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GENERALIZED MULTIPLICATIVE DERIVATIONS

IN INVERSE SEMIRINGS

Y. AHMED, W.A. DUDEK

Abstract. In this note we consider inverse semirings, i.e. semirings 𝑆 in which for each
𝑎 ∈ 𝑆 there exists a uniquely determined element 𝑎′ ∈ 𝑆 such that 𝑎 + 𝑎′ + 𝑎 = 𝑎 and
𝑎′ + 𝑎 + 𝑎′ = 𝑎. If additionally the commutator [𝑥, 𝑦] = 𝑥𝑦 + 𝑦′𝑥 satisfies both Jordan
identities, then such semirings are called Jacobi semirings. The problem of commutativity
of such semirings can be solved by specifying easily verifiable conditions which must be
satisfied by the commutator or some additive homomorphisms called derivations, or by a
pair of nonzero mappings from 𝑆 to 𝑆.

We consider the pair (𝐹, 𝑓) of nonzero mappings 𝑆 → 𝑆 such that 𝐹 (𝑥𝑦) = 𝐹 (𝑥)𝑦+𝑥𝑓(𝑦)
for all 𝑥, 𝑦 ∈ 𝑆 and determine several simple conditions under which the pair (𝐹, 𝑓) of such
mappings (called a generalized multiplicative derivation) forces the commutativity of a
semiring 𝑆. We show that semiring will be commutative if the conditions we find are
satisfied by the elements of a solid ideal, i.e. a nonempty ideal 𝐼 with the property that for
every 𝑥 ∈ 𝐼 elements 𝑥+ 𝑥′ are in the center of 𝐼.

For example, a prime Jacobi semiring 𝑆 with a solid ideal 𝐼 and a generalized multi-
plicative derivation (𝐹, 𝑓) such that 𝑎(𝐹 (𝑥𝑦) + 𝑦𝑥) = 0 for all 𝑥, 𝑦 ∈ 𝐼 and some nonzero
𝑎 ∈ 𝑆, is commutative. Moreover, in this case 𝐹 (𝑠) = 𝑠′ for all 𝑠 ∈ 𝑆 (Theorem 3.2). A
prime Jacobi semiring 𝑆 with a generalized multiplicative derivation (𝐹, 𝑓) is commuta-
tive also in the case when 𝑆 contains a nonzero ideal 𝐼 (not necessarily solid) such that
𝑎(𝐹 (𝑥)𝐹 (𝑦) + 𝑦𝑥) = 0 for all 𝑥, 𝑦 ∈ 𝐼 and some nonzero 𝑎 ∈ 𝑆 (Theorem 3.3). Also prime
Jacobi semirings with a non zero ideal 𝐼 and a nonzero derivation 𝑑 such that [𝑑(𝑥), 𝑥] = 0
for 𝑥 ∈ 𝐼 are commutative.

Keywords: Inverse semirings; multiplicative derivations; annihilators; prime semirings,
Jacobi semirings; solid ideals.
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1. Introduction

By a semiring (𝑆,+, ·) we mean a nonempty set 𝑆 with two binary operations + and ·
(called addition and multiplication) such that the multiplication is distributive with respect to
the addition, (𝑆,+) is a semigroup with neutral element 0, and (𝑆, ·) is a semigroup with zero
0, i.e. 0𝑎 = 𝑎0 = 0 for all 𝑎 ∈ 𝑆. If a semigroup (𝑆, ·) is commutative, then we say that a
semiring 𝑆 is commutative.

Nowadays semirings have many natural applications to the theory of automata, formal lan-
guages, optimization theory and other branches of applied mathematics (cf. [10]). A crucial role
in these applications play semirings with partially commutative addition or multiplication. For
example, the semiring (𝑅min,⊕,⊙), where 𝑅min = R∪{∞}, 𝑎⊕𝑏 = min{𝑎, 𝑏}, and 𝑎⊙𝑏 = 𝑎+𝑏,
was successfully applied to optimization problems on graphs and has become a standard tool
in hundreds of papers on optimization. A school of Russian mathematicians was create a whole
new probability theory based on semirings, called idempotent analysis (see, for example, [14]
and [16]), giving interesting applications in quantum physics, which have become of interest
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to those computer scientists interested in the problems of quantum computation. This gives a
strong motivation to look for conditions that enforce the commutativity of semirings.

A semiring 𝑆 is an additively inverse (shortly: inverse), if for every 𝑎 ∈ 𝑆 there exists a
uniquely determined element 𝑎′ ∈ 𝑆 such that

𝑎 + 𝑎′ + 𝑎 = 𝑎 and 𝑎′ + 𝑎 + 𝑎′ = 𝑎′. (1)

Then, according to [13], for all 𝑎, 𝑏 ∈ 𝑆 we have

(𝑎𝑏)′ = 𝑎′𝑏 = 𝑎𝑏′, (𝑎 + 𝑏)′ = 𝑏′ + 𝑎′, 𝑎′𝑏′ = 𝑎𝑏, (𝑎′)′ = 𝑎, 0′ = 0. (2)

Also the following implication is valid

𝑎 + 𝑏 = 0 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑏 = 𝑎′ 𝑎𝑛𝑑 𝑎 + 𝑎′ = 0. (3)

Note that in general 𝑎+ 𝑎′ ̸= 0. 𝑎+ 𝑎′ = 0 if and only if there exists some 𝑏 ∈ 𝑆 with 𝑎+ 𝑏 = 0.
A crucial role in studying the commutativity of such semirings is played by the commutator

[𝑥, 𝑦] = 𝑥𝑦+𝑦′𝑥 and derivations defined as additive mappings 𝑑 : 𝑆 → 𝑆 (i.e. endomorphisms of
the additive semigroup of 𝑆) such that 𝑑(𝑥𝑦) = 𝑑(𝑥)𝑦+𝑥𝑑(𝑦) for all 𝑥, 𝑦 ∈ 𝑆. If for an additive
mapping 𝐷 : 𝑆 → 𝑆 there exists a derivation 𝑑 : 𝑆 → 𝑆 such that 𝐷(𝑥𝑦) = 𝐷(𝑥)𝑦 + 𝑥𝑑(𝑦) for
all 𝑥, 𝑦 ∈ 𝑆, then 𝐷 is called a generalized derivation on 𝑆. Such mappings were introduced
by Brěsar [6].

During the past few years, several authors have obtained commutativity of prime and
semiprime rings in which derivations or generalized derivations satisfy certain functional iden-
tities or have some additional properties. For example, Ashraf and Rehman proved in [5] that
a prime ring 𝑅 containing a nonzero ideal 𝐼 and a derivation 𝑑 such that 𝑑(𝑥𝑦) ± 𝑥𝑦 ∈ 𝑍(𝑅)
for all 𝑥, 𝑦 ∈ 𝐼, is commutative. In [4] it is proved that this result also is valid in the case
when the derivation 𝑑 is replaced by a generalized derivation. In [3] an analogous result is ob-
tained for semiprime rings 𝑅 having two additive mappings 𝐹 and 𝑓 connected by the property
𝐹 (𝑥𝑦) = 𝐹 (𝑥)𝑦 + 𝑥𝑓(𝑦) for all 𝑥, 𝑦 ∈ 𝑅. Dhara and Ali proved in [8] that for the commuta-
tivity of a semiprime ring 𝑅 with a nonzero ideal 𝐼 it is sufficient to have two (not necessarily
additive) mappings 𝐹 and 𝑓 from 𝑅 to 𝑅 such that 𝐹 (𝑥𝑦) = 𝐹 (𝑥)𝑦 + 𝑥𝑓(𝑦) for all 𝑥, 𝑦 ∈ 𝑅
and 𝐹 (𝑥𝑦) ± 𝑥𝑦 ∈ 𝑍(𝑅) for 𝑥, 𝑦 ∈ 𝐼.

On the other hand, Daif, motivated by the paper of Martindale [15], introduced in [7] the
concept of a multiplicative derivation on a ring 𝑅 as a mapping 𝐹 : 𝑅 → 𝑅 which may not be
additive but for all 𝑥, 𝑦 ∈ 𝑅 satisfies the condition 𝐹 (𝑥𝑦) = 𝐹 (𝑥)𝑦 + 𝑥𝐹 (𝑦). By a generalized
multiplicative derivation we mean a pair (𝐹, 𝑓) of nonzero mappings from 𝑅 to 𝑅 such that
𝐹 (𝑥𝑦) = 𝐹 (𝑥)𝑦 + 𝑥𝑓(𝑦) for all 𝑥, 𝑦 ∈ 𝑅 (cf. [8]). In some cases such mappings imply the
commutativity of 𝑅 (cf. [9]).

In the last years many authors (cf. for example [1, 2, 11, 12, 17, 18]) extend the above
concepts to various types of semirings and proved analogous results for these semirings. Results
are similar but the proofs are different. Methods good for rings are not good for semirings.

In this article, we consider generalized multiplicative derivations defined on inverse semirings
and find functional equations forcing the commutativity of these semirings.

2. Preliminaries

The terminology used by us is the same as in the case of rings.
Let’s remind that a semiring 𝑆 is semiprime if 𝑥𝑆𝑥 = 0 implies 𝑥 = 0, and prime if 𝑥𝑆𝑦 = 0

implies 𝑥 = 0 or 𝑦 = 0.
A mapping 𝐹 : 𝑆 → 𝑆 is called centralizing on 𝑋 ⊆ 𝑆 if [[𝐹 (𝑥), 𝑥], 𝑠] = 0

(i.e. [𝐹 (𝑥), 𝑥]𝑠 = 𝑠[𝐹 (𝑥), 𝑥]) for all 𝑥, 𝑠 ∈ 𝑋, and commuting on 𝑋 if [𝐹 (𝑥), 𝑥] = 0 (i.e.
𝐹 (𝑥)𝑥 = 𝑥𝐹 (𝑥)) for all 𝑥 ∈ 𝑋.

An inverse semiring 𝑆 with commutative addition satisfying the following two Jacobi identi-
ties

[𝑥𝑦, 𝑧] = 𝑥[𝑦, 𝑧] + [𝑥, 𝑧]𝑦 and [𝑥, 𝑦𝑧] = 𝑦[𝑥, 𝑧] + [𝑥, 𝑦]𝑧, (4)
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is called the Jacobi semiring.
A simple example of a Jacobi semiring is the so-called tropical semiring, i.e. the set 𝑁0 of all

natural numbers including zero with the operations 𝑥⊕ 𝑦 = max{𝑥, 𝑦} and 𝑥⊙ 𝑦 = min{𝑥, 𝑦}.
It is prime and commutative. The set of all 2 × 2 matrices over the above tropical semiring is
a non-commutative prime Jacobi semiring.

An ideal 𝐼 of an inverse semiring 𝑆 is solid if 𝑥+𝑥′ ∈ 𝑍(𝐼) for every 𝑥 ∈ 𝐼, i.e. if all elements
of the form 𝑥 + 𝑥′, where 𝑥 ∈ 𝐼, are in the center of 𝐼. Consequently, an inverse semiring 𝑆 is
solid if 𝑥 + 𝑥′ ∈ 𝑍(𝑆) for all 𝑥 ∈ 𝑆.

Solid inverse semirings with commutative addition are known as 𝑀𝐴-semirings and are
studied by many authors (cf. for example [11, 12, 17, 18]).

The class of all Jacobi semirings contains the class of 𝑀𝐴-semirings (cf. [12]) but it is much
wider. A commutative idempotent semigroup (𝑆,+) with zero and multiplication 𝑥𝑦 = 𝑥 is an
example of a Jacobi semiring that is not an 𝑀𝐴-semiring.

Note that if an ideal 𝐼 is solid, then [𝑥, 𝑦] ∈ 𝑍(𝐼) for all 𝑥, 𝑦 ∈ 𝐼.
We end this section with simple lemmas that will be useful later.

Lemma 2.1. In any inverse semiring

(𝑖) [𝑥, 𝑦] = 𝑥𝑦 + (𝑦𝑥)′ = 𝑥𝑦 + 𝑦𝑥′,
(𝑖𝑖) [𝑥, 𝑦]′ = [𝑥, 𝑦′] = [𝑥′, 𝑦] = [𝑦, 𝑥],

(𝑖𝑖𝑖) [𝑥′, 𝑦′] = [𝑥, 𝑦],
(𝑖𝑣) [𝑥, 𝑦𝑥] = [𝑥, 𝑦]𝑥,
(𝑣) [𝑥, 𝑦] = 0 implies 𝑥𝑦 = 𝑦𝑥.

Lemma 2.2. If in a prime Jacobi semiring 𝑆 with an ideal 𝐼 there is a nonzero 𝑎 ∈ 𝑆 such
that [𝑎, 𝑥] = 0 for all 𝑥 ∈ 𝐼, then [𝑎, 𝑠] = 0 for all 𝑠 ∈ 𝑆, i.e. 𝑎 ∈ 𝑍(𝑆).

Proof. Indeed, 0 = [𝑎, 𝑥𝑠] = 𝑥[𝑎, 𝑠] + [𝑎, 𝑥]𝑠 = 𝑥[𝑎, 𝑠] for 𝑥 ∈ 𝐼 and 𝑠 ∈ 𝑆. Thus 0 = 𝑥[𝑎, 𝑠] =
𝑥𝑆[𝑎, 𝑠]. This implies [𝑎, 𝑠] = 0.

Corollary 2.1. If a prime Jacobi semiring 𝑆 contains a nonzero ideal 𝐼 such that [𝑥, 𝑠] = 0
for all 𝑥 ∈ 𝐼 and 𝑠 ∈ 𝑆, then 𝑆 is commutative.

Lemma 2.3. For any nonzero ideal 𝐼 of a semiprime semiring 𝑆 we have 𝐼 ∩ 𝐴𝑛𝑛(𝐼) = 0,
where 𝐴𝑛𝑛(𝐼) = {𝑎 ∈ 𝑆 | 𝑎𝑥 = 0 for all𝑥 ∈ 𝐼}.

Proof. Since 𝐼 ∩𝐴𝑛𝑛(𝐼) is an ideal of 𝑆, (𝐼 ∩𝐴𝑛𝑛(𝐼))𝑆(𝐼 ∩𝐴𝑛𝑛(𝐼)) ⊂ 𝐴𝑛𝑛(𝐼) · 𝐼 = 0, which,
by the semiprimeness, implies 𝐼 ∩ 𝐴𝑛𝑛(𝐼) = 0.

Lemma 2.4. If a prime Jacobi semiring 𝑆 has a nonzero ideal 𝐼 and a nonzero derivation
𝑑 such that [𝑑(𝑥), 𝑥] = 0 for all 𝑥 ∈ 𝐼, then 𝑆 is commutative.

Proof. From [𝑑(𝑥), 𝑥] = 0 for 𝑥 = 𝑥 + 𝑦 we obtain [𝑑(𝑥), 𝑦] + [𝑑(𝑦), 𝑥] = 0, which for 𝑦 = 𝑦𝑥,
after reduction, gives [𝑦, 𝑥]𝑑(𝑥) = 0 for 𝑥, 𝑦 ∈ 𝐼. From this for 𝑦 = 𝑠𝑦, 𝑠 ∈ 𝑆, we obtain
0 = [𝑠𝑦, 𝑥]𝑑(𝑥) = [𝑠, 𝑥]𝑑(𝑥). Since [𝑠, 𝑥] ∈ 𝐼 and 𝑆 is prime, the last implies [𝑠, 𝑥]𝑆𝑑(𝑥) = 0,
and in the consequence [𝑠, 𝑥] = 0 because 𝑑 is a nonzero derivation. Corollary 2.1 completes
the proof.

Corollary 2.2. If a prime Jacobi semiring 𝑆 has a nonzero derivation 𝑑 such that
[𝑑(𝑥), 𝑥] = 0 for all 𝑥 ∈ 𝑆, then 𝑆 is commutative.

3. The results

Theorem 3.1. Let 𝑑 be a nonzero derivation of a prime Jacobi semiring 𝑆. If 𝑆 contains a
nonzero ideal 𝐼 and a nonzero element 𝑎 ∈ 𝑆 such that [𝑎𝑑(𝑥), 𝑥] = 0 for all 𝑥 ∈ 𝐼, then 𝑆 is
commutative.
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Proof. By the assumption, [𝑎𝑑(𝑥), 𝑥] = 0 for all 𝑥 ∈ 𝐼. From this, replacing 𝑥 with 𝑥 + 𝑦 ∈ 𝐼,
we obtain [𝑎𝑑(𝑥), 𝑦] + [𝑎𝑑(𝑦), 𝑥] = 0. Replacing in this identity 𝑦 with 𝑦𝑥, using (4) and the
last two equations, we get

0 = [𝑎𝑑(𝑥), 𝑦𝑥] + [𝑎𝑑(𝑦)𝑥 + 𝑎𝑦𝑑(𝑥), 𝑥]

= [𝑎𝑑(𝑥), 𝑦]𝑥 + [𝑎𝑑(𝑦), 𝑥]𝑥 + [𝑎𝑦𝑑(𝑥), 𝑥]

= [𝑎𝑦𝑑(𝑥), 𝑥]

for 𝑥, 𝑦 ∈ 𝐼. This for 𝑦 = 𝑎𝑦 gives 0 = 𝑎[𝑎𝑦𝑑(𝑥), 𝑥] + [𝑎, 𝑥]𝑎𝑦𝑑(𝑥) = [𝑎, 𝑥]𝑎𝑦𝑑(𝑥). So,
0 = [𝑎, 𝑥]𝑎𝑦𝑑(𝑥). In particular, for 𝑦 = 𝑤𝑧, where 𝑤 ∈ 𝐼, 𝑧 ∈ 𝑆, we have 0 = [𝑎, 𝑥]𝑎𝑤𝑧𝑑(𝑥).
Since 𝑆 is prime, the last implies [𝑎, 𝑥]𝑎𝑤 = 0 or 𝑑(𝑥) = 0.

If 𝑑(𝑥) = 0 for all 𝑥 ∈ 𝐼, then 0 = 𝑑(𝑆𝐼) = 𝑑(𝑆)𝐼 + 𝑆𝑑(𝐼) = 𝑑(𝑆)𝐼. Thus 0 = 𝑑(𝑆)𝑆𝐼, which
implies 𝑑(𝑆) = 0 because 𝐼 is nonzero.

If [𝑎, 𝑥]𝑎𝑤 = 0, then also [𝑎, 𝑥]𝑎𝑧𝑤 = 0 for all 𝑧 ∈ 𝑆. So, [𝑎, 𝑥]𝑎 = 0 or 𝑤 = 0. The
case 𝑤 = 0 is impossible because an ideal 𝐼 is nonzero. Hence [𝑎, 𝑥]𝑎 = 0. Consequently,
0 = [𝑎, 𝑧𝑥]𝑎 = [𝑎, 𝑧]𝑥𝑎+𝑧[𝑎, 𝑥]𝑎 = [𝑎, 𝑧]𝑥𝑎 for all 𝑥 ∈ 𝐼 and 𝑧 ∈ 𝑆. This shows that 0 = [𝑎, 𝑧]𝑥𝑠𝑎
for 𝑠, 𝑧 ∈ 𝑆, 𝑥 ∈ 𝐼, which, by primeness of 𝑆, gives 0 = [𝑎, 𝑧]𝑥. From this, replacing 𝑥 with
𝑣𝑥, 𝑣 ∈ 𝑆, and applying primeness, we obtain 0 = [𝑎, 𝑧]. So, by the first Jacobi identity
0 = [𝑎𝑑(𝑥), 𝑥] = 𝑎[𝑑(𝑥), 𝑥] for all 𝑥 ∈ 𝐼. Since [𝑑(𝑥), 𝑥] ∈ 𝐼, the last implies 0 = 𝑎𝑆[𝑑(𝑥), 𝑥].
Therefore [𝑑(𝑥), 𝑥] = 0. Lemma 2.4 completes the proof.

Lemma 3.1. If for an inverse prime semiring 𝑆 with a nonzero ideal 𝐼 there is a generalized
multiplicative derivation (𝐹, 𝑓) such that 𝑎(𝐹 (𝑥𝑦) + 𝑥𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝐼 and some nonzero
𝑎 ∈ 𝑆, then 𝑎(𝐹 (𝑠) + 𝑠) = 0 for all 𝑠 ∈ 𝑆.

Proof. If 𝑎(𝐹 (𝑥𝑦) + 𝑥𝑦) = 0 holds for 𝑥, 𝑦 ∈ 𝐼 and some 0 ̸= 𝑎 ∈ 𝑆, then also

0 = 𝑎(𝐹 (𝑥𝑦𝑧) + 𝑥𝑦𝑧) = 𝑎(𝐹 (𝑥𝑦) + 𝑥𝑦)𝑧 + 𝑎𝑥𝑦𝑓(𝑧) = 𝑎𝑥𝑦𝑓(𝑧)

for all 𝑥, 𝑦, 𝑧 ∈ 𝐼. Thus 0 = 𝑎𝑥𝑆𝑦𝑓(𝑧) This implies 𝑎𝑥 = 0 or 𝑦𝑓(𝑧) = 0. Consequently, 𝑎𝑆𝑥 = 0
or 𝑦𝑆𝑓(𝑧) = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝐼. Since 𝑎 and 𝐼 are nonzero, must be 𝑓(𝑧) = 0.

Therefore, 0 = 𝑎(𝐹 (𝑥𝑦) + 𝑥𝑦) = 𝑎(𝐹 (𝑥) + 𝑥)𝑦 + 𝑎𝑥𝑓(𝑦) = 𝑎(𝐹 (𝑥) + 𝑥)𝑦 for 𝑥, 𝑦 ∈ 𝐼.
So, 0 = 𝑎(𝐹 (𝑥) + 𝑥)𝑆𝑦, which implies 𝑎(𝐹 (𝑥) + 𝑥) = 0 for all 𝑥 ∈ 𝐼. In particular,
0 = 𝑎(𝐹 (𝑠𝑥) + 𝑠𝑥) = 𝑎(𝐹 (𝑠) + 𝑠)𝑥 for all 𝑥 ∈ 𝐼 and 𝑠 ∈ 𝑆. Hence, 𝑎(𝐹 (𝑠) + 𝑠) = 0.

Theorem 3.2. If for a prime Jacobi semiring 𝑆 with a nonzero solid ideal 𝐼 there is a
generalized multiplicative derivation (𝐹, 𝑓) such that 𝑎(𝐹 (𝑥𝑦) + 𝑦𝑥) = 0 for all 𝑥, 𝑦 ∈ 𝐼 and
some nonzero 𝑎 ∈ 𝑆, then 𝑆 is commutative and 𝐹 (𝑠) = 𝑠′ for all 𝑠 ∈ 𝑆.

Proof. Since 𝑎(𝐹 (𝑥𝑦) + 𝑦𝑥) = 0 for all 𝑥, 𝑦 ∈ 𝐼, also

0 = 𝑎(𝐹 (𝑥𝑦)𝑧 + 𝑥𝑦𝑓(𝑧) + 𝑦𝑧𝑥) = 𝑎(𝐹 (𝑥𝑦)𝑧 + 𝑥𝑦𝑓(𝑧) + 𝑦𝑧𝑥 + 𝑦𝑧′𝑥 + 𝑦𝑧𝑥)

= 𝑎(𝐹 (𝑥𝑦) + 𝑦𝑥)𝑧 + 𝑎(𝑥𝑦𝑓(𝑧) + 𝑦[𝑧, 𝑥]) = 𝑎(𝑥𝑦𝑓(𝑧) + 𝑦[𝑧, 𝑥])

for 𝑥, 𝑦, 𝑧 ∈ 𝐼, i.e.,
𝑎(𝑥𝑦𝑓(𝑧) + 𝑦[𝑧, 𝑥]) = 0. (5)

From this, multiplying by 𝑎 and substituting 𝑎𝑦 for 𝑦, we have

𝑎(𝑎𝑥𝑦𝑓(𝑧) + 𝑎𝑦[𝑧, 𝑥]) = 0 and 𝑎(𝑥𝑎𝑦𝑓(𝑧) + 𝑎𝑦[𝑧, 𝑥]) = 0,

which by (3) gives 𝑎[𝑎, 𝑥]𝑦𝑓(𝑧) = 0. Since 𝑆 is prime, similarly as in the previous proof, we
obtain 𝑎[𝑎, 𝐼] = 0 or 𝑓(𝐼) = 0. In the case 𝑎[𝑎, 𝐼] = 0, we get 0 = 𝑎[𝑎, 𝑆𝐼] = [𝑎, 𝑆]𝐼 = [𝑎, 𝑆]𝑆𝐼,
which shows that [𝑎, 𝑆] = 0. So, 𝑎 ∈ 𝑍(𝑆).

The center of a prime semiring does not contain zero divisors, therefore (5) implies
𝑥𝑦𝑓(𝑧) + 𝑦[𝑧, 𝑥] = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝐼. From this, multiplying by 𝑢 ∈ 𝑆 and inserting 𝑢𝑦
in the place of 𝑦, we obtain

𝑢(𝑥𝑦𝑓(𝑧) + 𝑦[𝑧, 𝑥]) = 0 and 𝑥𝑢𝑦𝑓(𝑧) + 𝑢𝑦[𝑧, 𝑥] = 0,
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which by (3) gives [𝑢, 𝑥]𝑦𝑓(𝑧) = 0. Since 𝑆 is prime, [𝑆, 𝐼] = 0 or 𝑓(𝐼) = 0. If [𝑆, 𝐼] = 0, then,
by Corollary 2.1, 𝑆 is commutative.

If 𝑓(𝐼) = 0, then from (5) we get 𝑎𝑦[𝑥, 𝑧] = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝐼. Again, by the primeness of
𝑆, we conclude [𝑥, 𝑧] = 0, whence, replacing 𝑧 with 𝑠𝑧, 𝑠 ∈ 𝑆, and applying the second Jacobi
identity, we obtain [𝑥, 𝑟]𝑧 = 0, and consequently, [𝑥, 𝑠] = 0 for all 𝑥 ∈ 𝐼, 𝑟 ∈ 𝑆. This shows
that also in this case 𝑆 is commutative.

From Lemma 3.1 and (3) it follows 𝐹 (𝑠) = 𝑠′ for 𝑠 ∈ 𝑆.

Proposition 3.1. If for a prime inverse semiring 𝑆 with a nonzero ideal 𝐼 there is a gen-
eralized multiplicative derivation (𝐹, 𝑓) with the property

𝑎(𝐹 (𝑥)𝐹 (𝑦) + 𝑥𝑦) = 0 (6)

for all 𝑥, 𝑦 ∈ 𝐼 and some nonzero 𝑎 ∈ 𝑆, then 𝐹 is commuting on 𝐼 and 𝐹 (𝑥𝑦) = 𝐹 (𝑥)𝑦 for all
𝑥, 𝑦 ∈ 𝑆.

Proof. From (6), replacing 𝑦 with 𝑦𝑧, where 𝑧 ∈ 𝑆, we obtain 0 = 𝑎𝐹 (𝑥)𝑦𝑓(𝑧). Since 𝑆 is
prime, this gives 𝑎𝐹 (𝐼) = 0 or 𝑓(𝑆) = 0. In the first case, (6) implies 𝑎𝑥𝑦 = 0 for all 𝑥, 𝑦 ∈ 𝐼,
which is impossible because 𝑎 ̸= 0 and 𝐼 is nonzero. So, 𝑓(𝑆) = 0. Then 𝐹 (𝑥𝑦) = 𝐹 (𝑥)𝑦 for
all 𝑥, 𝑦 ∈ 𝑆. Thus, inserting in (6) 𝑦𝑧 instead of 𝑦 and using the last expression, we obtain
𝑎(𝐹 (𝑥)𝑦𝐹 (𝑦)+𝑥𝑦𝑦) = 0. This, together with (6) multiplied on the right by 𝑦, after application
of (3), gives 𝑎𝐹 (𝑥)[𝐹 (𝑦), 𝑦] = 0 for all 𝑥, 𝑦 ∈ 𝐼. From this, replacing 𝑥 with 𝑥𝑠, where 𝑠 ∈ 𝑆,
we deduce 𝑎𝐹 (𝐼) = 0 or [𝐹 (𝑦), 𝑦] = 0 for all 𝑦 ∈ 𝐼 because 𝑆 is prime.

As before, 𝑎𝑓(𝐼) = 0 leads to a contradiction, so [𝐹 (𝑥), 𝑥] = 0 for all 𝑥 ∈ 𝐼, i.e. 𝐹 is
commuting on 𝐼.

Theorem 3.3. If for a prime Jacobi semiring 𝑆 with a nonzero ideal 𝐼 there is a generalized
multiplicative derivation (𝐹, 𝑓) such that

𝑎(𝐹 (𝑥)𝐹 (𝑦) + 𝑦𝑥) = 0 (7)

for all 𝑥, 𝑦 ∈ 𝐼 and some nonzero 𝑎 ∈ 𝑆, then a semiring 𝑆 is commutative and 𝐹 (𝑥𝑦) = 𝐹 (𝑥)𝑦
for all 𝑥, 𝑦 ∈ 𝑆.

Proof. In a similar way as in the previous proof, from (7), replacing 𝑦 with 𝑦𝑥, we deduce that
𝐹 (𝑥𝑦) = 𝐹 (𝑥)𝑦 and 𝑓(𝑥) = 0 for all 𝑥, 𝑦 ∈ 𝐼. Next, multiplying (7) by 𝑠 ∈ 𝑆 and substituting
𝑦𝑠 for 𝑦, we obtain

𝑎(𝐹 (𝑥)𝐹 (𝑦) + 𝑦𝑥)𝑠 = 0 and 𝑎(𝐹 (𝑥)𝐹 (𝑦)𝑠 + 𝑦𝑠𝑥) = 0,

which by (3) gives 𝑎𝑦[𝑥, 𝑠] = 0. Since 𝑆 is prime, [𝑥, 𝑠] = 0 for all 𝑥 ∈ 𝐼 and 𝑠 ∈ 𝑆. Corollary
2.1 completes the proof.

Proposition 3.2. If for a semiprime inverse semiring 𝑆 with a nonzero ideal 𝐼 there is a
generalized multiplicative derivation (𝐹, 𝑓) and a nonzero element 𝑎 ∈ 𝑆 such that

[𝑎(𝑓(𝑥)𝐹 (𝑦) + 𝑥𝑦), 𝑥] = 0 (8)

for all 𝑥, 𝑦 ∈ 𝐼, then [𝑎𝑓(𝑥), 𝑥] = 0 for all 𝑥 ∈ 𝐼.

Proof. From (8), replacing 𝑦 with 𝑦𝑥, we obtain [𝑎𝑓(𝑥)𝑦𝑓(𝑥), 𝑥] = 0, which can be rewritten in
the form

𝑎𝑓(𝑥)𝑦𝑓(𝑥)𝑥 + 𝑥′𝑎𝑓(𝑥)𝑦𝑓(𝑥) = 0. (9)

This, by (3), implies 𝑎𝑓(𝑥)𝑦𝑓(𝑥)𝑥 = 𝑥𝑎𝑓(𝑥)𝑦𝑓(𝑥).
Now, replacing in(9) 𝑦 with 𝑦𝑎𝑓(𝑥)𝑧, where 𝑧 ∈ 𝐼, and using the last expression, we get

𝑎𝑓(𝑥)𝑦[𝑎𝑓(𝑥), 𝑥]𝑧𝑓(𝑥) = 0.
From this, multiplying on the left by 𝑥′ and substituting 𝑥𝑦 for 𝑦, we obtain

𝑥′𝑎𝑓(𝑥)𝑦[𝑎𝑓(𝑥), 𝑥]𝑧𝑓(𝑥) = 0 and 𝑎𝑓(𝑥)𝑥𝑦[𝑎𝑓(𝑥), 𝑥]𝑧𝑓(𝑥) = 0.

Adding these two expressions, we get [𝑎𝑓(𝑥), 𝑥]𝑦[𝑎𝑓(𝑥), 𝑥]𝑧𝑓(𝑥) = 0.
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By a similar procedure applied to the right side we obtain

[𝑎𝑓(𝑥), 𝑥]𝑦[𝑎𝑓(𝑥), 𝑥]𝑧[𝑎𝑓(𝑥), 𝑥] = 0,

i.e. ([𝑎𝑓(𝑥), 𝑥]𝐼)3 = 0. Since 𝑆 is a semiprime, [𝑎𝑓(𝑥), 𝑥]𝐼 = 0. Thus, [𝑎𝑓(𝑥), 𝑥] ∈ 𝐼 ∩ 𝐴𝑛𝑛(𝐼),
so, [𝑎𝑓(𝑥), 𝑥] = 0 for all 𝑥 ∈ 𝐼 (Lemma 2.3).

Corollary 3.1. If for a prime Jacobi semiring 𝑆 with a nonzero ideal 𝐼 there is a nonzero
element 𝑎 ∈ 𝑆 and a generalized multiplicative derivation (𝐹, 𝑓), where 𝑓 is a derivation, such
that

[𝑎(𝑓(𝑥)𝐹 (𝑦) + 𝑥𝑦), 𝑠] = 0 (10)

for all 𝑥, 𝑦 ∈ 𝐼 and 𝑠 ∈ 𝑆, then 𝑆 is commutative.

Proof. By Proposition 3.2, [𝑎𝑓(𝑥), 𝑥] = 0 for all 𝑥 ∈ 𝐼. If 𝑓 is a nonzero derivation, then 𝑆 is
commutative by Lemma 2.4. If 𝑓(𝑥) = 0 for all 𝑥 ∈ 𝑆, then by our hypothesis [𝑎𝑥𝑦, 𝑠] = 0 for
all 𝑥, 𝑦 ∈ 𝐼 and 𝑠 ∈ 𝑆. Thus, by the Jacobi identity, 0 = [𝑎𝑥𝑦𝑧, 𝑠] = 𝑎𝑥𝑦[𝑧, 𝑠] for all 𝑥, 𝑦 ∈ 𝐼
and 𝑠, 𝑧 ∈ 𝑆. This gives the commutativity of 𝑆.

Remark 3.1. Conditions (9) and (10) in Theorem 3.2 and Corollary 3.1 can be replaced by
[𝑎(𝑓(𝑥)𝐹 (𝑦) + 𝑦𝑥), 𝑥] = 0 and [𝑎(𝑓(𝑥)𝐹 (𝑦) + 𝑦𝑥), 𝑠] = 0, respectively.

Theorem 3.4. If for a prime inverse semiring 𝑆 with a nonzero ideal 𝐼 there is a generalized
multiplicative derivation (𝐹, 𝑓) and a nonzero element 𝑎 ∈ 𝑆 such that

𝑎(𝐹 (𝑥𝑦) + 𝐹 (𝑥)𝐹 (𝑦)) = 0 (11)

for all 𝑥, 𝑦 ∈ 𝐼, then

(𝑖) 𝑎𝐹 (𝑆) = 0 or
(𝑖𝑖) 𝑓(𝑠) = 0 and 𝐹 (𝑠) = 𝑠′ for all 𝑠 ∈ 𝑆.

Proof. From (11), by putting 𝑦 = 𝑦𝑧, 𝑧 ∈ 𝐼, we get 𝑎(𝑥 + 𝐹 (𝑥))𝑦𝑓(𝑧) = 0. This for 𝑥 = 𝑥𝑢,
𝑢 ∈ 𝐼, reduces to 0 = 𝑎𝑥𝑓(𝑢)𝑦𝑓(𝑧). So, 𝑎𝐼𝑓(𝐼)𝐼𝑓(𝐼) = 0. Since 𝑆 is prime and 𝑎 ̸= 0, we have
𝑓(𝐼) = 0. Therefore, 𝐹 (𝑥𝑦) = 𝐹 (𝑥)𝑦 + 𝑥𝑓(𝑦) = 𝐹 (𝑥)𝑦 for all 𝑥, 𝑦 ∈ 𝐼. Thus (11) has the form
𝑎𝐹 (𝑥)(𝑦+𝐹 (𝑦)) = 0. This for 𝑥 = 𝑥𝑧 implies 0 = 𝑎𝐹 (𝑥)𝑧(𝑦+𝐹 (𝑦)), i.e. 𝑎𝐹 (𝐼)𝐼(𝑦+𝐹 (𝑦)) = 0.
Since 𝑆 is prime, 𝑎𝐹 (𝐼) = 0 or 𝑦 + 𝐹 (𝑦) = 0 for all 𝑦 ∈ 𝐼.

Let 𝑎𝐹 (𝐼) = 0. Then 0 = 𝑎𝐹 (𝑆𝐼) = 𝑎𝐹 (𝑆)𝐼 because 𝑓(𝐼) = 0. Since 𝑆 is prime, the last
implies 𝑎𝐹 (𝑆) = 0. This proves (𝑖).

Now let 𝐹 (𝑦)+𝑦 = 0 for all 𝑦 ∈ 𝐼. Then for all 𝑠 ∈ 𝑆 we have 0 = 𝐹 (𝑠𝑦)+𝑠𝑦 = 𝐹 (𝑠)𝑦+𝑠𝑦 =
(𝐹 (𝑠) + 𝑠)𝑦. Since 𝑆 is a prime, it follows that 𝐹 (𝑠) + 𝑠 = 0 for all 𝑠 ∈ 𝑆. So, 𝑓(𝑠) = 𝑠′. In this
case, for all 𝑠, 𝑡 ∈ 𝑆, we have also 𝑠′𝑡 = 𝐹 (𝑠)𝑡 = 𝐹 (𝑠𝑡) = 𝐹 (𝑠)𝑡 + 𝑠𝑓(𝑡) = 𝑠′𝑡 + 𝑠𝑓(𝑡). Adding
𝐹 ′(𝑠)𝑡 on both sides we obtain (𝐹 (𝑠) + 𝑠)𝑡′ = (𝐹 (𝑠) + 𝑠)𝑡′ + 𝑠𝑓(𝑡). Therefore 𝑠𝑓(𝑡) = 0. Hence,
𝑓(𝑡) = 0 for 𝑡 ∈ 𝑆. This completes the proof of (𝑖𝑖).

Proposition 3.3. If for a prime Jacobi semiring 𝑆 with a nonzero solid ideal 𝐼 there are
two generalized multiplicative derivation (𝐹, 𝑓) and (𝐺, 𝑔) such that

𝑎(𝐺(𝑥𝑦) + [𝐹 (𝑥), 𝑦] + 𝑦𝑥) = 0 (12)

for some nonzero element 𝑎 ∈ 𝑆 and all 𝑥, 𝑦 ∈ 𝐼, then:

(𝑖) 𝑆 is commutative and 𝐺(𝑠) = 𝑠′ for all 𝑠 ∈ 𝑆, or
(𝑖𝑖) 𝐹 and 𝑓 are commuting on 𝐼.

Proof. Putting 𝑦 = 𝑦𝑧 in (12), using (1) and the second Jacobi identity, we obtain

𝑎(𝑥𝑦𝑔(𝑧) + 𝑦[𝐹 (𝑥), 𝑧] + 𝑦[𝑧, 𝑥]) = 0 (13)

for 𝑥, 𝑦, 𝑧 ∈ 𝐼. From this, by (3), we deduce 𝑎(𝑦[𝐹 (𝑥), 𝑧]+𝑦[𝑧, 𝑥]) = 𝑎′𝑥𝑦𝑔(𝑧), and consequently

𝑎𝑎(𝑦[𝐹 (𝑥), 𝑧] + 𝑦[𝑧, 𝑥]) = 𝑎𝑎′𝑥𝑦𝑔(𝑧).
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Now putting 𝑦 = 𝑎𝑦 in (13) and using the last identity we obtain

𝑎[𝑥, 𝑎]𝑦𝑔(𝑧) = 0.

This shows that 𝑎[𝑥, 𝑎]𝐼𝑔(𝑧) = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝐼. Since 𝑆 is prime, the last expression implies
that for all 𝑧 ∈ 𝐼 we have 𝑎[𝑥, 𝑎] = 0 or 𝑦𝑔(𝑧) = 0.

If 𝑎[𝑥, 𝑎] = 0, then, since [𝑥, 𝑎] ∈ 𝐼, by the primeness, we get [𝑥, 𝑎] = 0. Thus, for all 𝑠 ∈ 𝑆,
by (4), we have 0 = [𝑥𝑠, 𝑎] = 𝑥[𝑠, 𝑎]. Since 𝑆 is prime, the last means that 𝑎 ∈ 𝑍(𝑆). But 𝑎 ̸= 0
and 𝑍(𝑆) has no zero divisors, so (13) implies

𝑥𝑦𝑔(𝑧) + 𝑦[𝐹 (𝑥), 𝑧] + 𝑦[𝑧, 𝑥] = 0 (14)

for all 𝑥, 𝑦, 𝑧 ∈ 𝐼.
From this we obtain two expressions: one by putting 𝑦 = 𝑠𝑦, the second by multiplying on

the left by 𝑠, where 𝑠 ∈ 𝑆. These two expressions, together with (3), imply [𝑥, 𝑠]𝑦𝑔(𝑧) = 0.
Since 𝑆 is prime, [𝑥, 𝑠] = 0 for all 𝑥 ∈ 𝐼, 𝑠 ∈ 𝑆 or 𝑔(𝐼) = 0.

Consider the case when [𝑥, 𝑠] = 0 for 𝑥 ∈ 𝐼 and 𝑠 ∈ 𝑆. Then 𝑆 is commutative (Corollary
2.1) and (14) reduces to 𝑥𝑦𝑔(𝑧) = 0, which by the primeness of 𝑆 gives 𝑔(𝐼) = 0. So, (12)
reduces to (𝐺(𝑥) + 𝑥)𝑦 = 0. This for 𝑥 = 𝑠𝑥, where 𝑠 ∈ 𝑆, implies (𝐺(𝑠) + 𝑠)𝑥𝑦 = 0, i.e.
(𝐺(𝑠) + 𝑠)𝑆𝑥𝑦 = 0 for all 𝑠 ∈ 𝑆 and 𝑥, 𝑦 ∈ 𝐼. Thus 𝐺(𝑠) = 𝑠′ for all 𝑠 ∈ 𝑆. Therefore [𝑥, 𝑠] = 0
implies (𝑖).

Now let 𝑔(𝐼) = 0. In this case (13) reduces to 𝑎𝑦([𝐹 (𝑥), 𝑧] + [𝑧, 𝑥]) = 0. So,

[𝐹 (𝑥), 𝑧] + [𝑧, 𝑥] = 0 (15)

because 𝑎 ̸= 0 and 𝑆 is prime. Replacing 𝑥𝑧 for 𝑥 in (15) and using it again we get [𝑥𝑓(𝑧), 𝑧] = 0
for all 𝑥, 𝑧 ∈ 𝐼. This implies that [𝑓(𝑧), 𝑧] = 0 for all 𝑧 ∈ 𝐼. So, (15) for 𝑥 = 𝑧 gives [𝐹 (𝑥), 𝑥] = 0.
Hence [𝐹 (𝑥), 𝑥] = [𝑓(𝑥), 𝑥] = 0 for 𝑥 ∈ 𝐼. This completes the proof of (𝑖𝑖).

Theorem 3.5. If for a prime Jacobi semiring 𝑆 with a nonzero solid ideal 𝐼 there are two
generalized multiplicative derivation (𝐹, 𝑓) and (𝐺, 𝑔) such that

𝑎(𝐺(𝑥𝑦) + 𝐹 (𝑥)𝐹 (𝑦) + 𝑦𝑥) = 0 (16)

for some nonzero element 𝑎 ∈ 𝑆 and all 𝑥, 𝑦 ∈ 𝐼, then 𝑆 is commutative and 𝐹 (𝑥𝑦) = 𝐹 (𝑥)𝑦,
𝐺(𝑥𝑦) = 𝐺(𝑥)𝑦 for all 𝑥, 𝑦 ∈ 𝑆.

Proof. Since 𝐼 is a nonempty solid ideal of 𝑆, then substituting 𝑦𝑧 in the place of 𝑦 in (16) and
using (3), we obtain

𝑎(𝑥𝑦𝑔(𝑧) + 𝐹 (𝑥)𝑦𝑓(𝑧) + 𝑦[𝑧, 𝑥]) = 0 (17)

for all 𝑥, 𝑦, 𝑧 ∈ 𝐼.
From this we obtain two expressions: one by putting 𝑦 = 𝑠𝑦, the second by putting 𝑥 = 𝑥𝑠,

where 𝑠 ∈ 𝑆. These two expressions together with (3) imply

𝑎(𝑥𝑓(𝑠)𝑦𝑓(𝑧) + 𝑦[𝑧, 𝑥𝑠] + 𝑠′𝑦[𝑧, 𝑥]) = 0. (18)

From this expression we get two new ones: one for 𝑦 = 𝑎𝑦, the second by multiplying on the
left by 𝑎. In the same way as above from these expressions we deduce

𝑎([𝑥𝑓(𝑠), 𝑎]𝑦𝑓(𝑧) + [𝑎, 𝑠]𝑦[𝑧, 𝑥]) = 0.

Once again substituting 𝑥 = 𝑎𝑥 and multiplying by 𝑎 in the same way, we get

𝑎([𝑎, 𝑠]𝑦[𝑧, 𝑎𝑥] + 𝑎′[𝑎, 𝑠]𝑦[𝑧, 𝑥]) = 0.

for all 𝑥, 𝑦, 𝑧 ∈ 𝐼, 𝑠 ∈ 𝑆.
This for 𝑧 = 𝑥 gives

𝑎[𝑎, 𝑠]𝑦[𝑥, 𝑎]𝑥 + 𝑎𝑎′[𝑎, 𝑠]𝑦[𝑥, 𝑥]) = 0, (19)

which, by (3), implies
𝑎𝑎[𝑎, 𝑠]𝑦[𝑥, 𝑥] + 𝑎𝑎′[𝑎, 𝑠]𝑦[𝑥, 𝑥] = 0. (20)
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Using (1), the fact that [𝑥, 𝑥] = [𝑥, 𝑥]′ and (1), we can transform (19) as follows:

0 = 𝑎[𝑎, 𝑠]𝑦[𝑥, 𝑎]𝑥 + 𝑎𝑎′[𝑎, 𝑠]𝑦(𝑥𝑥 + 𝑥′𝑥)

= 𝑎[𝑎, 𝑠]𝑦[𝑥, 𝑎]𝑥 + 𝑎𝑎′[𝑎, 𝑠]𝑦(𝑥𝑥 + 𝑥′𝑥 + 𝑥𝑥 + 𝑥′𝑥)

= 𝑎[𝑎, 𝑠]𝑦[𝑥, 𝑎]𝑥 + 𝑎𝑎′[𝑎, 𝑠]𝑦([𝑥, 𝑥] + [𝑥, 𝑥])

= 𝑎[𝑎, 𝑠]𝑦[𝑥, 𝑎]𝑥.

So,

𝑎[𝑎, 𝑠]𝑦[𝑥, 𝑎]𝑥 = 0

for all 𝑥, 𝑦 ∈ 𝐼, 𝑠 ∈ 𝑆.
In particular, for 𝑠 = 𝑡𝑠, 𝑡 ∈ 𝑆, we get

0 = 𝑎[𝑎, 𝑡𝑠]𝑦[𝑥, 𝑎]𝑥 = 𝑎𝑡[𝑎, 𝑠]𝑦[𝑥, 𝑎]𝑥 + 𝑎[𝑎, 𝑡]𝑠𝑦[𝑥, 𝑎]𝑥 = 𝑎𝑡[𝑎, 𝑠]𝑦[𝑥, 𝑎]𝑥.

Therefore, 𝑎𝑡[𝑎, 𝑠]𝐼[𝑥, 𝑎]𝑥 = 0 for all 𝑥 ∈ 𝐼 and 𝑠, 𝑡 ∈ 𝑆. Since 𝑆 is prime, must be [𝑥, 𝑎]𝑥 = 0
or [𝑥, 𝑎] = 0. So, 𝑎 ∈ 𝑍(𝑆) or [𝑥, 𝑎]𝑥 = 0 for all 𝑥 ∈ 𝐼.

If [𝑥, 𝑎]𝑥 = 0, then substituting 𝑥 + 𝑦 we get

[𝑥, 𝑎]𝑦 + [𝑦, 𝑎]𝑥 = 0.

This for 𝑦 = 𝑦𝑡, 𝑡 ∈ 𝑆, gives

[𝑥, 𝑎]𝑦𝑡 + 𝑦[𝑡, 𝑎]𝑥 + [𝑦, 𝑎]𝑡𝑥 = 0.

Multiplying the previous expression on the right by 𝑡 and applying the last, we obtain

[𝑦, 𝑎][𝑡, 𝑥] + 𝑦[𝑡, 𝑎]𝑥 = 0,

which for 𝑦 = 𝑠𝑦 implies [𝑠, 𝑎]𝑦[𝑡, 𝑥] = 0. So, [𝑠, 𝑎]𝐼[𝑡, 𝑥] = 0 for all 𝑠, 𝑡 ∈ 𝑆 and 𝑥 ∈ 𝐼. Thus
[𝑠, 𝑎] = 0 or [𝑡, 𝑥] = 0. Hence 𝑎 ∈ 𝑍(𝑆) or 𝑆 is commutative (Corollary 2.1). So, also in this
case 𝑎 ∈ 𝑍(𝑆).

Since the center of a prime semiring is free from zero divisors, (18) transforms into

𝑥𝑓(𝑠)𝑦𝑓(𝑧) + 𝑦[𝑧, 𝑥𝑠] + 𝑠′𝑦[𝑧, 𝑥] = 0. (21)

By taking 𝑠 = 𝑧 = 𝑥, we get

𝑥𝑓(𝑥)𝑦𝑓(𝑥) + 𝑦𝑥[𝑥, 𝑥] + 𝑥′𝑦[𝑥, 𝑥] = 0, (22)

which by (3) implies 𝑥𝑦[𝑥, 𝑥] + 𝑥′𝑦[𝑥, 𝑥] = 0. Applying this expression to (22) and using the
fact that 𝑦[𝑥, 𝑥] = [𝑥, 𝑥]𝑦 for all 𝑥, 𝑦 ∈ 𝐼, we obtain 𝑥𝑓(𝑥)𝑦𝑓(𝑥) = 0. Whence, by the primeness
of 𝑆, we get 𝑥𝑓(𝑥) = 0 or 𝑓(𝑥) = 0.

Suppose that 𝑥𝑓(𝑥) = 0 for all 𝑥 ∈ 𝐼. Then putting 𝑠 = 𝑥 in (21) we obtain
𝑦[𝑧, 𝑥𝑥] + 𝑥′𝑦[𝑧, 𝑥] = 0, which, by (3), implies 𝑦[𝑧, 𝑥𝑥] = 𝑥𝑦[𝑧, 𝑥], and for 𝑦 = 𝑠𝑦, 𝑠 ∈ 𝑆,
gives [𝑠, 𝑥]𝑦[𝑧, 𝑥] = 0. Since 𝑆 is prime, [𝑠, 𝑥] = 0 or [𝑧, 𝑥] = 0. From [𝑠, 𝑥] = 0, by Corol-
lary 2.1, it follows the commutativity of 𝑆. In the case [𝑧, 𝑥] = 0, 𝑥, 𝑧 ∈ 𝐼, (21) reduces
to 𝑥𝑓(𝑠)𝑦𝑓(𝑧) = 0, where 𝑠 ∈ 𝑆. By the primeness, it leads to 𝑓(𝑥) = 0 for 𝑥 ∈ 𝐼. So in
any case we have 𝑓(𝑥) = 0 and [𝑥, 𝑦] = 0 for 𝑥, 𝑦 ∈ 𝐼. Consequently, for 𝑠 ∈ 𝑆 we have
0 = [𝑥, 𝑦𝑠] = 𝑦[𝑥, 𝑠] + [𝑥, 𝑦]𝑠 = 𝑦[𝑥, 𝑠]. So, [𝑥, 𝑠] = 0 by the primeness of 𝑆. Hence 𝑆 is
commutative.

Therefore (17) has the form 𝑎𝑥𝑦𝑔(𝑧) = 0. Since 𝑆 is prime and 𝐼 is a nonzero ideal, the
last implies 𝑔(𝑧) = 0 for all 𝑧 ∈ 𝐼. Then (16) reduces to (𝐺(𝑥) + 𝑥)𝑦 + 𝐹 (𝑥)𝐹 (𝑦) = 0. By
substituting 𝑦 = 𝑦𝑠, 𝑠 ∈ 𝑆, in the last expression, we obtain

0 = ((𝐺(𝑥) + 𝑥)𝑦 + 𝐹 (𝑥)𝐹 (𝑦))𝑠 + 𝐹 (𝑥)𝑦𝑓(𝑠) = 𝐹 (𝑥)𝑦𝑓(𝑠).

This for 𝑥 = 𝑥𝑠 implies 𝑥𝑓(𝑠)𝑦𝑓(𝑠) = 0, and, by the primeness of 𝑆, 𝑓(𝑠) = 0 for 𝑠 ∈ 𝑆.
Similarly, we can prove that 𝑔(𝑠) = 0 for 𝑠 ∈ 𝑆. Hence 𝐹 (𝑥𝑦) = 𝐹 (𝑥)𝑦 and 𝐺(𝑥𝑦) = 𝐺(𝑥)𝑦 for
𝑥, 𝑦 ∈ 𝑆.
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