝑚=1

𝑏𝑙𝑚𝑏𝑚𝑗 + 𝜆 (2 + 𝑖𝜇) 𝑐𝑙𝑗 + 4𝑖𝜆𝜇
𝑛∑︁

𝑚=1

𝑒𝑙𝑚𝑐𝑚𝑗

)︃
,

where

𝑏𝑙𝑙 = 𝑐𝑙𝑙 = 𝑒𝑙𝑙 = 0 as 𝑙 = 1, 𝑛,

𝑏𝑙𝑗 =
(𝑏− 𝑎)

𝑛

𝜕Φ (𝑥 (𝜏𝑙) , 𝑥 (𝜏𝑗))

𝜕�⃗� (𝑥 (𝜏𝑙))

√︁
(𝑥′1 (𝜏𝑗))

2 + (𝑥′2 (𝜏𝑗))
2 as 𝑙, 𝑗 = 1, 𝑛 and 𝑙 ̸= 𝑗,

𝑐𝑙𝑗 =
(𝑏− 𝑎)

𝑛
Φ (𝑥 (𝜏𝑙) , 𝑥 (𝜏𝑗))

√︁
(𝑥′1 (𝜏𝑗))

2 + (𝑥′2 (𝜏𝑗))
2 as 𝑙, 𝑗 = 1, 𝑛 and 𝑙 ̸= 𝑗,

𝑒𝑙𝑗 =
(𝑏− 𝑎)

𝑛

𝜕Φ (𝑥 (𝜏𝑙) , 𝑥 (𝜏𝑗))

𝜕�⃗� (𝑥 (𝜏𝑗))

√︁
(𝑥′1 (𝜏𝑗))

2 + (𝑥′2 (𝜏𝑗))
2 as 𝑙, 𝑗 = 1, 𝑛 and 𝑙 ̸= 𝑗.

In what follows, by 𝑀 we denote inessential positive constants being different in various
inequality.

Theorem 2.1. The expression

(𝐴𝜌)𝑛 (𝑥 (𝜏𝑙)) =
𝑛∑︁

𝑗=1

𝑎𝑙𝑗𝜌 (𝑥 (𝜏𝑗)) , (2.1)

constructed by means of the nodes 𝑥 (𝜏𝑙), 𝑙 = 1, 𝑛, is a quadrature formula for (𝐴𝜌) (𝑥), and the
following estimate holds:

max
𝑙=1,𝑛

|(𝐴𝜌) (𝑥 (𝜏𝑙)) − (𝐴𝜌)𝑛 (𝑥 (𝜏𝑙))| 6𝑀

[︂
𝜔

(︂
𝜌,

1

𝑛

)︂
+ ‖𝜌‖∞

ln𝑛

𝑛

]︂
,

where ‖𝜌‖∞ = max
𝑥∈𝐿

|𝜌 (𝑥)|.

Proof. It was proved in [8] that the expressions

𝑆𝑛 (𝑥 (𝜏𝑘)) =
2 (𝑏− 𝑎)

𝑛

𝑛∑︁
𝑗=1
𝑗 ̸=𝑘

Φ (𝑥 (𝜏𝑘) , 𝑥 (𝜏𝑗))

√︁
(𝑥′1 (𝜏𝑗))

2 + (𝑥′2 (𝜏𝑗))
2𝜌 (𝑥 (𝜏𝑗))

and

�̃�𝑛 (𝑥 (𝜏𝑘)) =
2 (𝑏− 𝑎)

𝑛

𝑛∑︁
𝑗=1
𝑗 ̸=𝑘

𝜕Φ (𝑥 (𝜏𝑘) , 𝑥 (𝜏𝑗))

𝜕�⃗� (𝑥 (𝜏𝑘))

√︁
(𝑥′1 (𝜏𝑗))

2 + (𝑥′2 (𝜏𝑗))
2𝜌 (𝑥 (𝜏𝑗)) ,

constructed by means of nodes 𝑥 (𝜏𝑘), 𝑘 = 1, 𝑛, are quadrature formulae for the integrals

(𝑆𝜌) (𝑥) and
(︁
�̃�𝜌
)︁

(𝑥), respectively, and

max
𝑘=1,𝑛

|(𝑆𝜌) (𝑥 (𝜏𝑘)) − 𝑆𝑛 (𝑥 (𝜏𝑘))| 6𝑀

(︂
𝜔

(︂
𝜌,

1

𝑛

)︂
+ ‖𝜌‖∞

ln𝑛

𝑛

)︂
,

max
𝑘=1,𝑛

⃒⃒⃒(︁
�̃�𝜌
)︁

(𝑥 (𝜏𝑘)) − �̃�𝑛 (𝑥 (𝜏𝑘))
⃒⃒⃒
6𝑀

(︂
𝜔

(︂
𝜌,

1

𝑛

)︂
+ ‖𝜌‖∞

ln𝑛

𝑛

)︂
.

Now we are going to construct a quadrature formula for the integral (𝑄𝜌) (𝑥). The expression

(𝑄𝜌)𝑛 (𝑥 (𝜏𝑙)) =
𝑛∑︁

𝑗=1

(︃
𝑛∑︁

𝑚=1

𝑒𝑙𝑚𝑐𝑚𝑗

)︃
𝜌 (𝑥 (𝜏𝑗)) (2.2)
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constructed by means of nodes 𝑥 (𝜏𝑙), 𝑙 = 1, 𝑛, is a quadrature formula for the integral (𝑄𝜌) (𝑥).
Let us estimate the error of quadrature formula (2.2). It is obvious that

(𝑄𝜌) (𝑥 (𝜏𝑙)) − (𝑄𝜌)𝑛 (𝑥 (𝜏𝑙)) = (𝑄𝜌) (𝑥 (𝜏𝑙)) −
𝑛∑︁

𝑗=1

(︃
𝑒𝑙𝑗

𝑛∑︁
𝑚=1

𝑐𝑗𝑚𝜌 (𝑥 (𝜏𝑚))

)︃

=

∫︁
𝐿

𝜕Φ (𝑥 (𝜏𝑙) , 𝑦)

𝜕�⃗� (𝑦)

⎛⎝∫︁
𝐿

Φ (𝑦, 𝑡) 𝜌 (𝑡) 𝑑𝐿𝑡

⎞⎠ 𝑑𝐿𝑦 −
𝑏− 𝑎

𝑛

·
𝑛∑︁

𝑗=1
𝑗 ̸=𝑙

⎛⎜⎝𝜕Φ (𝑥(𝜏𝑙), 𝑥 (𝜏𝑗))

𝜕�⃗� (𝑥(𝜏𝑗))
mes𝐿𝑗

𝑛∑︁
𝑚=1
�̸�=𝑗

Φ (𝑥(𝜏𝑗), 𝑥(𝜏𝑚))

√︁
(𝑥′1(𝜏𝑚))2 + (𝑥′2(𝜏𝑚))2𝜌 (𝑥(𝜏𝑚))

⎞⎟⎠
+

𝑛∑︁
𝑗=1
𝑗 ̸=𝑙

(︂
𝜕Φ (𝑥 (𝜏𝑙) , 𝑥 (𝜏𝑗))

𝜕�⃗� (𝑥 (𝜏𝑗))

(︂
mes𝐿𝑗 −

𝑏− 𝑎

𝑛

√︁
(𝑥′1 (𝜏𝑗))

2 + (𝑥′2 (𝜏𝑗))
2

)︂

· 𝑏− 𝑎

𝑛

𝑛∑︁
𝑚=1
�̸�=𝑗

Φ (𝑥 (𝜏𝑗) , 𝑥 (𝜏𝑚))

√︁
(𝑥′1 (𝜏𝑚))2 + (𝑥′2 (𝜏𝑚))2𝜌 (𝑥 (𝜏𝑚))

⎞⎟⎠
=

∫︁
𝐿𝑙

𝜕Φ (𝑥 (𝜏𝑙) , 𝑦)

𝜕�⃗� (𝑦)

⎛⎝∫︁
𝐿

Φ (𝑦, 𝑡) 𝜌 (𝑡) 𝑑𝐿𝑡

⎞⎠ 𝑑𝐿𝑦

+
𝑛∑︁

𝑗=1
𝑗 ̸=𝑙

∫︁
𝐿𝑗

𝜕Φ (𝑥 (𝜏𝑙) , 𝑦)

𝜕�⃗� (𝑦)

⎛⎝∫︁
𝐿

Φ (𝑦, 𝑡) 𝜌 (𝑡) 𝑑𝐿𝑡 −
∫︁
𝐿

Φ (𝑥 (𝜏𝑗) , 𝑡) 𝜌 (𝑡) 𝑑𝐿𝑡

⎞⎠ 𝑑𝐿𝑦

+
𝑛∑︁

𝑗=1
𝑗 ̸=𝑙

⎡⎢⎣∫︁
𝐿𝑗

(︂
𝜕Φ (𝑥 (𝜏𝑙) , 𝑦)

𝜕�⃗� (𝑦)
− 𝜕Φ (𝑥 (𝜏𝑙) , 𝑥 (𝜏𝑗))

𝜕�⃗� (𝑥 (𝜏𝑗))

)︂∫︁
𝐿

Φ (𝑥 (𝜏𝑗) , 𝑡) 𝜌 (𝑡) 𝑑𝐿𝑡

⎤⎥⎦ 𝑑𝐿𝑦

+
𝑛∑︁

𝑗=1
𝑗 ̸=𝑙

𝜕Φ (𝑥 (𝜏𝑙) , 𝑥 (𝜏𝑗))

𝜕�⃗� (𝑥 (𝜏𝑗))

⎛⎝∫︁
𝐿

Φ (𝑥 (𝜏𝑗) , 𝑡) 𝜌 (𝑡) 𝑑𝑆𝑡

− 𝑏− 𝑎

𝑛

𝑛∑︁
𝑚=1
𝑚 ̸=𝑗

Φ (𝑥 (𝜏𝑗) , 𝑥 (𝜏𝑚))

√︁
(𝑥′1 (𝜏𝑚))2 + (𝑥′2 (𝜏𝑚))2𝜌 (𝑥 (𝜏𝑚))

⎞⎟⎠mes𝐿𝑗

+
𝑛∑︁

𝑗=1
𝑗 ̸=𝑙

(︂
𝜕Φ (𝑥 (𝜏𝑙) , 𝑥 (𝜏𝑗))

𝜕�⃗� (𝑥 (𝜏𝑗))

(︂
mes𝐿𝑗 −

𝑏− 𝑎

𝑛

√︁
(𝑥′1 (𝜏𝑗))

2 + (𝑥′2 (𝜏𝑗))
2

)︂

· 𝑏− 𝑎

𝑛

𝑛∑︁
𝑚=1
�̸�=𝑗

Φ (𝑥 (𝜏𝑗) , 𝑥 (𝜏𝑚))

√︁
(𝑥′1 (𝜏𝑚))2 + (𝑥′2 (𝜏𝑚))2𝜌 (𝑥 (𝜏𝑚))

⎞⎟⎠ .

The terms in the right hand side of the latter inequality is denoted by 𝑄1 (𝑛), 𝑄2 (𝑛), 𝑄3 (𝑛),
𝑄4 (𝑛) and 𝑄5 (𝑛), respectively.
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Taking into consideration that the curve 𝐿 is twice continuously differentiable, we have (see
[7, Ch. V]):

|(𝑥− 𝑦, �⃗� (𝑦))| = |𝑥− 𝑦| |cos𝛼 (𝑥− 𝑦, �⃗� (𝑦))| 6𝑀 |𝑥− 𝑦|2 , 𝑥, 𝑦 ∈ 𝐿, (2.3)

where by 𝛼 (𝑥− 𝑦, �⃗� (𝑦)) we denote an angle between the vectors 𝑥− 𝑦 and �⃗� (𝑦). Then⃒⃒⃒⃒
𝜕Φ (𝑥, 𝑦)

𝜕�⃗� (𝑦)

⃒⃒⃒⃒
=

1

2𝜋

|(𝑥− 𝑦, �⃗� (𝑦))|
|𝑥− 𝑦|2

6𝑀, 𝑥, 𝑦 ∈ 𝐿, 𝑥 ̸= 𝑦. (2.4)

Since the operator 𝑆 is bounded as acting from the space 𝐶 (𝐿) into the space 𝐶 (𝐿), then

|𝑄1 (𝑛)| 6

⃦⃦⃦⃦
⃦⃦∫︁
𝐿

Φ (𝑦, 𝑡) 𝜌 (𝑡) 𝑑𝐿𝑡

⃦⃦⃦⃦
⃦⃦
∞

∫︁
𝐿𝑙

⃒⃒⃒⃒
𝜕Φ (𝑥 (𝜏𝑙) , 𝑦)

𝜕�⃗�(𝑦)

⃒⃒⃒⃒
𝑑𝐿𝑦 6𝑀 ‖𝜌‖∞

∫︁
𝐿𝑙

𝑑𝐿𝑦 6𝑀 ‖𝜌‖∞𝑅(𝑛).

Moreover, taking into consideration inequality

𝜔 (𝑆𝜌, ℎ) 6𝑀 ‖𝜌‖∞ ℎ |lnℎ| ,

see [10, Thm. 2.12], we obtain that for each 𝑦 ∈ 𝐿𝑗⃒⃒⃒⃒
⃒⃒∫︁
𝐿

Φ (𝑦, 𝑡) 𝜌 (𝑡) 𝑑𝐿𝑡 −
∫︁
𝐿

Φ (𝑥 (𝜏𝑗) , 𝑡) 𝜌 (𝑡) 𝑑𝐿𝑡

⃒⃒⃒⃒
⃒⃒ 6𝑀 ‖𝜌‖∞𝑅 (𝑛) |ln𝑅 (𝑛)| ,

and therefore,

|𝑄2 (𝑛)| 6𝑀 ‖𝜌‖∞𝑅 (𝑛) |ln𝑅 (𝑛)|
∫︁
𝐿

⃒⃒⃒⃒
𝜕Φ (𝑥 (𝜏𝑙) , 𝑦)

𝜕�⃗� (𝑦)

⃒⃒⃒⃒
𝑑𝐿𝑦 6𝑀 ‖𝜌‖∞𝑅 (𝑛) |ln𝑅 (𝑛)| .

Bearing in mind Lemma 2.1, we get that for each 𝑦 ∈ 𝐿𝑗 and for all 𝑙, 𝑗 ∈ {1, 2, . . . , 𝑛}, 𝑗 ̸= 𝑙,⃒⃒⃒⃒
𝜕Φ (𝑥 (𝜏𝑙) , 𝑦)

𝜕�⃗� (𝑦)
− 𝜕Φ (𝑥 (𝜏𝑙) , 𝑥 (𝜏𝑗))

𝜕�⃗� (𝑥 (𝜏𝑗))

⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒(𝑥 (𝜏𝑙) − 𝑦, �⃗� (𝑦))

(︀
|𝑥 (𝜏𝑙) − 𝑥 (𝜏𝑗)|2 − |𝑥 (𝜏𝑙) − 𝑦|2

)︀
|𝑥 (𝜏𝑙) − 𝑦|2 |𝑥 (𝜏𝑙) − 𝑥 (𝜏𝑗)|2

− (𝑥 (𝜏𝑙) − 𝑦, �⃗� (𝑦) − �⃗� (𝑥 (𝜏𝑗))) + (𝑥 (𝜏𝑗) − 𝑦, �⃗� (𝑥 (𝜏𝑗)))

|𝑥 (𝜏𝑙) − 𝑥 (𝜏𝑗)|2

⃒⃒⃒⃒
⃒

6𝑀
|𝑥 (𝜏𝑗) − 𝑦|
|𝑥 (𝜏𝑙) − 𝑦|

.

Then

|𝑄3 (𝑛)| 6𝑀

⃦⃦⃦⃦
⃦⃦∫︁
𝐿

Φ (𝑥, 𝑡) 𝜌 (𝑡) 𝑑𝐿𝑡

⃦⃦⃦⃦
⃦⃦
∞

𝑛∑︁
𝑗=1
𝑗 ̸=𝑙

∫︁
𝐿𝑗

⃒⃒⃒⃒
𝜕Φ (𝑥 (𝜏𝑙) , 𝑦)

𝜕�⃗� (𝑦)
− 𝜕Φ (𝑥 (𝜏𝑙) , 𝑥 (𝜏𝑗))

𝜕�⃗� (𝑥 (𝜏𝑗))

⃒⃒⃒⃒
𝑑𝐿𝑦

6𝑀 ‖𝜌‖∞𝑅 (𝑛)

∫︁
𝐿∖𝐿𝑙

𝑑𝐿𝑦

|𝑥 (𝜏𝑙) − 𝑦|
6𝑀 ‖𝜌‖∞𝑅 (𝑛) |ln𝑅 (𝑛)| .

Taking into consideration inequality (2.4) and the estimate for error term in the quadrature
formulae for the logarithmic single layer potential, we find:

|𝑄4 (𝑛)| 6𝑀 [‖𝜌‖∞𝑅 (𝑛) |ln𝑅 (𝑛)| + 𝜔 (𝜌,𝑅 (𝑛))] .

In view of the inequality⃒⃒⃒⃒√︁
(𝑥′1 (𝑡))2 + (𝑥′2 (𝑡))2 −

√︁
(𝑥′1 (𝜏𝑗))

2 + (𝑥′2 (𝜏𝑗))
2

⃒⃒⃒⃒
6𝑀𝑅 (𝑛) , 𝑡 ∈ [𝑡𝑗−1, 𝑡𝑗] ,
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we obtain:⃒⃒⃒⃒
⃒⃒1 −

𝑏−𝑎
𝑛

√︁
(𝑥′1(𝜏𝑗))

2 + (𝑥′2(𝜏𝑗))
2

mes𝐿𝑗

⃒⃒⃒⃒
⃒⃒ =

⃒⃒⃒⃒
⃒ 𝑡𝑗∫︀
𝑡𝑗−1

(︂√︁
(𝑥′1(𝑡))

2 + (𝑥′2(𝑡))
2 −

√︁
(𝑥′1(𝜏𝑗))

2 + (𝑥′2(𝜏𝑗))
2

)︂
𝑑𝑡

⃒⃒⃒⃒
⃒

𝑡𝑗∫︀
𝑡𝑗−1

√︁
(𝑥′1(𝑡))

2 + (𝑥′2 (𝑡))2𝑑𝑡

6𝑀
𝑏−𝑎
𝑛
𝑅 (𝑛)

𝑏−𝑎
𝑛
𝑚1

6𝑀𝑅 (𝑛) ,

where

𝑚1 = min
𝑡∈[𝑎,𝑏]

√︁
(𝑥′1 (𝑡))2 + (𝑥′2 (𝑡))2 > 0,

see [6, Ch. VI]. Moreover, it is obvious that

𝑏−𝑎
𝑛

√︁
(𝑥′1 (𝜏𝑗))

2 + (𝑥′2 (𝜏𝑗))
2

mes𝐿𝑗

6𝑀.

Then, owing to Lemma 2.1, we obtain:

|𝑄5 (𝑛)| =

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝑛∑︁
𝑗=1
𝑗 ̸=𝑙

⎛⎝𝜕Φ (𝑥 (𝜏𝑙) , 𝑥 (𝜏𝑗))

𝜕�⃗� (𝑥 (𝜏𝑗))
mes𝐿𝑗

⎛⎝1 −
𝑏−𝑎
𝑛

√︁
(𝑥′1 (𝜏𝑗))

2 + (𝑥′2 (𝜏𝑗))
2

mes𝐿𝑗

⎞⎠

·
𝑛∑︁

𝑚=1
𝑚 ̸=𝑗

Φ (𝑥 (𝜏𝑗) , 𝑥 (𝜏𝑚)) mes𝐿𝑚

𝑏−𝑎
𝑛

√︁
(𝑥′1 (𝜏𝑚))2 + (𝑥′2 (𝜏𝑚))2

mes𝐿𝑚

𝜌 (𝑥 (𝜏𝑚))

⎞⎟⎠
⃒⃒⃒⃒
⃒⃒⃒

6𝑀𝑅 (𝑛) ‖𝜌‖∞
∫︁

𝐿∖𝐿𝑙

⃒⃒⃒⃒
𝜕Φ (𝑥 (𝜏𝑙) , 𝑦)

𝜕�⃗� (𝑦)

⃒⃒⃒⃒
𝑑𝑦

∫︁
𝐿∖𝐿𝑗

|Φ (𝑥 (𝜏𝑗) , 𝑡)| 𝑑𝑡 6𝑀𝑅 (𝑛) ‖𝜌‖∞ .

Thus, summing up the obtained estimates for the expressions 𝑄1 (𝑛), 𝑄2 (𝑛), 𝑄3 (𝑛), 𝑄4 (𝑛)
and 𝑄5 (𝑛), we find:

max
𝑙=1,𝑛

|(𝑄𝜌) (𝑥 (𝜏𝑙)) − (𝑄𝜌)𝑛 (𝑥 (𝜏𝑙))| 6𝑀 [‖𝜌‖∞𝑅 (𝑛) |ln𝑅 (𝑛)| + 𝜔 (𝜌,𝑅 (𝑛))] .

In the same way one can show that the expression

(𝑅𝜌)𝑛 (𝑥 (𝜏𝑙)) =
𝑛∑︁

𝑗=1

(︃
𝑛∑︁

𝑚=1

𝑏𝑙𝑚𝑏𝑚𝑗

)︃
𝜌 (𝑥 (𝜏𝑗))

constructed by means of nodes 𝑥 (𝜏𝑙), 𝑙 = 1, 𝑛, is a quadrature formula for integral (𝑅𝜌) (𝑥),
and

max
𝑙=1,𝑛

|(𝑅𝜌) (𝑥 (𝜏𝑙)) − (𝑅𝜌)𝑛 (𝑥 (𝜏𝑙))| 6𝑀 [‖𝜌‖∞𝑅 (𝑛) |ln𝑅 (𝑛)| + 𝜔 (𝜌,𝑅 (𝑛))] .

As a result, taking into consideration the constructed quadrature formulae for the integrals

(𝑆𝜌) (𝑥),
(︁
�̃�𝜌
)︁

(𝑥), (𝑄𝜌) (𝑥), (𝑅𝜌) (𝑥) and the estimates for their errors, we obtain that ex-

pression (2.1) constructed by means of nodes 𝑥 (𝜏𝑙), 𝑙 = 1, 𝑛, is a quadrature formula for
(𝐴𝜌) (𝑥), and

max
𝑙=1,𝑛

|(𝐴𝜌) (𝑥 (𝜏𝑙)) − (𝐴𝜌)𝑛 (𝑥 (𝜏𝑙))| 6𝑀 [‖𝜌‖∞𝑅 (𝑛) |ln𝑅 (𝑛)| + 𝜔 (𝜌,𝑅 (𝑛))] .

Then, in view of the relation 𝑅 (𝑛) ∼ 1
𝑛
, we complete the proof.
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3. Justification of collocation method

Let C𝑛 be the space of 𝑛-dimensional vectors 𝑧𝑛 = (𝑧𝑛1 , 𝑧
𝑛
2 , . . . , 𝑧

𝑛
𝑛)T, 𝑧𝑛𝑙 ∈ C, 𝑙 = 1, 𝑛,

with the norm ‖𝑧𝑛‖ = max
𝑙=1,𝑛

|𝑧𝑛𝑙 |, where the writing “𝑎T” denotes the transposition of a vector 𝑎.

Employing quadrature formula (2.1), we replace integral equation (1.1) by a system of algebraic
equations with respect to approximate values 𝑧𝑛𝑙 of 𝜌 (𝑥 (𝜏𝑙)), 𝑙 = 1, 𝑛, which we write as

(𝐼𝑛 + 𝐴𝑛) 𝑧𝑛 = 𝜙𝑛, (3.1)

where 𝐼𝑛 is the identity mapping on the space C𝑛,

𝜙𝑛 = −4 (2 + 𝑖𝜇)−1 𝑝𝑛𝑓,

and 𝑝𝑛 : 𝐶 (𝐿) → C𝑛 is a linear bounded operator defined by the formula

𝑝𝑛𝑓 = (𝑓 (𝑥 (𝜏1)) , 𝑓 (𝑥 (𝜏2)) , . . . , 𝑓 (𝑥 (𝜏𝑛)))T

and called a simple drift operator.
We obtain the justification by Vainikko convergence theorem for linear operator equations

[11]. In order to formulate it, in terms of notations in work [11], we provide needed definitions
and statements.

Definition 3.1. [11]. Let 𝐸 and 𝐸𝑛 be Banach spaces. The system 𝑄 = {𝑞𝑛} of operators
𝑞𝑛 : 𝐸 → 𝐸𝑛 is called connecting for 𝐸 and 𝐸𝑛 if for all 𝜙, 𝜙′ ∈ 𝐸 and 𝑎, 𝑎′ ∈ C we have

‖𝑞𝑛𝜙‖ → ‖𝜙‖∞ as 𝑛→ ∞;

‖𝑞𝑛 (𝑎𝜙+ 𝑎′𝜙′) − (𝑎𝑞𝑛𝜙+ 𝑎′𝑞𝑛𝜙′)‖ → 0 as 𝑛→ ∞.

Definition 3.2 ([11, Def. 1.1]). A sequence {𝜙𝑛} of elements 𝜙𝑛 ∈ 𝐸𝑛 𝑄-converges to 𝜙 ∈ 𝐸

if ‖𝜙𝑛 − 𝑞𝑛𝜙‖ → 0 as 𝑛→ ∞. We shall write this as 𝜙𝑛
𝑄→𝜙.

Definition 3.3 ([11, Def. 1.2]). A sequence {𝜙𝑛} of elements 𝜙𝑛 ∈ 𝐸𝑛 is 𝑄-compact if each
its subsequence {𝜙𝑛𝑚} contains a 𝑄-converging subsequence

{︀
𝜙𝑛𝑚𝑘

}︀
.

Proposition 3.1 ([11, Prop. 1.1]). Let a system 𝑄 = {𝑞𝑛} of linear bounded operators 𝑞𝑛 :
𝐸 → 𝐸𝑛 be connecting for 𝐸 and 𝐸𝑛. Then the following conditions are equivalent:

1. a sequence {𝜙𝑛} is 𝑄-compact and the set of its 𝑄-limiting points is compact in 𝐸;
2. there exists a relatively compact sequence

{︀
𝜙(𝑛)

}︀
⊂ 𝐸 such that

⃦⃦
𝜙𝑛 − 𝑞𝑛𝜙(𝑛)

⃦⃦
→ 0 as

𝑛→ ∞.

Definition 3.4 ([11, Def. 2.1]). A sequence of operators 𝐴𝑛 : 𝐸𝑛 → 𝐸𝑛 𝑄𝑄-converges to an

operator 𝐴 : 𝐸 → 𝐸, if for each 𝑄-converging sequence {𝜙𝑛} we have 𝜙𝑛
𝑄→𝜙 ⇒ 𝐴𝑛𝜙𝑛

𝑄→𝐴𝜙.

We shall write this as 𝐴𝑛𝑄𝑄→𝐴.

Definition 3.5 ([11, Def. 3.3]). . A sequence of operators 𝐴𝑛 ∈ 𝐿 (𝐸𝑛, 𝐸𝑛) compactly con-

verges to an operator 𝐴 ∈ 𝐿 (𝐸,𝐸) if 𝐴𝑛𝑄𝑄→𝐴 and the following compactness condition holds:

𝜙𝑛 ∈ 𝐸𝑛, ‖𝜙𝑛‖ 6𝑀 ⇒ {𝐴𝑛𝜙𝑛} is 𝑄-compact.

Theorem 3.1. [11, Thm. 4.2] Assume that the following conditions hold:

1. Ker (𝐼 + 𝐴) = {0}, where 𝐼 is the identity mapping in the space 𝐸;
2. the operators 𝐼𝑛 + 𝐴𝑛 are Fredholm with a zero index;

3. 𝜓𝑛
𝑄→𝜓, 𝜓𝑛 ∈ 𝐸𝑛, 𝜓 ∈ 𝐸;

4. 𝐴𝑛 → 𝐴 is compact.
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Then the equation
(𝐼 + 𝐴)𝜙 = 𝜓

possesses a unique solution 𝜙 ∈ 𝐸, the equation

(𝐼𝑛 + 𝐴𝑛)𝜙𝑛 = 𝜓𝑛

also possesses a unique solution 𝜙𝑛 ∈ 𝐸𝑛, and 𝜙𝑛
𝑄→𝜙 with the estimates

𝑐1 ‖(𝐼𝑛 + 𝐴𝑛) 𝑞𝑛𝜙− 𝜓𝑛‖ 6 ‖𝜙𝑛 − 𝑞𝑛𝜙‖ 6 𝑐2 ‖(𝐼𝑛 + 𝐴𝑛) 𝑞𝑛𝜙− 𝜓𝑛‖ ,
where

𝑐1 =
1

sup
𝑛

‖𝐼𝑛 + 𝐴𝑛‖
> 0, 𝑐2 = sup

𝑛

⃦⃦
(𝐼𝑛 + 𝐴𝑛)−1

⃦⃦
< +∞.

Theorem 3.2. Equations (1.1) and (3.1) possess unique solutions 𝜌* ∈ 𝐶 (𝑆) and 𝑧𝑛* ∈ C𝑛,
respectively, and ‖𝑧𝑛* − 𝑝𝑛𝜌*‖ → 0 as 𝑛→ ∞ with the estimate

‖𝑧𝑛* − 𝑝𝑛𝜌*‖ 6 𝑀

[︂
𝜔

(︂
𝑓,

1

𝑛

)︂
+ ‖𝑓‖∞

ln𝑛

𝑛

]︂
.

Proof. Since equation (1.1) is uniquely solvable, then Ker (𝐼 + 𝐴) = {0}. It is obvious that
the operators 𝐼𝑛 + 𝐴𝑛 are Fredholm with the zero index and the operators 𝑝𝑛 : 𝐶 (𝐿) → C𝑛

are linear and bounded. Taking into consideration the way of partitioning the curve 𝐿 into
elementary parts, we obtain that for each 𝑔 ∈ 𝐶 (𝐿)

lim
𝑛→∞

‖𝑝𝑛𝑔‖ = lim
𝑛→∞

max
𝑙=1,𝑛

|𝑔 (𝑥 (𝜏𝑙))| = max
𝑥∈𝐿

|𝑔 (𝑥)| = ‖𝑔‖∞ .

Therefore, the system of simple drift operators 𝑃 = {𝑝𝑛} is connecting for the spaces 𝐶 (𝐿)

and C𝑛. Then 𝜙𝑛 𝑃→𝜙 and by Theorem 2.1 we obtain that 𝐼𝑛 + 𝐴𝑛𝑃𝑃→𝐼 + 𝐴. By Definition 3.5,
it remains to confirm the compactness condition. In view of Proposition 3.1, it is equivalent to
the following condition: for each {𝑧𝑛} , 𝑧𝑛 ∈ C𝑛, ‖𝑧𝑛‖ 6 𝑀 , there exists a relatively compact
sequence {𝐴𝑛𝑧

𝑛} ⊂ 𝐶 (𝐿) such that

‖𝐴𝑛𝑧𝑛 − 𝑝𝑛 (𝐴𝑛𝑧
𝑛)‖ → 0 as 𝑛→ ∞.

As {𝐴𝑛𝑧
𝑛}, we choose a sequence

(𝐴𝑛𝑧
𝑛) (𝑥) = − (2 + 𝑖𝜇)−1

(︁
2
(︁
�̃�𝑛𝑧

𝑛
)︁

(𝑥) + 4𝑖𝜇 (𝑅𝑛𝑧
𝑛) (𝑥)

+ 𝜆 (2 + 𝑖𝜇) (𝑆𝑛𝑧
𝑛) (𝑥) + 4𝑖𝜆𝜇 (𝑄𝑛𝑧

𝑛) (𝑥)) ,

where

(𝑆𝑛𝑧
𝑛) (𝑥) = 2

𝑛∑︁
𝑗=1

𝑧𝑛𝑗

∫︁
𝐿𝑗

Φ (𝑥, 𝑦) 𝑑𝐿𝑦, 𝑥 ∈ 𝐿,

(�̃�𝑛𝑧
𝑛) (𝑥) = 2

𝑛∑︁
𝑗=1

𝑧𝑛𝑗

∫︁
𝐿𝑗

𝜕Φ (𝑥, 𝑦)

𝜕�⃗� (𝑥)
𝑑𝐿𝑦, 𝑥 ∈ 𝐿,

(𝑅𝑛𝑧
𝑛) (𝑥) =

𝑛∑︁
𝑗=1

𝑧𝑛𝑗

∫︁
𝐿

𝜕Φ (𝑥, 𝑦)

𝜕�⃗� (𝑥)

⎛⎜⎝∫︁
𝐿𝑗

𝜕Φ (𝑦, 𝑡)

𝜕�⃗� (𝑦)
𝑑𝐿𝑡

⎞⎟⎠ 𝑑𝐿𝑦, 𝑥 ∈ 𝐿,

(𝑄𝑛𝑧
𝑛) (𝑥) =

𝑛∑︁
𝑗=1

𝑧𝑛𝑗

∫︁
𝐿

𝜕Φ (𝑥, 𝑦)

𝜕�⃗� (𝑦)

⎛⎜⎝∫︁
𝐿𝑗

Φ (𝑦, 𝑡) 𝑑𝐿𝑡

⎞⎟⎠ 𝑑𝐿𝑦, 𝑥 ∈ 𝐿.
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Let 𝐿𝑑(𝑥) = {𝑦 ∈ 𝐿 : |𝑦 − 𝑥| < 𝑑}. We take arbitrary points 𝑥′, 𝑥′′ ∈ 𝐿 such that

|𝑥′ − 𝑥′′| = 𝛿 <
min {1, 𝑑}

2
.

Since ⃒⃒⃒⃒
⃒⃒⃒ 𝑛∑︁
𝑗=1

𝑧𝑛𝑗

∫︁
𝐿𝑗

Φ (𝑦, 𝑡) 𝑑𝐿𝑡

⃒⃒⃒⃒
⃒⃒⃒ 6 ‖𝑧𝑛‖

∫︁
𝐿

|Φ (𝑦, 𝑡)| 𝑑𝐿𝑡 6𝑀 ‖𝑧𝑛‖ ,

then

| (𝑄𝑛𝑧
𝑛) (𝑥′)− (𝑄𝑛𝑧

𝑛) (𝑥′′) |

6𝑀 ‖𝑧𝑛‖
∫︁
𝐿

⃒⃒⃒⃒
𝜕Φ (𝑥′, 𝑦)

𝜕�⃗� (𝑦)
− 𝜕Φ (𝑥′′, 𝑦)

𝜕�⃗� (𝑦)

⃒⃒⃒⃒
𝑑𝐿𝑦

6𝑀 ‖𝑧𝑛‖
∫︁

𝐿 𝛿
2
(𝑥′)

⃒⃒⃒⃒
𝜕Φ (𝑥′, 𝑦)

𝜕�⃗� (𝑦)

⃒⃒⃒⃒
𝑑𝐿𝑦 +𝑀 ‖𝑧𝑛‖

∫︁
𝐿 𝛿

2
(𝑥′′)

⃒⃒⃒⃒
𝜕Φ (𝑥′′, 𝑦)

𝜕�⃗� (𝑦)

⃒⃒⃒⃒
𝑑𝐿𝑦

+𝑀 ‖𝑧𝑛‖
∫︁

𝐿 𝛿
2
(𝑥′)

⃒⃒⃒⃒
𝜕Φ (𝑥′′, 𝑦)

𝜕�⃗� (𝑦)

⃒⃒⃒⃒
𝑑𝐿𝑦 +𝑀 ‖𝑧𝑛‖

∫︁
𝐿 𝛿

2
(𝑥′′)

⃒⃒⃒⃒
𝜕Φ (𝑥′, 𝑦)

𝜕�⃗� (𝑦)

⃒⃒⃒⃒
𝑑𝐿𝑦

+𝑀 ‖𝑧𝑛‖
∫︁

𝐿𝑑(𝑥′)∖
(︂
𝐿 𝛿

2
(𝑥′)

⋃︀
𝐿 𝛿

2
(𝑥′′)

)︂
⃒⃒⃒⃒
𝜕Φ (𝑥′, 𝑦)

𝜕�⃗� (𝑦)
− 𝜕Φ (𝑥′′, 𝑦)

𝜕�⃗� (𝑦)

⃒⃒⃒⃒
𝑑𝐿𝑦

+𝑀 ‖𝑧𝑛‖
∫︁

𝐿∖𝐿𝑑(𝑥′)

⃒⃒⃒⃒
𝜕Φ (𝑥′, 𝑦)

𝜕�⃗� (𝑦)
− 𝜕Φ (𝑥′′, 𝑦)

𝜕�⃗� (𝑦)

⃒⃒⃒⃒
𝑑𝐿𝑦.

Taking into consideration inequality (2.4), we have:∫︁
𝐿 𝛿

2
(𝑥′)

⃒⃒⃒⃒
𝜕Φ (𝑥′, 𝑦)

𝜕�⃗� (𝑦)

⃒⃒⃒⃒
𝑑𝐿𝑦 =

1

2𝜋

∫︁
𝐿 𝛿

2
(𝑥′)

|(𝑥′ − 𝑦, �⃗� (𝑦))|
|𝑥′ − 𝑦|2

𝑑𝐿𝑦 6𝑀

∫︁
𝐿 𝛿

2
(𝑥′)

𝑑𝐿𝑦 6𝑀𝛿,

∫︁
𝐿 𝛿

2
(𝑥′′)

⃒⃒⃒⃒
𝜕Φ (𝑥′′, 𝑦)

𝜕�⃗� (𝑦)

⃒⃒⃒⃒
𝑑𝐿𝑦 6𝑀𝛿,

∫︁
𝐿 𝛿

2
(𝑥′)

⃒⃒⃒⃒
𝜕Φ (𝑥′′, 𝑦)

𝜕�⃗� (𝑦)

⃒⃒⃒⃒
𝑑𝐿𝑦 =

1

2𝜋

∫︁
𝐿 𝛿

2
(𝑥′)

|(𝑥′′ − 𝑦, �⃗� (𝑦))|
|𝑥′′ − 𝑦|2

𝑑𝐿𝑦 6𝑀

∫︁
𝐿 𝛿

2
(𝑥′)

𝑑𝐿𝑦 6𝑀𝛿

and ∫︁
𝐿 𝛿

2
(𝑥′′)

⃒⃒⃒⃒
𝜕Φ (𝑥′, 𝑦)

𝜕�⃗� (𝑦)

⃒⃒⃒⃒
𝑑𝐿𝑦 6𝑀𝛿.

Since

𝜕Φ (𝑥′, 𝑦)

𝜕�⃗� (𝑦)
− 𝜕Φ (𝑥′′, 𝑦)

𝜕�⃗� (𝑦)
=

1

2𝜋

(︂
(𝑥′ − 𝑦, �⃗� (𝑦))

|𝑥′ − 𝑦|2
− (𝑥′′ − 𝑦, �⃗� (𝑦))

|𝑥′′ − 𝑦|2

)︂
=

(𝑥′ − 𝑦, �⃗� (𝑦)) (|𝑥′′ − 𝑦| − |𝑥′ − 𝑦|) (|𝑥′′ − 𝑦| + |𝑥′ − 𝑦|)
2𝜋 |𝑥′ − 𝑦|2 |𝑥′′ − 𝑦|2
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+
(𝑥′ − 𝑥′′, �⃗� (𝑦))

2𝜋 |𝑥′′ − 𝑦|2

and for each 𝑦 ∈ 𝐿𝑑(𝑥
′) ∖ (𝐿 𝛿

2
(𝑥′)

⋃︀
𝐿 𝛿

2
(𝑥′′))

|𝑥′ − 𝑦| 6 |𝑥′ − 𝑥′′| + |𝑥′′ − 𝑦| 6 3 |𝑥′′ − 𝑦| , |𝑥′′ − 𝑦| 6 3 |𝑥′ − 𝑦| ,

then, in view of inequality (2.3), we find:⃒⃒⃒⃒
𝜕Φ (𝑥′, 𝑦)

𝜕�⃗� (𝑦)
− 𝜕Φ (𝑥′′, 𝑦)

𝜕�⃗� (𝑦)

⃒⃒⃒⃒
6

𝑀𝛿

|𝑥′ − 𝑦|
, 𝑦 ∈ 𝐿𝑑(𝑥

′) ∖ (𝐿 𝛿
2
(𝑥′)

⋃︁
𝐿 𝛿

2
(𝑥′′)).

Hence, ∫︁
𝐿𝑑(𝑥′)∖

(︂
𝐿 𝛿

2
(𝑥′)

⋃︀
𝐿 𝛿

2
(𝑥′′)

)︂
⃒⃒⃒⃒
𝜕Φ (𝑥′, 𝑦)

𝜕�⃗� (𝑦)
− 𝜕Φ (𝑥′′, 𝑦)

𝜕�⃗� (𝑦)

⃒⃒⃒⃒
𝑑𝐿𝑦

6𝑀𝛿

∫︁
𝐿𝑑(𝑥′)∖

(︂
𝐿 𝛿

2
(𝑥′)

⋃︀
𝐿 𝛿

2
(𝑥′′)

)︂
𝑑𝐿𝑦

|𝑥′ − 𝑦|

6𝑀𝛿

𝑑∫︁
𝛿

𝑑𝑡

𝑡
6𝑀𝛿 |ln 𝛿| .

Moreover, it is obvious that∫︁
𝐿∖𝐿𝑑(𝑥′)

⃒⃒⃒⃒
𝜕Φ (𝑥′, 𝑦)

𝜕�⃗� (𝑦)
− 𝜕Φ (𝑥′′, 𝑦)

𝜕�⃗� (𝑦)

⃒⃒⃒⃒
𝑑𝐿𝑦 6𝑀𝛿.

Summing up the above estimates, we find:

|(𝑄𝑛𝑧
𝑛) (𝑥′) − (𝑄𝑛𝑧

𝑛) (𝑥′′)| 6𝑀 ‖𝑧𝑛‖ 𝛿 |ln 𝛿| . (3.2)

In the same way one can prove this estimate for the sequences {𝑆𝑛𝑧
𝑛},
{︁
�̃�𝑛𝑧

𝑛
}︁

and {𝑅𝑛𝑧
𝑛}.

Then

|(𝐴𝑛𝑧
𝑛) (𝑥′) − (𝐴𝑛𝑧

𝑛) (𝑥′′)| 6𝑀 ‖𝑧𝑛‖ 𝛿 |ln 𝛿| , (3.3)

and therefore, {𝐴𝑛𝑧
𝑛} ⊂ 𝐶 (𝐿).

By the inequality ‖𝑧𝑛‖ 6 𝑀 we find that the sequence {𝐴𝑛𝑧
𝑛} is uniformly bounded, while

estimate (3.3) yields that this sequence is equicontinuous. Then by Arzelà-Ascoli we conclude
on a relative compactness of the sequence {𝐴𝑛𝑧

𝑛}. Taking into consideration the way of parti-
tioning the curve 𝐿 into elementary parts and Lemma 2.1, it is easy to show that

‖𝐴𝑛𝑧𝑛 − 𝑝𝑛 (𝐴𝑛𝑧
𝑛)‖ → 0 as 𝑛→ ∞.

Then, applying Theorem 3.1, we obtain that equations (1.1) and (3.1) have unique solutions
𝜌* ∈ 𝐶 (𝑆) and 𝑧𝑛* ∈ C𝑛, respectively, and

𝑐1𝛿𝑛 6 ‖𝑧𝑛* − 𝑝𝑛𝜌*‖ 6 𝑐2𝛿𝑛,

where

𝑐1 =
1

sup
𝑛

‖𝐼𝑛 + 𝐴𝑛‖
> 0, 𝑐2 = sup

𝑛

⃦⃦
(𝐼𝑛 + 𝐴𝑛)−1

⃦⃦
<∞,

𝛿𝑛 = ‖(𝐼𝑛 + 𝐴𝑛) (𝑝𝑛𝜌*) − 𝜙𝑛‖ .
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Applying Theorem 2.1, we obtain:

𝛿𝑛 = ‖𝑝𝑛𝜌* + 𝐴𝑛 (𝑝𝑛𝜌*) − 𝑝𝑛 (𝜌* + 𝐴𝜌*)‖ = ‖𝐴𝑛 (𝑝𝑛𝜌*) − 𝑝𝑛 (𝐴𝜌*)‖

= max
𝑙=1,𝑛

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑗=1

𝑎𝑙𝑗𝜌* (𝑥 (𝜏𝑗)) − (𝐴𝜌*) (𝑥 (𝜏𝑙))

⃒⃒⃒⃒
⃒ 6𝑀

[︂
‖𝜌‖∞

ln𝑛

𝑛
+ 𝜔

(︂
𝜌,

1

𝑛

)︂]︂
.

Since the operator 𝐴 is a weakly singular integral operator, it is compact in 𝐶 (𝐿) [10, Thm.
2.6]. Moreover, the unique solvability of integral equation (1.1) obviously implies that the
operator 𝐼 + 𝐴 is injective and hence, the inverse operator (𝐼 + 𝐴)−1 is bounded [10, Thm.
1.16]. Then

‖𝜌*‖∞ =
⃦⃦

(𝐼 + 𝐴)−1 𝜙
⃦⃦
∞ 6

⃦⃦
(𝐼 + 𝐴)−1

⃦⃦
‖𝜙‖∞ 6𝑀 ‖𝑓‖∞ .

Moreover, proceeding as in the proof of inequality (3.2), one can show that

𝜔 (𝑅𝜌*, ℎ) 6𝑀 ‖𝜌*‖∞ ℎ |lnℎ|

and

𝜔 (𝑄𝜌*, ℎ) 6𝑀 ‖𝜌*‖∞ ℎ |lnℎ| .

Then, taking into consideration inequalities

𝜔 (𝑆𝜌*, ℎ) 6𝑀 ‖𝜌*‖∞ ℎ |lnℎ|

and

𝜔 (𝐾𝜌*, ℎ) 6𝑀 ‖𝜌*‖∞ ℎ |lnℎ| ,

see [10, Thms. 2.12, 2.16], we find:

𝜔

(︂
𝐴𝜌*,

1

𝑛

)︂
6𝑀 ‖𝜌*‖∞

ln𝑛

𝑛
6𝑀 ‖𝑓‖∞

ln𝑛

𝑛
.

Hence,

𝜔

(︂
𝜌*,

1

𝑛

)︂
= 𝜔

(︂
𝜙− 𝐴𝜌*,

1

𝑛

)︂
6 𝜔

(︂
𝜙,

1

𝑛

)︂
+ 𝜔

(︂
𝐴𝜌*,

1

𝑛

)︂
6 𝜔

(︂
𝜙,

1

𝑛

)︂
+𝑀 ‖𝑓‖∞

ln𝑛

𝑛
6𝑀

[︂
𝜔

(︂
𝑓,

1

𝑛

)︂
+ ‖𝑓‖∞

ln𝑛

𝑛

]︂
.

As a result, by the above estimates, we have:

𝛿𝑛 6𝑀

(︂
𝜔

(︂
𝑓,

1

𝑛

)︂
+ ‖𝑓‖∞

ln𝑛

𝑛

)︂
.

The proof is complete.

Theorem 3.2 implies immediately the following corollary.

Corollary 3.1. Let 𝑥0 ∈ R2∖�̄� and 𝑧𝑛* = (𝑧*1 , 𝑧
*
2 , . . . , 𝑧

*
𝑛)T is a solution to system of algebraic

equations (3.1). Then the sequence

𝑢𝑛(𝑥0) =
𝑏− 𝑎

𝑛

𝑛∑︁
𝑗=1

Φ (𝑥0, 𝑥 (𝜏𝑗))

√︁
(𝑥′1 (𝜏𝑗))

2 + (𝑥′2 (𝜏𝑗))
2𝑧*𝑗 + 𝑖𝜇

(︂
𝑏− 𝑎

𝑛

)︂2 𝑛∑︁
𝑗=1

𝜕Φ (𝑥0, 𝑥 (𝜏𝑗))

𝜕�⃗� (𝑥 (𝜏𝑗))

·

⎛⎜⎝ 𝑛∑︁
𝑚=1
�̸�=𝑗

Φ (𝑥 (𝜏𝑗) , 𝑥 (𝜏𝑚))

√︁
(𝑥′1 (𝜏𝑚))2 + (𝑥′2 (𝜏𝑚))2𝑧*𝑚

⎞⎟⎠√︁(𝑥′1 (𝜏𝑗))
2 + (𝑥′2 (𝜏𝑗))

2
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converges to the value 𝑢 (𝑥0) at the point 𝑥0 of the solution 𝑢 (𝑥) of mixed boundary value
problem for the Laplace equation and

|𝑢𝑛 (𝑥0) − 𝑢 (𝑥0)| 6𝑀

(︂
𝜔

(︂
𝑓,

1

𝑛

)︂
+ ‖𝑓‖∞

ln𝑛

𝑛

)︂
.
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