
ISSN 2304-0122 Ufa Mathematical Journal. Vol. 13. No 1 (2021). P. 17-30.

doi:10.13108/2021-13-1-17

NONLINEAR CONVOLUTION TYPE INTEGRAL EQUATIONS

IN COMPLEX SPACES

S.N. ASKHABOV

Abstract. We study various classes of nonlinear convolution type integral equations ap-
pearing in the theory of feedback systems, models of population genetics and others. By
the method of monotone in the Browder-Minty operators we prove global theorems on ex-
istence, uniqueness and estimates for the solutions to the considered equations in complex
Lebesgue spaces 𝐿𝑝(R) under rather simple restrictions for the nonlinearities. Subject to
the considered class of equations, we assume that either 𝑝 ∈ (1, 2] or 𝑝 ∈ [2,∞). The con-
ditions imposed on nonlinearities are necessary and sufficient to ensure that the generated
superposition operators act from the space 𝐿𝑝(R), 1 < 𝑝 < ∞, into the dual space 𝐿𝑞(R),
𝑞 = 𝑝/(𝑝− 1), and are monotone. In the case of the space 𝐿2(R), we combine the method
of monotone operator and contracting mappings principle to show that the solutions can
be found by the successive approximation method of Picard type and provide estimates for
the convergence rate. Our proofs employ essentially the criterion of the Bochner positivity
of a linear convolution integral operator in the complex space 𝐿𝑝(R) as 1 < 𝑝 6 2 and
the coercitivity of the operator inverse to the Nemytskii operator. In the framework of the
space 𝐿2(R), the obtained results cover, in particular, linear convolution integral operators.
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1. Introduction

Many problems in modern mathematics, physics, mechanics and biology give rise to nonlinear
convolution type integral equations, see monographs [1], [2] and the references therein. For
instance, a general case of nonlinear servos (tracking systems) is described by a considered in
the present work nonlinear convolution type integral equation [3]:

𝑢(𝑥) +

∞∫︁
−∞

ℎ(𝑥− 𝑡)𝐹 [𝑡, 𝑢(𝑡)] 𝑑𝑡 = 𝑓(𝑥), (1.1)

which arises also in the theory of electric nets (signal transmission via a common electric
net) involving nonlinear elements (nonlinear resistor) [4]. As 𝑓(𝑥) = 0, equation of form (1.1)
describes deterministic models of spatial epidemy spreading and it also serves as a mathematical
model for some infection diseases or as a growth equation for some types of populations [5], [6].

Nowadays, the theory of linear convolution type integral equations is well-developed and its
main results are provided, for instance, in monograph [7]. Concerning the theory of nonlinear
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convolution type equation, it is in a developing stage and differs from the linear theory not only
by the methods but also by the nature of obtained results, for more details see [1], [2].

In last decades, a method of monotone operators is widely employed in studying nonlinear
equations with positive operators. Unfortunately, as it is mentioned in [8, Ch. 8, Sect. 8.3],
both notions “positive” and “monotone” are used in functional analysis in several different
meanings. For instance, in works by M.A. Krasnoselskii, I.A. Bakhtin, see, for instance, [9],
there was developed a global theory of positive solutions to nonlinear equations was with
monotone in Krasnoselskii sense operators in Banach spaces with cones, while in works by
G. Minty, F. Browder, R.I. Kachurovsky, M.M. Vainberg and others, see, for instance, [10],
[11], there was constructed a theory of solutions of arbitrary sign to nonlinear equations with
monotone in Browder-Minty sense operators in reflexive spaces. At present, much more papers
on nonlinear convolution type integral equations with monotone in the Krasnoselskii sense
operators are published than those on monotone in the Browder-Minty sense operators.

In the present work, by the method of monotone in the Browder-Minty sense operators, we
prove global theorems on existence, uniqueness and estimates for solutions to three different
classes of nonlinear integral equations of convolution type in complex Lebesgue spaces 𝐿𝑝(R).
As 𝑝 = 2, we show that the solutions can be found by the Picard kind successive approximations
method and we provide the estimates for their convergence rate. The proof employs essentially
the criterion of positivity in the Bochner sense of a convolution integral operator. In particular,
in the framework of the space 𝐿2(R), the obtained results cover linear convolution integral
equations.

It should be noted that in work [12] there were studied various classes of nonlinear integral
convolution type equations in real Lebesgue spaces of 2 𝜋-periodic functions 𝐿𝑝(−𝜋, 𝜋) for all
values 𝑝 ∈ (1,∞). In the case of complex Lebesgue spaces 𝐿𝑝(R), in study these equations,
one faces with additional troubles related, in particular, with the fact in contrast to the spaces
𝐿𝑝(−𝜋, 𝜋), they are not embedded one into another depending on the values 𝑝, and also due
to need of finding conditions for the positivity of the convolution operator and conditions for
monotonicity and coercitivity of the superposition operator. It turns out that these conditions
differ essentially from known ones in the case of real spaces 𝐿𝑝(−𝜋, 𝜋). Finally, in the case
of complex spaces 𝐿𝑝(R), these conditions make us to assume either 𝑝 ∈ (1, 2] or 𝑝 ∈ [2,∞)
subject to a considered class of nonlinear convolution type integral equations.

2. Criterion of positivity for convolution type integral operator in
complex Lebesgue space

Nowadays the theory of continuous positive definite in the Bochner sense functions is quite
well-developed and can serve as one of initial tools for constructing the harmonic analysis [13,
Ch. 9]. In particular, it plays an important role in the theory of locally compact groups. The
notion of a positive definite function is closely related with a notion of a positive operator
widely used in numerous studies of both linear and nonlinear integral and discrete equations in
Banach spaces [1], [14], [15], [16].

It was proved in monograph [1, Sect. 10] that in a real Lebesgue space 𝐿𝑝(R), where 1 <
𝑝 6 2, an integral convolution operator 𝐻𝑢 = ℎ * 𝑢 is positive if and only if the cosine Fourier

transform ̂︀ℎ𝑐(𝑥) of its kernel ℎ ∈ 𝐿1(R)∩𝐿𝑝/[2(𝑝−1)](R) is a non-negative function on the positive
half-line [0,∞).

In this section we establish that the integral convolution operator 𝐻 is positive in a complex
Lebesgue space 𝐿𝑝(R) if and only if the real part of the Fourier transform of its kernel is a
non-negative function on the entire real axis R.
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In the complex Lebesgue space 𝐿𝑝(R), 1 < 𝑝 < ∞, we consider an integral convolution
operator

(𝐻𝑢)(𝑥) =

∞∫︁
−∞

ℎ(𝑥− 𝑡)𝑢(𝑡) 𝑑𝑡 = (ℎ * 𝑢)(𝑥),

where the kernel ℎ belongs to 𝐿1(R). Given 𝑢 ∈ 𝐿𝑝(R) and 𝑣 ∈ 𝐿𝑞(R), 𝑞 = 𝑝/(𝑝 − 1), we
introduce the notations

‖𝑢‖𝑝 =

⎛⎝ ∞∫︁
−∞

|𝑢(𝑥)|𝑝𝑑𝑥

⎞⎠1/𝑝

and ⟨𝑢, 𝑣⟩ =

∞∫︁
−∞

𝑢(𝑥) · 𝑣(𝑥) 𝑑𝑥.

If 𝑝 = 𝑞 = 2, then ⟨𝑢, 𝑣⟩ = (𝑢, 𝑣) is a usual scalar product in the Hilbert space 𝐿2(R).
We denote by ̂︀𝑢(𝑥) the Fourier transform of the function 𝑢 ∈ 𝐿2(R); all facts from the theory

of Fourier transform we provide below can be found, for instance in [17, Ch. VIII]. We have

̂︀𝑢(𝑥) = l.i.m.
𝑁→∞

1√
2𝜋

𝑁∫︁
−𝑁

𝑢(𝑡)𝑒−𝑖𝑥𝑡𝑑𝑡, (2.1)

where the symbol l.i.m.
𝑁→∞

stands the mean limit with the exponent 𝑝 = 2, i.e., in the quadratic
mean sense.

It is known that ̂︀𝑢 ∈ 𝐿2(R) if 𝑢 ∈ 𝐿2(R) for all 𝑢, 𝑣 ∈ 𝐿2(R) a generalized Parseval identity
holds: (𝑢, 𝑣) = (̂︀𝑢, ̂︀𝑣), that is,

∞∫︁
−∞

𝑢(𝑥) · 𝑣(𝑥) 𝑑𝑥 =

∞∫︁
−∞

̂︀𝑢(𝑥) · ̂︀𝑣(𝑥) 𝑑𝑥, (2.2)

where the bar denotes the complex conjugation. Moreover, if ℎ ∈ 𝐿1(R) and 𝑢 ∈ 𝐿2(R), then
the Fourier transform satisfies the identity:

(̂ℎ * 𝑢)(𝑥) =
√

2 𝜋 ̂︀ℎ(𝑥) · ̂︀𝑢(𝑥), (2.3)

where

̂︀ℎ(𝑥) =
1√
2𝜋

∞∫︁
−∞

ℎ(𝑡)𝑒−𝑖𝑥𝑡𝑑𝑡;

since ℎ(𝑥) ∈ 𝐿1(R), expression (2.1) becomes simpler.

Lemma 2.1. Let 1 < 𝑝 6 2 and ℎ ∈ 𝐿1(R)∩𝐿𝑞/2(R), where 𝑞 = 𝑝/(𝑝−1). The convolution
operator 𝐻 acting continuously in from 𝐿𝑝(R) into 𝐿𝑞(R) is positive, that is, the identity holds:

Re ⟨𝐻𝑢, 𝑢⟩ = Re

∞∫︁
−∞

⎛⎝ ∞∫︁
−∞

ℎ(𝑥− 𝑡)𝑢(𝑡) 𝑑𝑡

⎞⎠𝑢(𝑥)𝑑𝑥 > 0, ∀𝑢 ∈ 𝐿𝑝(R), (2.4)

if and only if the following condition is satisfied:

Rê︀ℎ(𝑥) =
1√
2 𝜋

Re

∞∫︁
−∞

ℎ(𝑡)𝑒−𝑖𝑥𝑡𝑑𝑡 > 0, ∀𝑥 ∈ R. (2.5)



20 S.N. ASKHABOV

Proof. Sufficiency. Since ℎ ∈ 𝐿𝑞/2(R), Young inequality, see, for instance, [1, Thm. 4.4], implies
immediately the estimate:

‖𝐻𝑢‖𝑞 6 ‖ℎ‖𝑞/2‖𝑢‖𝑝, ∀𝑢 ∈ 𝐿𝑝(R). (2.6)

Hence, the convolution operator 𝐻 acts continuously from 𝐿𝑝(R) into 𝐿𝑞(R).
We are going to prove the positivity of the convolution operator 𝐻. In order to do this, we

consider separately two cases: 𝑝 = 2 and 1 < 𝑝 < 2.
1). Let 𝑝 = 2. Then 𝑞 = 2 and by the assumptions, ℎ ∈ 𝐿1(R). Hence, by inequality (2.6),

the convolution operator 𝐻 acts continuously from 𝐿2(R) into 𝐿2(R). Employing identities
(2.2) and (2.3), we get:

(𝐻𝑢, 𝑢) =

∞∫︁
−∞

⎛⎝ ∞∫︁
−∞

ℎ(𝑥− 𝑡)𝑢(𝑡) 𝑑𝑡

⎞⎠𝑢(𝑥) 𝑑𝑥 =

∞∫︁
−∞

(ℎ * 𝑢)(𝑥) · 𝑢(𝑥) 𝑑𝑥

=

∞∫︁
−∞

(̂ℎ * 𝑢)(𝑥) · ̂︀𝑢(𝑥) 𝑑𝑥 =
√

2 𝜋

∞∫︁
−∞

̂︀ℎ(𝑥) · ̂︀𝑢(𝑥) · ̂︀𝑢(𝑥) 𝑑𝑥 =
√

2 𝜋

∞∫︁
−∞

̂︀ℎ(𝑥) · |̂︀𝑢(𝑥)|2 𝑑𝑥.

Hence,

Re (𝐻𝑢, 𝑢) =
√

2 𝜋

∞∫︁
−∞

Rê︀ℎ(𝑥) · |̂︀𝑢(𝑥)|2 𝑑𝑥. (2.7)

It follows from identity (2.7) that Re (𝐻𝑢, 𝑢) > 0 for each 𝑢 ∈ 𝐿2(R) if Rê︀ℎ(𝑥) > 0 for almost

each 𝑥 ∈ R. By the Riemann-Lebesgue theorem, the function ̂︀ℎ(𝑥) is continuous on the entire

axis R and the condition that Rê︀ℎ(𝑥) > 0 for almost each 𝑥 ∈ R is equivalent to the condition

that Rê︀ℎ(𝑥) > 0 for almost each 𝑥 ∈ R.

Thus, if ℎ ∈ 𝐿1(R) and Rê︀ℎ(𝑥) > 0 for each 𝑥 ∈ R, then

Re (𝐻𝑢, 𝑢) > 0, ∀ 𝑢 ∈ 𝐿2(R). (2.8)

2). Suppose that 1 < 𝑝 < 2, ℎ(𝑥) ∈ 𝐿1(R) ∩ 𝐿𝑞/2(R) and condition (2.5) is satisfied. Since
ℎ(𝑥) ∈ 𝐿1(R), due to inequality (2.8) we have:

Re ⟨𝐻𝑢, 𝑢⟩ > 0, for all 𝑢(𝑥) ∈ 𝐿2(R) ∩ 𝐿𝑝(R). (2.9)

On the other hand, by the Hölder inequality and Young inequality (2.6), for each 𝑢 ∈ 𝐿𝑝(R)
we have: ⃒⃒

⟨𝐻𝑢, 𝑢⟩
⃒⃒
6 ‖𝐻𝑢‖𝑞‖𝑢‖𝑝 6 ‖ℎ‖𝑞/2‖𝑢‖2𝑝,

i.e., the functional ⟨𝐻𝑢, 𝑢⟩ is continuous in 𝐿𝑝(R). Since the set 𝐿2(R) ∩ 𝐿𝑝(R) is everywhere
dense in the class 𝐿𝑝(R) and ⟨𝐻𝑢, 𝑢⟩ is a continuous functional, the inequality Re ⟨𝐻𝑢, 𝑢⟩ > 0,
that is, inequality (2.9), holds for each 𝑢 ∈ 𝐿𝑝(R).
Necessity. We are going to prove that condition (2.5) is also necessary for the positivity of

the operator 𝐻. Let inequality (2.4) holds. We need to prove that then Rê︀ℎ(𝑥) > 0 for each
𝑥 ∈ R, that is, condition (2.5) is satisfied. We assume the opposite, i.e., that condition (2.5)

fails and there exists a point 𝑥0 ∈ R such that Rê︀ℎ(𝑥0) < 0. Since by the Riemann-Lebesgue

theorem the function Rê︀ℎ(𝑥) is continuous on the entire line R, there exists a sufficiently small
𝜀-neighbourhood 𝑈𝜀(𝑥0) = {𝑥 : |𝑥− 𝑥0| < 𝜀}, 𝜀 > 0, of the point 𝑥0 such that the inequality
is satisfied:

Rê︀ℎ(𝑥) < 0, ∀ 𝑥 ∈ 𝑈𝜀(𝑥0).
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We choose an entire function 𝑢 such that 𝑢|R ∈ 𝐿𝑝(R), ̂︀𝑢(𝑥) = 0 for 𝑥 ̸∈ 𝑈𝜀(𝑥0) and ̂︀𝑢(𝑥) ̸= 0
if 𝑥 ∈ 𝑈𝜀(𝑥0). Then, taking into consideration that for all 𝑥 ∈ 𝑈𝜀(𝑥0) the strict inequalities

Rê︀ℎ(𝑥) < 0 and |̂︀𝑢(𝑥)| > 0 hold, by formula (2.7), for the chosen function 𝑢(𝑥) we obtain:

Re ⟨𝐻𝑢, 𝑢⟩ =
√

2𝜋

∞∫︁
−∞

Rê︀ℎ(𝑥) · |̂︀𝑢(𝑥)|2 𝑑𝑥 =
√

2𝜋

∫︁
𝑈𝜀(𝑥0)

Rê︀ℎ(𝑥) · |̂︀𝑢(𝑥)|2 𝑑𝑥 < 0,

which contradicts inequality (2.4), which by the assumption is satisfied for each 𝑢 ∈ 𝐿𝑝(R).
The proof is complete.

In studying of nonlinear convolution type integral equations (1.1), we shall need the following
lemma dual to Lemma 2.1.

Lemma 2.2. Let 𝑝 > 2 and ℎ ∈ 𝐿1(R)∩𝐿𝑝/2(R). The operator 𝐻 acting continuously from
𝐿𝑞(R) into 𝐿𝑝(R) is positive if and only if condition (2.5) is satisfied.

The proof of this lemma follows the same lines as the proof of Lemma 2.1.

3. Theorems on existence and uniqueness of solution in 𝐿𝑝(R)

We first provide definitions, notations and some results from the theory of monotone in
Browder-Minty sense operators used in the present paper.

Let 𝑋 be a complex Banach space and 𝑋* be the dual space. We denote by ⟨𝑦, 𝑥⟩ the value of
a linear continuous functional 𝑦 ∈ 𝑋* on an element 𝑥 ∈ 𝑋, while ‖·‖ and ‖·‖* are respectively
the norms in 𝑋 and 𝑋*. In particular, if 𝑋 is a Hilbert space 𝐻, then ⟨𝑦, 𝑥⟩ coincides with the
scalar product (𝑦, 𝑥), where 𝑥, 𝑦 ∈ 𝐻.

Definition 3.1. Let 𝑢, 𝑣 ∈ 𝑋 be arbitrary elements. An operator 𝐴 : 𝑋 → 𝑋* acting from
𝑋 into 𝑋* is called
monotone if Re ⟨𝐴𝑢− 𝐴𝑣, 𝑢− 𝑣⟩ > 0;
strictly monotone if Re ⟨𝐴𝑢− 𝐴𝑣, 𝑢− 𝑣⟩ > 0 as 𝑢 ̸= 𝑣;
strongly monotone if Re ⟨𝐴𝑢− 𝐴𝑣, 𝑢− 𝑣⟩ > 𝑚 · ‖𝑢− 𝑣‖2, 𝑚 > 0;
coercive if

lim
‖𝑢‖→∞

Re ⟨𝐴𝑢, 𝑢⟩
‖𝑢‖

= ∞;

Lipschit continuous if ‖𝐴𝑢− 𝐴𝑣‖* 6 𝑀 · ‖𝑢− 𝑣‖, 𝑀 > 0;
hemicontinuous if the function 𝑠 → ⟨𝐴(𝑢 + 𝑠 · 𝑣), 𝑤⟩ is continuous on [0, 1] for each fixed

𝑢, 𝑣, 𝑤 ∈ 𝑋;
demicontinuous if the strong convergence 𝑢𝑛 → 𝑢 in 𝑋 implies the weak convergence 𝐴𝑢𝑛 →

𝐴𝑢 into 𝑋*.

If 𝐴 is a linear operator, then the definition of a monotone, strictly monotone and strongly
monotone operator coincide, respectively, with the definition of a positive, strictly positive and
strongly positive (positive definite) operator [10, Sect. 1].

It is known [11, Rem. 1.8, Ch. III] that for monotone operator the notions of hemicontinuity
and demicontinuity, being weakening of the usual notion of continuity, coincide.

In the theory of monotone operator, the following theorem of F. Browder and G. Minty is the
main one [11, Sect. 2, Ch. III]; in the case of complex spaces 𝑋 it was proved in [10, Sect.18]
and [18, Thm. 1.1, Ch. II].

Theorem 3.1. Let 𝑋 be a reflexive Banach space and the operator 𝐴 : 𝑋 → 𝑋* is hemicon-
tinuous, monotone and coercive. Then equation 𝐴𝑢 = 𝑓 possesses the unique soltuion 𝑢* ∈ 𝑋
for each 𝑓 ∈ 𝑋*. This solution is unique in 𝑋 if 𝐴 is a strictly monotone operator.
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We denote by C the set of all complex numbers and by 𝐿+
𝑝 (R) we denote the set of all

non-negative functions in 𝐿𝑝(R). We introduce a nonlinear composition operator, often call
Nemytskii operator [10] (𝐹𝑢)(𝑥) = 𝐹 [𝑥, 𝑢(𝑥)] generated by a complex-valued function 𝐹 (𝑥, 𝑧) :
R× C→ C obeying known Carathéodory conditions: it is measurable in 𝑥 ∈ R for each fixed
𝑧 ∈ C and is continuous in 𝑧 for almost each 𝑥 ∈ R.

For the convenience in further referring, we write all conditions for the function 𝐹 (𝑥, 𝑧)
determining the nonlinearity of the studied in this sections equations. Namely, depending on
a considered class of the nonlinear convolution type integral equations, we shall impose either
conditions 3.1)–3.3) or conditions 3.4)–3.6) on the nonlinearity 𝐹 (𝑥, 𝑧), where 𝑝 ∈ (1,∞) :

3.1) there exists 𝑐 ∈ 𝐿+
𝑞 (R) and 𝑑1 > 0 such that for almost each 𝑥 ∈ R and each 𝑧 ∈ C the

inequality holds:

|𝐹 (𝑥, 𝑧)| 6 𝑐(𝑥) + 𝑑1 · |𝑧|𝑝−1;

3.2) for almost each 𝑥 ∈ R and all 𝑧1, 𝑧2 ∈ C, the inequality holds:

Re
{︁

[𝐹 (𝑥, 𝑧1) − 𝐹 (𝑥, 𝑧2)] · (𝑧1 − 𝑧2)
}︁
> 0;

3.3) there exist 𝐷 ∈ 𝐿+
1 (R) and 𝑑2 > 0 such that for almost each 𝑥 ∈ R and all 𝑧 ∈ C the

inequality holds:

Re {𝐹 (𝑥, 𝑧) · 𝑧} > 𝑑2 · |𝑧|𝑝 −𝐷(𝑥);

3.4) there exist 𝑔 ∈ 𝐿+
𝑝 (R) and 𝑑3 > 0 such that for almost each 𝑥 ∈ R and each 𝑧 ∈ C the

inequality holds:

|𝐹 (𝑥, 𝑧)| 6 𝑔(𝑥) + 𝑑3 · |𝑧|1/(𝑝−1);

3.5) for almost each 𝑥 ∈ R and all 𝑧1, 𝑧2 ∈ C the inequality holds:

Re
{︁

[𝐹 (𝑥, 𝑧1) − 𝐹 (𝑥, 𝑧2)] · (𝑧1 − 𝑧2)
}︁
> 0;

3.6) there exist 𝐷 ∈ 𝐿+
1 (R) and 𝑑4 > 0 such that for almost each 𝑥 ∈ R and all 𝑧 ∈ C the

inequality holds:

Re {𝐹 (𝑥, 𝑧) · 𝑧} > 𝑑4 · |𝑧|𝑝/(𝑝−1) −𝐷(𝑥).

We observe that if Conditions 3.1)–3.3) are satisfied, then the Nemytskii operator 𝐹 generated
by the function 𝐹 (𝑥, 𝑧) acts from 𝐿𝑝(R) into 𝐿𝑞(R) and is continuous, monotone and coercive.
If Conditions 3.4)–3.6) are satisfied, then the operator 𝐹 acts from 𝐿𝑞(R) into 𝐿𝑝(R) and is
continuous, strictly monotone and coercive, see, for instance, [1, Sect. 2].

As a simplest example of the function 𝐹 (𝑥, 𝑧) obeying Conditions 3.1)–3.3), the function
𝐹 (𝑥, 𝑧) = 𝑧 · |𝑧|𝑝−2 can serve, where 𝑝 > 2 is an arbitrary number. Indeed, this function
obviously obeys Conditions 3.1) and 3.3) and at that, ‖𝐹𝑢‖𝑞 = ‖𝑢‖𝑝−1

𝑝 , Re ⟨𝐹𝑢, 𝑢⟩ = ‖𝑢‖𝑝𝑝. Let
us check Condition 3.2) for 𝑝 > 2; the validity of this condition for 𝑝 = 2 is obvious. For all
𝑧1 = 𝑥1 + 𝑖 𝑦1 and 𝑧2 = 𝑥2 + 𝑖 𝑦2 we have:

[𝐹 (𝑥, 𝑧1) − 𝐹 (𝑥, 𝑧2)] · [𝑧1 − 𝑧2] = |𝑧1|𝑝 − |𝑧1|𝑝−2𝑧1 𝑧2 − |𝑧2|𝑝−2𝑧2 𝑧1 + |𝑧2|𝑝.

Since

Re (𝑧1 𝑧2) = Re (𝑧2 𝑧1) = 𝑥1𝑥2 + 𝑦1𝑦2 6
1

2
(𝑥2

1 + 𝑥2
2 + 𝑦21 + 𝑦22) =

1

2
(|𝑧1|2 + |𝑧2|2),
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then

Re
{︁

[𝐹 (𝑥, 𝑧1) − 𝐹 (𝑥, 𝑧2)] · [𝑧1 − 𝑧2]
}︁

= |𝑧1|𝑝 + |𝑧2|𝑝 − (𝑥1𝑥2 + 𝑦1𝑦2)(|𝑧1|𝑝−2 + |𝑧2|𝑝−2)

> |𝑧1|𝑝 + |𝑧2|𝑝 −
1

2
(|𝑧1|2 + |𝑧2|2)(|𝑧1|𝑝−2 + |𝑧2|𝑝−2)

=
1

2
(|𝑧1|𝑝−2 − |𝑧2|𝑝−2)(|𝑧1|2 − |𝑧2|2) > 0 ,

and Condition 3.2) is satisfied.
We first consider an equation simplest for studying by the method of monotone operators,

in which a nonlinear superposition operator and a linear operator are involved as summands.

Theorem 3.2. Let 1 < 𝑝 6 2, ℎ ∈ 𝐿1(R) ∩ 𝐿𝑞/2(R) and condition (2.5) is satisfied. If the
nonlinearity 𝐹 (𝑥, 𝑧) satisfies Conditions 3.1)–3.3), then the equation

𝐹 [𝑥, 𝑢(𝑥)] +

∞∫︁
−∞

ℎ(𝑥− 𝑡)𝑢(𝑡) 𝑑𝑡 = 𝑓(𝑥) (3.1)

has a solution 𝑢* ∈ 𝐿𝑝(R) for each 𝑓 ∈ 𝐿𝑞(R). This solution is unique if Condition 3.5) holds
instead of Condition 3.2). At that, if Condition 3.3) holds with 𝐷(𝑥) = 0, then the estimate

‖𝑢*‖𝑝 6
(︀
𝑑−1
2 · ‖𝑓‖𝑞

)︀1/(𝑝−1)

is true.

Proof. We write equation (3.1) in the operator form: 𝐴𝑢 = 𝑓 , where 𝐴 = 𝐹 + 𝐻. It follows
from Conditions 3.1)–3.3) that the superposition operator 𝐹 generated by the function 𝐹 (𝑥, 𝑧)
acts from 𝐿𝑝(R) into 𝐿𝑞(R) and is continuous, monotone and coercive. Moreover, it is a strictly
monotone operator if Condition 3.5) is satisfied. It follows from Lemma 2.1 that the convolution
operator 𝐻 acts also from 𝐿𝑝(R) into 𝐿𝑞(R) and is continuous and positive operator, which is,
due to its linearity, is equivalent to the monotonicity. Thus, the operator 𝐴 acts continuously,
and hence, hemicontinuously from the reflexive space 𝐿𝑝(R) into the dual space 𝐿𝑞(R) and
is monotone and coercive. Moreover, if Condition 3.5) is satisfied, this operator is strictly
monotone. This is why, by Browder-Minty theorem 3.1, the equation 𝐴𝑢 = 𝑓 , and hence,
equation (3.1), possesses a solution 𝑢* ∈ 𝐿𝑝(R) and this solution is unique if Condition 3.5)
holds.

It remains to prove the estimate for the norm of the solution. Let 𝑢* ∈ 𝐿𝑝(R) be a solution
to equation (3.1), that is, 𝐴𝑢* = 𝑓 . We first employ Condition 3.3) for 𝐷(𝑥) = 0, and then the
positivity of the convolution operator 𝐻, identity 𝐴𝑢* = 𝑓 and Hölder inequality. As a result,
we have:

𝑑2 · ‖𝑢*‖𝑝𝑝 6Re ⟨𝐹𝑢*, 𝑢*⟩ 6 Re ⟨𝐹𝑢*, 𝑢*⟩ + Re ⟨𝐻𝑢*, 𝑢*⟩
=Re ⟨𝐴𝑢*, 𝑢*⟩ = Re ⟨𝑓, 𝑢*⟩ 6 ‖𝑓‖𝑞 · ‖𝑢*‖𝑝,

which implies immediately the needed estimate. The proof is complete.

It should be noted that the Nemytskii operator 𝐹 is one of few non-linear operators, for which
the criterions determining its behavior are known. For instance, Condition 3.1) is necessary and
sufficient to ensure that the operator 𝐹 acts from 𝐿𝑝(R) into the dual space 𝐿𝑞(R), 𝑞 = 𝑝/(𝑝−1),
and is continuous, while Condition 3.2) is a criterion for the monotonicity of this operator, see
[10]. Owing to these criterions, under Conditions 3.1), 3.2) and 3.5), it is possible to prove
that the inverse operator 𝐹−1 is well-defined, hemicontinous, strict monotone and coercive; the
latter is especially important for proving the next two theorems.
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We proceed to studying equation (1.1) belonging to a known class of nonlinear integral
equation of Hammerstein type. It should be noted that the method of monotone in the Browder-
Minty sense operators was applied to nonlinear integral equations of form (1.1) with a general
kernel 𝑘(𝑥, 𝑡) instead the difference kernel ℎ(𝑥− 𝑡) in many works, see, for instance, [10], [19],
[20]. However, it was assumed in these works that a linear integral with the kernel 𝑘(𝑥, 𝑡) acted
from a Lebesgue space into the was positive but no conditions ensuring these properties were
provided. In the case of the difference kernel ℎ(𝑥 − 𝑡) such conditions are presented in the
following theorem.

Theorem 3.3. Let 𝑝 > 2, ℎ ∈ 𝐿1(R) ∩ 𝐿𝑝/2(R) and Condition (2.5) be satisfied. If the
nonlinearity 𝐹 (𝑥, 𝑧) satisfies Conditions 3.1), 3.3) and 3.5), then the equation

𝑢(𝑥) +

∞∫︁
−∞

ℎ(𝑥− 𝑡)𝐹 [𝑡, 𝑢(𝑡)] 𝑑𝑡 = 𝑓(𝑥) (3.2)

possesses the unique solution 𝑢* ∈ 𝐿𝑝(R) for each 𝑓 ∈ 𝐿𝑝(R). At that, if Conditions 3.1)
and 3.3) hold with 𝑐(𝑥) = 0 and 𝐷(𝑥) = 0, the following estimate is true:

‖𝑢*‖𝑝 6
𝑑1
𝑑2

· ‖𝑓‖𝑝.

Proof. It follows from Conditions 3.1), 3.3) and 3.5) that the superposition operator 𝐹 maps
the space 𝐿𝑝(R) onto entire space 𝐿𝑞(R), is continuous, strictly monotone and coercive. By
Lemma 2.1 in [1], the inverse operator 𝐹−1 mapping 𝐿𝑞(R) onto 𝐿𝑝(R) is well-defined and this
operator is hemicontinous, strictly monotone and coercive. In view of Lemma 2.2, the operator
𝐴 = 𝐹−1 + 𝐻 acts from 𝐿𝑞(R) into 𝐿𝑝(R), is hemicontinous, strictly monotone and coercive.
Hence, by Browder-Minty theorem 3.1, equation 𝐴𝑣 = 𝑓 has the unique solution 𝑣* ∈ 𝐿𝑞(R)
for each 𝑓 ∈ 𝐿𝑝(R). But then 𝑢* = 𝐹−1𝑣* ∈ 𝐿𝑝(R) is a solution of the equation 𝑢 + 𝐻𝐹𝑢 = 𝑓 ,
that is, of equation (3.2) and it is unique by Condition 3.5).

It remains to establish the estimate for the norm of the solution. Let 𝑢* ∈ 𝐿𝑝(R) be a solution
of equation (3.2), that is, 𝑢* + 𝐻𝐹𝑢* = 𝑓 . We first employ Condition 3.3) for 𝐷(𝑥) = 0, and
then the positivity of the convolution operator 𝐻, the Hölder inequality and Condition 3.1)
with 𝑐(𝑥) = 0. As a result, we have:

𝑑2 · ‖𝑢*‖𝑝𝑝 6 Re ⟨𝑢*, 𝐹𝑢*⟩ 6Re ⟨𝑢*, 𝐹𝑢*⟩ + Re ⟨𝐻𝐹𝑢*, 𝐹𝑢*⟩ = Re ⟨𝑢* + 𝐻𝐹𝑢*, 𝐹𝑢*⟩
=Re ⟨𝑓, 𝐹𝑢*⟩ 6 𝑑1 · ‖𝑓‖𝑝 · ‖𝐹𝑢*‖𝑞 6 𝑑1 · ‖𝑓‖𝑝 · ‖𝑢*‖𝑝−1

𝑝 ,

which implies immediately the needed estimate. The proof is complete.

The next theorem differs from Theorems 3.2 and 3.3 both by the nature of restrictions
imposed for the nonlinearity 𝐹 (𝑥, 𝑧) and by the structure of the proof.

Theorem 3.4. Let 1 < 𝑝 6 2, ℎ ∈ 𝐿1(R) ∩ 𝐿𝑞/2(R) and Condition (2.5) be satisfied. If the
nonlinearity 𝐹 (𝑥, 𝑧) obeys Conditions 3.4)–3.6), then the equation

𝑢(𝑥) + 𝐹

⎛⎝𝑥,

∞∫︁
−∞

ℎ(𝑥− 𝑡)𝑢(𝑡) 𝑑𝑡

⎞⎠ = 𝑓(𝑥) (3.3)

possesses a unique solution 𝑢* ∈ 𝐿𝑝(R) for each 𝑓 ∈ 𝐿𝑝(R). At that, if Conditions 3.4) and 3.6)
are satisfied with 𝑔(𝑥) = 0 and 𝐷(𝑥) = 0, then the estimate

‖𝑢*‖𝑝 6
(︂
𝑑3
𝑑4

+ 1

)︂
· ‖𝑓‖𝑝
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holds true.

Proof. It follows from Conditions 3.4)–3.6) that the superposition operator 𝐹 maps the dual
space 𝐿𝑞(R) onto the initial space 𝐿𝑝(R), in which the solution for equation (3.3) is sought and
this operator is continuous, strictly monotone and coercive. By Lemma 2.1 in [1], there exists
an inverse operator 𝐹−1 mapping 𝐿𝑝(R) onto 𝐿𝑞(R), this operator is hemicontinous, strictly
monotone and coercive. In view of above proven Lemma 2.1 we conclude that the operator
𝐴 = 𝐹−1 + 𝐻 acts from 𝐿𝑝(R) into 𝐿𝑞(R), is hemicontinous, strictly monotone and coercive.
According Lemma 2.1, we have 𝐻𝑓 ∈ 𝐿𝑞(R). Hence, by Browder-Minty theorem 3.1, the
equation 𝐴𝑢 = 𝐻𝑓 has a unique solution 𝑣* ∈ 𝐿𝑝(R) for each 𝑓 ∈ 𝐿𝑝(R). But then 𝑢* = 𝑓 − 𝑣*

is a solution of the equation 𝑢+𝐹𝐻𝑢 = 𝑓 , that is, of equation (3.3), and this solution is unique
by Condition 3.5).

It remains to prove the estimate for the norm of solution. Let 𝑢* ∈ 𝐿𝑝(R) be the solution of
equation (3.3), that is, 𝑢* + 𝐹𝐻𝑢* = 𝑓 . Employing Condition 3.4) for 𝑔(𝑥) = 0, we get:

‖𝑢* − 𝑓‖𝑝 = ‖𝐹𝐻𝑢*‖𝑝 6 𝑑3 · ‖𝐻𝑢*‖𝑞−1
𝑞 . (3.4)

Since ⟨𝑢* +𝐹𝐻𝑢*, 𝐻𝑢*⟩ = ⟨𝑓,𝐻𝑢*⟩, by the positivity of the convolution operator 𝐻 we obtain:

Re ⟨𝐹𝐻𝑢*, 𝐻𝑢*⟩ 6 Re ⟨𝑢* + 𝐹𝐻𝑢*, 𝐻𝑢*⟩ = Re ⟨𝑓,𝐻𝑢*⟩ 6 ‖𝑓‖𝑝 · ‖𝐻𝑢*‖𝑞. (3.5)

On the other hand, employing Condition 3.6) with 𝐷(𝑥) = 0, we find:

Re ⟨𝐹𝐻𝑢*, 𝐻𝑢*⟩ > 𝑑4 · ‖𝐻𝑢*‖𝑞𝑞. (3.6)

Comparing inequalities (3.5) and (3.6), we obtain estimate ‖𝐻𝑢*‖𝑞−1
𝑞 6 𝑑−1

4 · ‖𝑓‖𝑝. Then it

follows from inequality (3.4) that ‖𝑢* − 𝑓‖𝑝 6 𝑑3 · 𝑑−1
4 · ‖𝑓‖𝑝. Since ‖𝑢*‖𝑝 − ‖𝑓‖𝑝 6 ‖𝑢* − 𝑓‖𝑝,

the latter inequality yields the needed estimate. The proof is complete.

We note that as 𝑝 = 2, Theorems 3.2–3.4 cover, in particular, the case of linear convolution
type integral equations. Moreover, the estimates obtained in Theorems 3.2–3.4 yield that as
𝑓(𝑥) ≡ 0, equations (3.1)–(3.3) have in 𝐿𝑝(R) the trivial solution only 𝑢*(𝑥) = 0.

4. Approximate solutions for equations in 𝐿2(R)

In the previous section, we proved Theorems 3.2–3.4 on existence, uniqueness and estimates
for the solutions of equations (3.1)–(3.3). However, these theorems contain no information
how the solutions of these equations can be found. In this section we combine the method
of monotone in the Browder-Minty sense operators and the contracting mappings principle
[11, Ch. III, Thm. 3.4] and we prove that the solutions of nonlinear convolution type integral
equations (3.1)–(3.3) can be found by the Picard type successive approximations method in
complex spaces 𝐿2(R).

Theorem 4.1. Let the kernel ℎ ∈ 𝐿1(R) satisfies condition (2.5). If the nonlinearity 𝐹 (𝑥, 𝑧)
satisfies the conditions

4.1) There exists a number 𝑀 > 0 such that for almost all 𝑥 ∈ R and all 𝑧1, 𝑧2 ∈ C the
inequality holds:

|𝐹 (𝑥, 𝑧1) − 𝐹 (𝑥, 𝑧2)| 6 𝑀 · |𝑧1 − 𝑧2|;
4.2) There exists a number 𝑚 > 0 such that for almost each 𝑥 ∈ R and all 𝑧1, 𝑧2 ∈ C the

inequality holds:

Re
{︁

[𝐹 (𝑥, 𝑧1) − 𝐹 (𝑥, 𝑧2)] · (𝑧1 − 𝑧2)
}︁
> 𝑚 · |𝑧1 − 𝑧2|2,
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then equation (3.1) has the unique solution 𝑢* ∈ 𝐿2(R) for each 𝑓 ∈ 𝐿2(R). This solution can
be found the successive approximations method by the formula:

𝑢𝑛 = 𝑢𝑛−1 − 𝜇1 · (𝐹𝑢𝑛−1 + 𝐻𝑢𝑛−1 − 𝑓), 𝑛 ∈ N, (4.1)

and the estimate for the convergence rate holds:

‖𝑢𝑛 − 𝑢*‖2 6 𝜇1 ·
𝛼𝑛
1

1 − 𝛼1

· ‖𝐹𝑢0 + 𝐻𝑢0 − 𝑓‖2, (4.2)

where

𝜇1 = 𝑚 · (𝑀 + ‖ℎ‖1)−2, 𝛼1 =
√︀

1 −𝑚𝜇1,

and 𝑢0 ∈ 𝐿2(R) is an arbitrary function.

Proof. We write equation (3.1) in the operator form 𝐴𝑢 = 𝑓 , where 𝐴 = 𝐹 +𝐻. It follows from
Conditions 4.1)–4.2) that the superposition operator 𝐹 generated by the function 𝐹 (𝑥, 𝑧) acts
from 𝐿2(R) in 𝐿2(R) and is Lipschitz continuous and strongly monotone and for all 𝑢, 𝑣 ∈ 𝐿2(R)
the inequalities hold:

‖𝐴𝑢− 𝐴𝑣‖2 6 (𝑀 + ‖ℎ‖1) · ‖𝑢− 𝑣‖2, Re (𝐴𝑢− 𝐴𝑣, 𝑢− 𝑣) > 𝑚 · ‖𝑢− 𝑣‖22.

Since the strong monotonicity of the operator implies its strict monotonicity and coercivity,
by Browder-Minty theorem 3.1 equation 𝐴𝑢 = 𝑓 , i.e., equation (3.1), has a unique solution
𝑢* ∈ 𝐿2(R).

It remains to show that this solution can be found the successive approximations method
by formula (4.1) with estimate (4.2) for its convergence rate. In order to do this, we replace
equation 𝐴𝑢 = 𝑓 by an equivalent equation 𝑢 = Φ𝑢, where Φ𝑢 = 𝑢− 𝜇 · (𝐴𝑢− 𝑓) and 𝜇 > 0 is
an arbitrary number to be fixed later. It is obvious that the operator Φ acts from 𝐿2(R) into
𝐿2(R) and

‖Φ𝑢− Φ𝑣‖22 =
(︀
𝑢− 𝑣 − 𝜇 · (𝐴𝑢− 𝐴𝑣), 𝑢− 𝑣 − 𝜇 · (𝐴𝑢− 𝐴𝑣)

)︀
=‖𝑢− 𝑣‖22 − 2𝜇 · Re (𝐴𝑢− 𝐴𝑣, 𝑢− 𝑣) + 𝜇2 · ‖𝐴𝑢− 𝐴𝑣‖22
6
(︁

1 − 2𝜇 ·𝑚 + 𝜇2 · (𝑀 + ‖ℎ‖1)2
)︁
· ‖𝑢− 𝑣‖22.

It is easy to confirm that the expression 1 − 2𝜇 ·𝑚 + 𝜇2 · (𝑀 + ‖ℎ‖1)2 takes its minimal value
equalling to 1 −𝑚2 · (𝑀 + ‖ℎ‖1)−2 as 𝜇 = 𝜇1. Choosing the mentioned 𝜇, we obtain:

‖Φ𝑢− Φ𝑣‖2 6 𝛼1 · ‖𝑢− 𝑣‖2,

where 𝛼1 =
√

1 −𝑚 · 𝜇1 ∈ (0, 1).
Therefore, the operator Φ is contracting and this is why formula (4.1) and estimate (4.2) are

implied immediately by the Banach contracting principle. The proof is complete.

While proving theorems similar to Theorem 4.1 for equations (3.2) and (3.3), one faces addi-
tional difficulties, which lead one to the fact that the successive approximations and estimates
for their convergence rate involve the operator 𝐹−1 inverse to the operator 𝐹 . Namely, the
following two theorems hold.

Theorem 4.2. Let the kernel ℎ ∈ 𝐿1(R) satisfies condition (2.5). If the nonlinearity 𝐹 (𝑥, 𝑧)
satisfies Conditions 4.1) and 4.2), then equation (3.2) has a unique solution 𝑢* ∈ 𝐿2(R) for
each 𝑓 ∈ 𝐿2(R). This solution can be found by the successive approximations methods by the
formula:

𝑢𝑛 = 𝐹−1𝑣𝑛, 𝑣𝑛 = 𝑣𝑛−1 − 𝜇2 · (𝐹−1𝑣𝑛−1 + 𝐻𝑣𝑛−1 − 𝑓), 𝑛 ∈ N, (4.3)
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where
𝜇2 =

𝑚

[𝑀 · (𝑚−1 + ‖ℎ‖1)]2
and 𝐹−1 is the operator inverse to 𝐹 . At that, an estimate for for the convergence rate of
successive approximations holds:

‖𝑢𝑛 − 𝑢*‖2 6
𝜇2

𝑚
· 𝛼𝑛

2

1 − 𝛼2

· ‖𝐹−1𝑣0 + 𝐻𝑣0 − 𝑓‖2, (4.4)

where

𝛼2 =

√︂
1 − 𝑚𝜇2

𝑀2
,

and 𝑣0(𝑥) ∈ 𝐿2(R) is an arbitrary function.

Proof. It follows from Conditions 4.1) and 4.2) that the superposition operator 𝐹 acts from
𝐿2(R) into 𝐿2(R) and is strictly monotone, hemicontinuous, coercive and bounded, that is,
it satisfies all assumptions of Theorem 1.9 in [1]. Therefore, there exists the inverse operator
𝐹−1 acting from 𝐿2(R) into 𝐿2(R) and, see [11, Ch. III, Cor. 2.3]), for all 𝑢, 𝑣 ∈ 𝐿2(R) the
inequalities hold:

‖𝐹−1𝑢− 𝐹−1𝑣‖2 6
1

𝑚
· ‖𝑢− 𝑣‖2, (4.5)

Re (𝐹−1𝑢− 𝐹−1𝑣, 𝑢− 𝑣) >
𝑚

𝑀2
· ‖𝑢− 𝑣‖22. (4.6)

We write equation (3.2) in the operator form:

𝑢 + 𝐻𝐹𝑢 = 𝑓. (4.7)

By Theorem 3.3, this equation has a unique solution 𝑢* ∈ 𝐿2(R). It remains to show that
sequence (4.3) converges to 𝑢* and estimate (4.4) holds. In order to do this, together with
equation (4.7) we consider an auxiliary equation

Φ𝑣 = 𝑓 and Φ = 𝐹−1 + 𝐻. (4.8)

It is obvious that if 𝑣 ∈ 𝐿2(R) is a solution of equation (4.8), then 𝑢* = 𝐹−1𝑣* ∈ 𝐿2(R) solves
equation (4.7). This is why it is sufficient to show that equation (4.8) has a unique solution
𝑣* ∈ 𝐿2(R), it can be found by formula (4.3) and estimate (4.4) holds. Employing inequality
‖𝐻𝑢‖2 6 ‖ℎ‖1 · ‖𝑢‖2, which is implied by Young inequality (2.6), as well as Lemma 2.1 and
estimates (4.5), (4.6), for all 𝑢, 𝑣 ∈ 𝐿2(R) we have:

‖Φ𝑢− Φ𝑣‖2 6
(︀
𝑚−1 + ‖ℎ‖1

)︀
· ‖𝑢− 𝑣‖2, (4.9)

Re (Φ𝑢− Φ𝑣, 𝑢− 𝑣) >
𝑚

𝑀2
· ‖𝑢− 𝑣‖22. (4.10)

Replacing then equation (4.8) by an equivalent equation

𝑣 = Ψ𝑣, where Ψ𝑣 = 𝑣 − 𝜇 · (Φ𝑣 − 𝑓), 𝜇 > 0,

as in the proof of Theorem 4.1, by employing estimates (4.9) and (4.10) we obtain:

‖Ψ𝑢− Ψ𝑣‖22 =
(︁
𝑢− 𝑣 − 𝜇 · (Φ𝑢− Φ𝑣), 𝑢− 𝑣 − 𝜇 · (Φ𝑢− Φ𝑣)

)︁
=‖𝑢− 𝑣‖22 − 2𝜇 · Re (Φ𝑢− Φ𝑣, 𝑢− 𝑣) + 𝜇2 · ‖Φ𝑢− Φ𝑣‖22
6
(︁

1 − 2𝜇 · 𝑚

𝑀2
+ 𝜇2 · (𝑚−1 + ‖ℎ‖1)2

)︁
· ‖𝑢− 𝑣‖22.

It follows from Conditions 4.1) and 4.2) that 𝑚 6 𝑀 . Since −1/𝑚 6 −𝑚/𝑀2, then

0 6 1 − 2𝜇 · 1

𝑚
+ 𝜇2 · 1

𝑚2
6 1 − 2𝜇 · 𝑚

𝑀2
+ 𝜇2 · (𝑚−1 + ‖ℎ‖1)2 < 1,
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if

𝜇2 · (𝑚−1 + ‖ℎ‖1)2 < 2𝜇 · 𝑚

𝑀2
,

i.e., if

𝜇 < 2
𝑚

𝑀2
· 1

(𝑚−1 + ‖ℎ‖1)2
.

This is why, choosing 𝜇 = 𝜇2, we get

1 − 2𝜇 · 𝑚

𝑀2
+ 𝜇2 · (𝑚−1 + ‖ℎ‖1)2 = 1 −𝑚 · 𝜇2/𝑀

2.

As a result, for the mentioned 𝜇 we have:

‖Ψ𝑢− Ψ𝑣‖2 6 𝛼2 · ‖𝑢− 𝑣‖2,

where

𝛼2 =

√︂
1 − 𝑚𝜇2

𝑀2
∈ (0, 1).

Therefore, on the base of the contracting mappings principle, equation 𝑣 = Ψ𝑣, and hence
equation (4.8) has a unique solution 𝑣*(𝑥) ∈ 𝐿2(R) and the sequence

𝑣𝑛 = Ψ𝑣𝑛−1 = 𝑣𝑛−1 − 𝜇2 · (𝐻𝑣𝑛−1 + 𝐹−1𝑣𝑛−1 − 𝑓),

i.e., sequence (4.3), converges to 𝑣*(𝑥) and

‖𝑣𝑛 − 𝑣*‖2 6
𝛼𝑛
2

1 − 𝛼2

· ‖Ψ𝑣0 − 𝑣0‖2 = 𝜇2 ·
𝛼𝑛
2

1 − 𝛼2

· ‖𝐻𝑣0 + 𝐹−1𝑣0 − 𝑓‖2. (4.11)

Finally, observing that 𝑣* = 𝐹𝑢* and employing inequalities (4.5), (4.6), for the solution 𝑢* =
𝐹−1𝑣* ∈ 𝐿2(R) of equation (3.2) we obtain

‖𝑢𝑛 − 𝑢*‖2 =‖𝐹−1𝑣𝑛 − 𝐹−1𝑣*‖2 6
1

𝑚
· ‖𝑣𝑛 − 𝑣*‖2

6
𝜇2

𝑚
· 𝛼𝑛

2

1 − 𝛼2

· ‖𝐻𝑣0 + 𝐹−1𝑣0 − 𝑓‖2,

and hence, inequality (4.4) holds true. The proof is complete.

Theorem 4.3. Let the kernel ℎ ∈ 𝐿1(R) satisfies condition (2.5). If the nonlinearity 𝐹 (𝑥, 𝑧)
satisfies Conditions 4.1) and 4.2), then equation (3.3) has a unique solution 𝑢* ∈ 𝐿2(R) for
each 𝑓 ∈ 𝐿2(R). This solution can be found by the successive approximations method by the
formula

𝑢𝑛 = 𝑢𝑛−1 + 𝜇2 ·
(︀
𝐹−1(𝑓 − 𝑢𝑛−1) −𝐻𝑢𝑛−1

)︀
, 𝑛 ∈ N, (4.12)

where

𝜇2 =
𝑚

[𝑀 · (𝑚−1 + ‖ℎ‖1)]2

and 𝐹−1 is the inverse operator for 𝐹 . An estimate for the convergence rate of successive
approximations method holds:

‖𝑢𝑛 − 𝑢*‖2 6 𝜇2 ·
𝛼𝑛
2

1 − 𝛼2

· ‖𝐹−1(𝑓 − 𝑢0) −𝐻𝑢0‖2, (4.13)

where

𝛼2 =

√︂
1 − 𝑚𝜇2

𝑀2

and 𝑢0 ∈ 𝐿2(R) is an arbitrary function.
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Proof. We write equation (3.3) in an operator form:

𝑢 + 𝐹𝐻𝑢 = 𝑓. (4.14)

By Theorem 3.4, it has a unique solution 𝑢* ∈ 𝐿2(R). It remains to prove that sequence (4.12)
converges to 𝑢* and estimate (4.13) holds. In order to do this, we denote 𝑓 − 𝑢 = 𝑣. Then
equation (4.14) becomes 𝐹𝐻(𝑓 −𝑣) = 𝑣. We apply the operator 𝐹−1 to both sides of the latter
equation; the existence of such operator was established in the proof of Theorem 4.2. Then we
arrive at the equation

Φ𝑣 = 𝐻𝑓, where Φ𝑣 = 𝐹−1𝑣 + 𝐻𝑣, (4.15)

which is an equation of form (4.8).
We replace equation (4.15) by an equivalent one

𝑣 = 𝐵𝑣, where 𝐵𝑣 = 𝑣 − 𝜇 · (Φ𝑣 −𝐻𝑓), 𝜇 > 0,

and proceed in the same way as in the proof of Theorem 4.2 choosing 𝜇 = 𝜇2. Then we get:

‖𝐵𝑢−𝐵𝑣‖2 6 𝛼2 · ‖𝑢− 𝑣‖2.
Therefore, on the base of the contracting mapping principle, the equation 𝑣 = 𝐵𝑣, and hence,
equation (4.5), has a unique solution 𝑣* = 𝑓 − 𝑢* ∈ 𝐿2(R), and the sequence

𝑣𝑛 = 𝑣𝑛−1 − 𝜇2 · (Φ𝑣𝑛−1 −𝐻𝑓) = 𝑣𝑛−1 − 𝜇2 ·
(︀
𝐹−1𝑣𝑛−1 + 𝐻𝑣𝑛−1 −𝐻𝑓

)︀
(4.16)

converges 𝑣* and the estimate

‖𝑣𝑛 − 𝑣*‖2 6 𝜇2 ·
𝛼𝑛
2

1 − 𝛼2

· ‖𝐹−1𝑣0 + 𝐻𝑣0 −𝐻𝑓‖2 (4.17)

holds. In this case 𝑢* = 𝑓 − 𝑣* ∈ 𝐿2(R) is a unique solution of equation (4.14) and by the
relation 𝑣𝑛 = 𝑓 − 𝑢𝑛, (4.16) and (4.17) we obtain:

𝑓 − 𝑢𝑛 = 𝑓 − 𝑢𝑛−1 − 𝜇2 ·
(︀
𝐹−1(𝑓 − 𝑢𝑛−1) −𝐻𝑢𝑛−1

)︀
,

‖𝑢𝑛 − 𝑢*‖2 6 𝜇2 ·
𝛼𝑛
2

1 − 𝛼2

· ‖𝐹−1(𝑓 − 𝑢0) −𝐻𝑢0‖2.

Hence, relations (4.12) and (4.13) hold. The proof is complete.

In conclusion we mention that for real spaces 𝐿𝑝(−𝜋, 𝜋), similar results can be obtained with
no restrictions for 𝑝 ∈ (1,∞), in contrast to Theorems 3.2–3.4, as well as for corresponding
discrete convolution type equations both in real and complex spaces of the spaces of scalar
sequences 𝑙𝑝, see respectively [21] and [22]. Here conditions for the positivity of the convolution
operators provided in [16] play an important role.
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