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ON COVERING MAPPINGS

IN GENERALIZED METRIC SPACES IN

STUDYING IMPLICIT DIFFERENTIAL EQUATIONS

E.S. ZHUKOVSKIY, W. MERCHELA

Abstract. Let on a set 𝑋 ̸= ∅ a metric 𝜌 : 𝑋 ×𝑋 → [0,∞] be defined, while on 𝑌 ̸= ∅ a
distance 𝑑 : 𝑌 × 𝑌 → [0,∞], be given, which satisfies only the identity axiom. We define
the notion of covering and of Lipschitz property for the mappings 𝑋 → 𝑌 . We formulate
conditions ensuring the existence of solutions 𝑥 ∈ 𝑋 to equations of form 𝐹 (𝑥, 𝑥) = 𝑦,
𝑦 ∈ 𝑌, with a mapping 𝐹 : 𝑋 ×𝑋 → 𝑌, being covering in one variable and Lipschitz in the
other. These conditions are employed for studying the solvability of a functional equation
with a deviation variable and of a Cauchy problem for an implicit differential equation. In
order to do this, on the space 𝑆 of Lebesgue measurable functions 𝑧 : [0, 1] → R we define
the distance

𝑑(𝑧1, 𝑧2) = vrai sup
𝑡∈[0,1]

𝜃(𝑧1(𝑡), 𝑧2(𝑡)), 𝑧1, 𝑧2 ∈ 𝑆,

where each continuous function 𝜃 : R × R → [0,∞) satisfies 𝜃(𝑧1, 𝑧2) = 0 if and only if
𝑧1 = 𝑧2.

Keywords: covering mapping, metric space, functional equation with a deviating variable,
ordinary differential equation, existence of solution.
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1. Introduction

The results on operator equations with mappings acting in metric spaces are widely used for
studying various functional equations. In particular, the results on covering mappings of metric
spaces allowed one to consider some classes of integral equations, see [1], implicit differential
equations, see [2], for which fixed point theorems were not applicable. For implicit differential
equations, by such methods, there were obtained existence conditions, estimates, conditions
ensuring continuous dependence on parameters for solutions to Cauchy problems, see [3], to
boundary value problems, see [4], control problems, see [5], [6].

In recent studies [7], [8], the results on covering mappings were generalized for the spaces,
in which classical properties of metrics were weakened. In works [9], [10], the notion of the
covering set was extended to mappings acting from a metric space into a set equipped with a
distance obeying just identity axiom and by means of this set, solvability conditions of operator
equations were obtained. In this work, we extend this result for the case, when the metric and
distance can take infinite value. Such generalization gave an opportunity to apply the results
on an operator equation to studying a functional equation with a deviating argument in the
space of Lebesgue measurable functions as well as for studying an implicit differential equation.
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The paper is organized as follows. In Section 2 we provide needed facts on spaces with
distance, define weakened properties of closedness, covering and Lipschitz property for the
mappings acting from a space with an ∞-metric into the space with a distance and we also
formulate Theorem 2.1 of existence of a solution to an operator equation. In Section 3 we
define the distance in the space of Lebesgue measurable functions and in this space we study
the covering set and Lipschitz property set for Nemytskii operator. Then we apply the obtained
results to studying a functional equation with a deviating argument. In Section 4, by similar
methods, we obtained the solvability conditions of a Cauchy problem for an implicit differential
equation.

2. Main notions

We denote R+ = [0,+∞), R+ = [0,+∞]. We suppose that we are given a space 𝑋 = (𝑋, 𝜌)
with an ∞-metrics 𝜌 : 𝑋 × 𝑋 → R+; in what follows the mapping is referred to as metrics
and the space 𝑋 is called a metric space. We denote by 𝐵𝑋(𝑥0, 𝑟) = {𝑥 ∈ 𝑋 : 𝜌(𝑥, 𝑥0) 6 𝑟}
a closed ball in 𝑋 centered at a point 𝑥0 ∈ 𝑋 of a radius 𝑟 ∈ (0,∞]. We also suppose that a
non-empty set 𝑌 is given, on which a distance is defined, which is a mapping 𝑑 : 𝑌 × 𝑌 → R+

obeying the condition

∀𝑦1, 𝑦2 ∈ 𝑌 𝑑(𝑦1, 𝑦2) = 0 ⇔ 𝑦1 = 𝑦2.

In the space 𝑌 we define the notion of convergence of a sequence {𝑦𝑖} ⊂ 𝑌 to an element 𝑦 ∈ 𝑌
as 𝑖 → ∞ by the relation

𝑦𝑖 → 𝑦 ⇔ 𝑑(𝑦𝑖, 𝑦) → 0.

We observe that under such convergence, the limit 𝑦 is not necessary unique and a symmetric
scalar sequence 𝑑(𝑦, 𝑦𝑖) not necessary convergence to 0.

For the mappings acting from 𝑋 into 𝑌 we employ the following standard definitions. A
mapping 𝑓 : 𝑋 → 𝑌 is called continuous at a point 𝑥 ∈ 𝑋 if for each sequence {𝑥𝑖} ⊂ 𝑋
converging to 𝑥 we have 𝑓(𝑥𝑖) → 𝑓(𝑥). A mapping 𝑓 : 𝑋 → 𝑌 is called closed at a point 𝑥 ∈ 𝑋
if the convergence of a sequence {𝑥𝑖} ⊂ 𝑋 to 𝑥 and the existence of 𝑦 ∈ 𝑌 such that 𝑓(𝑥𝑖) → 𝑦
imply the identity 𝑓(𝑥) = 𝑦. A mapping continuous (closed) at all points is called continuous
(closed). We stress that in contrast to metric spaces, the continuity of a mapping does not
imply its closedness.

We formally extend the following definitions known for usual metric spaces to the mappings
in the considered spaces, see [11].

Definition 2.1. Let 𝛼 > 0. A mapping 𝑓 : 𝑋 → 𝑌 is called 𝛼-covering if the relation

∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ∃𝑢 ∈ 𝑋 𝑓(𝑢) = 𝑦, 𝜌(𝑥, 𝑢) 6
1

𝛼
𝑑
(︀
𝑓(𝑥), 𝑦

)︀
.

holds true.

Definition 2.2. Let 𝛽 > 0. A mapping 𝑓 : 𝑋 → 𝑌 is called 𝛽-Lipschitz on a set 𝑈 ⊂ 𝑋 if
the relation

∀𝑥, 𝑢 ∈ 𝑈 𝑑
(︀
𝑓(𝑥), 𝑓(𝑢)

)︀
6 𝛽𝜌(𝑥, 𝑢)

holds true. If 𝑈 = 𝑋, then the mapping 𝑓 : 𝑋 → 𝑌 is called 𝛽-Lipschitz.

We are going to define weakened properties of closedness, covering and Lipschitz property
for a mapping 𝑓 : 𝑋 → 𝑌. Given a set 𝑈 ⊂ 𝑋, we define sets:

Cl[𝑓 ;𝑈 ] :=
{︀

(𝑥, 𝑦) ∈ 𝑋 × 𝑌 | ∀{𝑥𝑛} ⊂ 𝑈 𝑥𝑛 → 𝑥, 𝑓(𝑥𝑛) → 𝑦 ⇒ 𝑓(𝑥) = 𝑦
}︀

;

Cov𝛼[𝑓 ;𝑈 ] :=
{︀

(𝑥, 𝑦) ∈ 𝑋 × 𝑌 | ∃𝑢 ∈ 𝑈 𝑓(𝑢) = 𝑦, 𝜌(𝑥, 𝑢) 6 𝛼−1𝑑(𝑓(𝑥), 𝑦), 𝜌(𝑥, 𝑢) < ∞
}︀

;

Lip𝛽[𝑓 ;𝑈 ] :=
{︀

(𝑥, 𝑦) ∈ 𝑋 × 𝑌 | ∀𝑢 ∈ 𝑈 𝑓(𝑢) = 𝑦 ⇒ 𝑑(𝑓(𝑥), 𝑦) 6 𝛽𝜌(𝑥, 𝑢)
}︀
.
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In the case 𝑈 = 𝑋, the metrics 𝜌 and the distance 𝑑 have values in R+, such sets of closedness,
covering and Lipschitz properties were introduced in [10].

It is obvious that relation Cl[𝑓 ;𝑋] = 𝑋 × 𝑌 is equivalent to the fact that the mapping 𝑓 is
closed, the relation Cov𝛼[𝑓 ;𝑋] = 𝑋×𝑌 means that the mapping 𝑓 is 𝛼-covering, while relation
Lip𝛽[𝑓 ;𝑋] = 𝑋 × 𝑌 is valid if and only if 𝑓 is Lipschitz with the coefficient 𝛽.

Given a mapping 𝐹 : 𝑋 ×𝑋 → 𝑌 and an element ̂︀𝑦 ∈ 𝑌 , we define a mapping 𝐺 : 𝑋 → 𝑌
by the identity 𝐺(𝑥) = 𝐹 (𝑥, 𝑥) and consider the equation

𝐺(𝑥) = ̂︀𝑦 (2.1)

with an unknown 𝑥 ∈ 𝑋. We formulate a statement on solvability of equation (2.1) similar to
Theorem 2 in [10]; this statement will be employed later.

Theorem 2.1. Let a metric space 𝑋 be complete and suppose that we are given 𝛼 > 𝛽 > 0,
𝑥0 ∈ 𝑋 such that 𝑑

(︀
𝐹 (𝑥0, 𝑥0), ̂︀𝑦)︀ < ∞. We define:

𝑅 := (𝛼− 𝛽)−1𝑑
(︀
𝐹 (𝑥0, 𝑥0), ̂︀𝑦)︀, 𝑈 := 𝐵𝑋(𝑥0, 𝑅)

and assume that for each 𝑥 ∈ 𝑈 the embeddings hold:

(𝑥, ̂︀𝑦) ∈ Cov𝛼[𝐹 (·, 𝑥);𝑋], (𝑥, ̂︀𝑦) ∈ Lip𝛽[𝐹 (𝑥, ·);𝑈 ], (𝑥, ̂︀𝑦) ∈ Cl[𝐺;𝑈 ].

Then there exists a solution to equation (2.1) in the ball 𝑈 .

We note that in a similar Theorem 2 in [10], the metrics 𝜌 and the distance 𝑑 were assumed
to have values in R+ and there employed more restrictive definitions of closedness, covering
and Lipschitz property sets, namely, the corresponded to the case 𝑈 = 𝑋. Nevertheless, for
the considered here mappings 𝜌 and 𝑑 acting in R+ and for our definitions of the corresponding
set the proof is the same as in [10] and this is why we do not provide it.

3. Functional equations in the space of measurable functions

Let 𝜏 > 0. We denote by 𝜇 the Lebesgue measure on [0, 𝜏 ], while S = S([0, 𝜏 ],R) denotes the
space of Lebesgue measurable functions 𝑢 : [0, 𝜏 ] → R. In the space S, we select a subset S+ of
non-negative functions. The distance in the space S is defined as follows.

Suppose that we are given a function 𝜃 : R×R→ R+. We assume that the following condition
holds true.

(𝒜) The function 𝜃 is continuous with respect to each of its variables, 𝜃(𝑧, 𝑧) = 0 for each
𝑧 ∈ R and the relation holds:

∀𝛿 > 0 ∃𝛾 > 0 ∀𝑧1, 𝑧2 ∈ R |𝑧1 − 𝑧2| > 𝛿 ⇒ 𝜃(𝑧1, 𝑧2) > 𝛾. (3.1)

We define a mapping 𝑑 𝜃 : S× S → R+ by the relation

𝑑 𝜃(𝑧1, 𝑧2) = vrai sup
𝑡∈[0,𝜏 ]

𝜃(𝑧1(𝑡), 𝑧2(𝑡)), 𝑧1, 𝑧2 ∈ S. (3.2)

Here the composition 𝜃(𝑧1(·), 𝑧2(·)) is a measurable function since the function 𝜃 is continuous
with respect to each of its variables. The mapping 𝑑 𝜃 obviously satisfies the identity axiom,
that is, this mapping is a distance in S. The space (S, 𝑑 𝜃) is denoted by S𝜃. We note that the
distance 𝑑 𝜃 is not necessarily symmetric and does not necessary satisfy the triangle inequality.

We also observe that the function 𝜃0 : R×R→ R+ defined by formula

𝜃0(𝑧1, 𝑧2) = |𝑧1 − 𝑧2|,
the corresponding mapping 𝑑 𝜃0 : S×S → R+ is a metrics in S. We denote this metrics by 𝜌, that
is, 𝜌 = 𝑑 𝜃0 , and the corresponding space of measurable functions is denoted by S𝜃0 = (S, 𝜌).
The space S𝜃0 is complete. In this space a ball 𝐵S𝜃0 (𝑥0, 𝑟) centered at 𝑥0 ∈ S𝜃0 of a radius
𝑟 ∈ (0,∞] is a set of all measurable functions 𝑥 : [0, 𝜏 ] → R such that 𝑥(𝑡) ∈ 𝐵R(𝑥0(𝑡), 𝑟) =
[𝑥0(𝑡) − 𝑟, 𝑥0(𝑡) + 𝑟] for a.e. 𝑡 ∈ [0, 𝜏 ].
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Suppose that we are given a function 𝑔 : [0, 𝜏 ]×R→ R satisfying the Caratheodory condition,
that is, it is measurable with respect to the first variable and is continuous with respect to the
second variable. We define a Nemytskii operator:

(𝑁𝑔𝑢)(𝑡) = 𝑔(𝑡, 𝑢(𝑡)). (3.3)

By the made assumptions on the function 𝑔, this operator maps measurable functions into
measurable ones. Let us study the closedness, continuity, covering and Lipschitz property of
the operator 𝑁𝑔 as acting from S𝜃0 = (S, 𝜌) into S𝜃 = (S, 𝑑 𝜃), where the function 𝜃 : R×R→ R+

satisfies condition (𝒜).

Proposition 1. The operator 𝑁𝑔 : S𝜃0 → S𝜃 is closed. If, in addition, the set of functions{︀
𝑔(𝑡, ·) : R→ R, 𝑡 ∈ [0, 𝜏 ]

}︀
is equicontinuous, that is,

∀𝜀 > 0 ∃𝛿 > 0 ∀𝑡 ∈ [0, 𝜏 ] ∀𝑥, 𝑢 ∈ R |𝑥− 𝑢| < 𝛿 ⇒ |𝑔(𝑡, 𝑥) − 𝑔(𝑡, 𝑢)| < 𝜀, (3.4)

and the set of the functions {𝜃(·, 𝑧) : R→ R+, 𝑧 ∈ R} satisfies the relation

∀𝜀 > 0 ∃𝛿 > 0 ∀𝑧1, 𝑧2 ∈ R |𝑧1 − 𝑧2| < 𝛿 ⇒ 𝜃(𝑧1, 𝑧2) < 𝜀, (3.5)

then the operator 𝑁𝑔 : S𝜃0 → S𝜃 is continuous.

Proof. We are going to show that for each 𝑧 ∈ R and for each sequence {𝑧𝑖} ⊂ R the relation
𝜃(𝑧𝑖, 𝑧) → 0 is equivalent to |𝑧𝑖 − 𝑧| → 0.

First, let 𝜃(𝑧𝑖, 𝑧) → 0. If relation |𝑧𝑖 − 𝑧| → 0 does not hold, then there exists a subsequence
{𝑧𝑖𝑗} and positive numbers 𝛿 such that |𝑧𝑖𝑗 − 𝑧| > 𝛿. By (3.1) we obtain that 𝜃(𝑧𝑖𝑗 , 𝑧) > 𝛾 for
some positive 𝛾. This inequality contradicts the convergence 𝜃(𝑧𝑖, 𝑧) → 0. Thus, |𝑧𝑖 − 𝑧| → 0.

And vice versa, by the continuity of the function 𝜃(·, 𝑧) we obtain that in the case |𝑧𝑖−𝑧| → 0
we have 𝜃(𝑧𝑖, 𝑧) → 𝜃(𝑧, 𝑧) = 0.

Now we are going to prove the closedness of the operator 𝑁𝑔 : S𝜃0 → S𝜃. Suppose that we
are given elements 𝑢 ∈ S𝜃0 , 𝑦 ∈ S𝜃 and a sequence {𝑢𝑖} ⊂ S𝜃0 such that

vrai sup
𝑡∈[0,𝜏 ]

𝜃0
(︀
𝑢𝑖(𝑡), 𝑢(𝑡)

)︀
= vrai sup

𝑡∈[0,𝜏 ]

⃒⃒
𝑢𝑖(𝑡) − 𝑢(𝑡)

⃒⃒
→ 0, (3.6)

vrai sup
𝑡∈[0,𝜏 ]

𝜃
(︀
𝑔(𝑡, 𝑢𝑖(𝑡)), 𝑦(𝑡)

)︀
→ 0. (3.7)

According the said above, relations (3.6) and (3.7) imply the convergences

𝑢𝑖(𝑡) → 𝑢(𝑡), 𝑔(𝑡, 𝑢𝑖(𝑡)) → 𝑦(𝑡) for a.e. 𝑡 ∈ [0, 𝜏 ].

Since the function 𝑔(𝑡, ·) is continuous, we have 𝑔(𝑡, 𝑢𝑖(𝑡)) → 𝑔(𝑡, 𝑢(𝑡)) for a.e. 𝑡 ∈ [0, 𝜏 ]. Then
by the uniqueness of the limit in R we obtain 𝑔(𝑡, 𝑢(𝑡)) = 𝑦(𝑡).

Now we assume that conditions (3.4), (3.5) hold and we are going to prove the continuity of
the operator 𝑁𝑔 : S𝜃0 → S𝜃.

Suppose that we are given a converging sequence {𝑢𝑖} ⊂ S𝜃0 , that is, assertion (3.6) holds
true. It follows from (3.4) and (3.6) that vrai sup𝑡∈[0,𝜏 ] |𝑔(𝑡, 𝑢𝑖(𝑡))− 𝑔(𝑡, 𝑢(𝑡))| → 0, and by (3.5)
we obtain relation (3.7), where 𝑦(𝑡) = 𝑔(𝑡, 𝑢(𝑡)). Thus, we have proved that the Nemytskii
operator 𝑁𝑔 : S𝜃0 → S𝜃 is continuous. The proof is complete.

Suppose that we are given a multi-valued mapping Ω : [0, 𝜏 ] ⇒ R, i.e., which maps each
𝑡 ∈ [0, 𝜏 ] into a non-empty closed set Ω(𝑡) ⊂ R. We assume that this mapping is measurable;
the results on measurable multi-valued mappings can be found, for instance, in [12, Sect. 1.5].
The set of its measurable sections is denoted by

Sel(Ω) := {𝑢 ∈ S | 𝑢(𝑡) ∈ Ω(𝑡) for a.e. 𝑡 ∈ [0, 𝜏 ]}.
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Proposition 2. Suppose that we are given 𝑥, 𝑦 ∈ S, 𝛼 > 0 and a measurable multi-valued
mapping Ω : [0, 𝜏 ]⇒ R and let for a.e. 𝑡 ∈ [0, 𝜏 ] the following condition holds:

∃𝑢 ∈ Ω(𝑡) 𝑔(𝑡, 𝑢) = 𝑦(𝑡) and |𝑥(𝑡) − 𝑢| 6 𝛼−1𝜃
(︀
𝑔(𝑡, 𝑥(𝑡)), 𝑦(𝑡)

)︀
. (3.8)

Then (𝑥, 𝑦) ∈ Cov𝛼[𝑁𝑔; Sel(Ω)], where the operator 𝑁𝑔 : S𝜃0 → S𝜃 is defined by relation (3.3).

Proof. We let 𝑟(𝑡) = 𝛼−1𝜃
(︀
𝑔(𝑡, 𝑥(𝑡)), 𝑦(𝑡)

)︀
. Since the function 𝑔 satisfies the Caratheodory

conditions and the function 𝜃 is continuous in each argument, the function [0, 𝜏 ] ∋ 𝑡 ↦→ 𝑟(𝑡) ∈
R+ is measurable. Now we define a multi-valued mapping

[0, 𝜏 ] ∋ 𝑡 ↦→ B(𝑡) = [𝑥(𝑡) − 𝑟(𝑡), 𝑥(𝑡) + 𝑟(𝑡)],

which is obviously measurable. Assertion (3.8) implies that 𝑦(𝑡) ∈ 𝑔
(︀
𝑡,B(𝑡) ∩ Ω(𝑡)

)︀
for a.e.

𝑡 ∈ [0, 𝜏 ]. According Fillipov lemma, see, for instance, [12, Lm. 1.5.15], there exists a function̂︀𝑢 ∈ 𝑆𝜃0 such that ̂︀𝑢(𝑡) ∈ B(𝑡) ∩ Ω(𝑡) and 𝑔(𝑡, ̂︀𝑢(𝑡)) = 𝑦(𝑡) for a.e. 𝑡 ∈ [0, 𝜏 ]. For this function
we have 𝑢 ∈ Sel(Ω) and

𝜌(𝑥, ̂︀𝑢) = vrai sup
𝑡∈[0,𝜏 ]

⃒⃒
𝑥(𝑡) − ̂︀𝑢(𝑡)

⃒⃒
6 𝛼−1vrai sup

𝑡∈[0,𝜏 ]
𝜃
(︀
𝑔(𝑡, 𝑥(𝑡)), 𝑦(𝑡)

)︀
= 𝛼−1𝑑 𝜃(𝑁𝑔𝑥, 𝑦),

therefore, (𝑥, 𝑦) ∈ Cov𝛼[𝑁𝑔; Sel(Ω)].

Remark 1. On the real line R we define the distance 𝜃 and denote R𝜃 = (R, 𝜃), while the
symbol R stands for the real space with the usual metrics 𝜃0. The function 𝑔 can be regarded as
a mapping [0, 𝜏 ] ×R→ R𝜃. Then relation (3.8) means that

(𝑥(𝑡), 𝑦(𝑡)) ∈ Cov𝛼[𝑔(𝑡, ·); Ω(𝑡)], 𝑔(𝑡, ·) : R→ R𝜃, 𝑡 ∈ [0, 𝜏 ]. (3.9)

Thus, Proposition 2 can be formulated as follows: if for some 𝑥, 𝑦 ∈ S and 𝛼 > 0 belonging
(3.9) holds, then (𝑥, 𝑦) ∈ Cov𝛼[𝑁𝑔; Sel(Ω)], 𝑁𝑔 : S𝜃0 → S𝜃.

Example 1. We define a function 𝜃 : R×R→ R+ by the relations

𝑧1𝑧2 > 0 ⇒ 𝜃(𝑧1, 𝑧2) =

{︂ ⃒⃒√︀
|𝑧1| −

√︀
|𝑧2|

⃒⃒
if
√︀

|𝑧1| +
√︀

|𝑧2| 6 1,

|𝑧1 − 𝑧2| if
√︀

|𝑧1| +
√︀

|𝑧2| > 1;
(3.10)

𝑧1𝑧2 < 0 ⇒ 𝜃(𝑧1, 𝑧2) = 𝜃(𝑧1, 0) + 𝜃(0, 𝑧2). (3.11)

This function satisfies condition (𝒜).
We mention one more property of the function 𝜃 obviously implied by its definition:

∀𝜆 ∈ [0, 1) ∀𝑧1, 𝑧2 ∈ R 𝜆 𝜃(𝑧1, 𝑧2) 6 𝜃(𝜆𝑧1, 𝜆𝑧2) 6
√
𝜆 𝜃(𝑧1, 𝑧2). (3.12)

Indeed, in the case 𝑧1𝑧2 > 0 we have√︀
|𝑧1| +

√︀
|𝑧2| 6 1 ⇒ 𝜃(𝜆𝑧1, 𝜆𝑧2) =

√
𝜆
⃒⃒√︀

|𝑧1| −
√︀
|𝑧2|

⃒⃒
=

√
𝜆 𝜃(𝑧1, 𝑧2) ⇒ (3.12);

1 <
√︀

|𝑧1| +
√︀

|𝑧2| 6 1/
√
𝜆 ⇒ 𝜃(𝜆𝑧1, 𝜆𝑧2) =

√
𝜆

|𝑧1 − 𝑧2|√︀
|𝑧1| +

√︀
|𝑧2|

⇒ (3.12);√︀
|𝑧1| +

√︀
|𝑧2| > 1/

√
𝜆 ⇒ 𝜃(𝜆𝑧1, 𝜆𝑧2) = 𝜆|𝑧1 − 𝑧2| = 𝜆𝜃(𝑧1, 𝑧2) ⇒ (3.12).

And if 𝑧1𝑧2 < 0, then 𝜃(𝜆𝑧1, 𝜆𝑧2) = 𝜃(𝜆𝑧1, 0) + 𝜃(0, 𝜆𝑧2), and therefore,

𝜃(𝜆𝑧1, 𝜆𝑧2) 6
√
𝜆 𝜃(𝑧1, 0) +

√
𝜆𝜃(0, 𝑧2) =

√
𝜆 𝜃(𝑧1, 𝑧2);

𝜃(𝜆𝑧1, 𝜆𝑧2) > 𝜆 𝜃(𝑧1, 0) + 𝜆 𝜃(0, 𝑧2) = 𝜆 𝜃(𝑧1, 𝑧2).

Above relation (3.12) is equivalent to

∀𝜈 > 1 ∀𝑧1, 𝑧2 ∈ R
√
𝜈 𝜃(𝑧1, 𝑧2) 6 𝜃(𝜈𝑧1, 𝜈𝑧2) 6 𝜈 𝜃(𝑧1, 𝑧2). (3.13)
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Let 𝜏 = 1, S = S([0, 1],R). In terms of the function 𝜃 given by relations (3.10), (3.11), we
introduce the distance 𝑑 𝜃 in the space S by formula (3.2). This distance is symmetric and
satisfies triangle inequality, that is, it is an ∞-metrics.

First of all we note that by the inequality 𝜃(𝑧1, 𝑧2) > |𝑧1−𝑧2|, 𝑧1, 𝑧2 ∈ R, we have 𝑑 𝜃(𝑥1, 𝑥2) >
𝑑 𝜃0(𝑥1, 𝑥2), 𝑥1, 𝑥2 ∈ S. Therefore, each mapping in the space S being 𝛼-covering with respect to
the usual metrics 𝑑 𝜃0 , i.e., as a mapping S𝜃0 → S𝜃0 , is also a 𝛼-covering as a mapping S𝜃0 → S𝜃.
We consider a mapping which is not covering with any constant 𝛼 if it is regarded as a mapping
S𝜃0 → S𝜃0 and nevertheless, it is 1-covering as a mapping S𝜃0 → S𝜃.

Suppose that we are given a function 𝑞 ∈ S such that 𝑞(𝑡) > 1 for a.e. 𝑡 ∈ [0, 1]. We consider
functions 𝑔0, 𝑔1, : [0, 1] ×R→ R defined for each 𝑡 ∈ [0, 1], 𝑥 ∈ R, by the formulae

𝑔0(𝑡, 𝑥) = 𝑥2, 𝑔1(𝑡, 𝑥) = 𝑞(𝑡)𝑥2.

According Proposition 1, the Nemytskii operators 𝑁𝑔0 , 𝑁𝑔1 : S𝜃0 → S𝜃 are closed. We first
study the covering set Cov𝛼[𝑁𝑔0 ;S] of the Nemytskii operator 𝑁𝑔0 generated by the function 𝑔0.
We note that the function of the first variable 𝑔0(·, 𝑥) is constant, the function of the second
variable 𝑔0(𝑡, ·) is even, its restriction on R+ is injective and monotone and as acting in R+, it
is also surjective. Let us show that for 𝛼 = 1, all functions 𝑥 ∈ S and 𝑦 ∈ S+, the assumptions
of Proposition 2 are satisfied, where Ω(𝑡) ≡ R, that is, we are going to show the validity of
relation (3.8).

Let 𝑡 ∈ [0, 1]. For simplicity we suppose that 𝑥(𝑡) > 0. We define 𝑢 =
√︀
𝑦(𝑡); if 𝑥(𝑡) < 0,

then we let 𝑢 = −
√︀
𝑦(𝑡). We have:

𝑥(𝑡) + 𝑢 6 1 ⇒ 𝜃(𝑔0(𝑡, 𝑥(𝑡)), 𝑦(𝑡)) = |𝑥(𝑡) − 𝑢|;
𝑥(𝑡) + 𝑢 > 1 ⇒ 𝜃(𝑔0(𝑡, 𝑥(𝑡)), 𝑦(𝑡)) = |𝑥2(𝑡) − 𝑢2| = |𝑥(𝑡) − 𝑢|(𝑥(𝑡) + 𝑢) > |𝑥(𝑡) − 𝑢|.

Thus, relation (3.8) is valid and hence, according Proposition 2, we obtain:

∀𝑥 ∈ S, ∀𝑦 ∈ S+ (𝑥, 𝑦) ∈ Cov𝛼[𝑁𝑔0 ;S], where 𝛼 = 1.

Let us show that for the Nemytskii operator 𝑁𝑔1 : S𝜃0 → S𝜃 generated by the function 𝑔1,
the set Cov𝛼[𝑁𝑔1 ;S] for 𝛼 = 1 also contains all pairs (𝑥, 𝑦) ∈ S× S+. Since

(︀
𝑥(·), 𝑞−1(·)𝑦(·)

)︀
∈

Cov𝛼[𝑁𝑔0 ;S], there exists a function 𝑢 ∈ S such that

(𝑁𝑔0𝑢)(·) = 𝑞−1(·)𝑦(·) ⇔ 𝑁𝑔1𝑢 = 𝑦

and the inequalities hold:

𝜌(𝑥, 𝑢) 6 𝑑𝜃(𝑁𝑔0𝑥, 𝑞
−1(·)𝑦(·)) = 𝑑𝜃

(︀
𝑞−1(·)(𝑁𝑔1𝑥)(·), 𝑞−1(·)𝑦(·)

)︀
.

On the base of relation (3.12) we obtain inequality 𝜌(𝑥, 𝑢) 6 𝑑𝜃(𝑁𝑔1𝑥, 𝑦). Thus, we have proved
that (𝑥, 𝑦) ∈ Cov𝛼[𝑁𝑔1 ;S].

Example 2. We consider one more function 𝜃 : R× R → R+ satisfying condition (𝒜) and
defined by relations:

𝑧1𝑧2 > 0 ⇒ 𝜃(𝑧1, 𝑧2) =

{︂
|𝑧21 − 𝑧22 |, if |𝑧1 + 𝑧2| 6 1,
|𝑧1 − 𝑧2|, if |𝑧1 + 𝑧2| > 1;

(3.14)

𝑧1𝑧2 < 0 ⇒ 𝜃(𝑧1, 𝑧2) = 𝜃(𝑧1, 0) + 𝜃(0, 𝑧2). (3.15)

In the space S = S([0, 1],R), we define the distance 𝑑 𝜃 by formula (3.2). This distance is
symmetric and nevertheless, it is not metrics since it does not satisfy the triangle inequality;
for instance, for 𝑧1 = 0, 𝑧2 = 1

2
, 𝑧3 = 1 we have

𝜃(𝑧1, 𝑧2) =
1

4
, 𝜃(𝑧2, 𝑧3) =

1

2
, 𝜃(𝑧1, 𝑧3) = 1 >

1

4
+

1

2
.
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We consider a function ̂︀𝑔0 : [0, 1] ×R→ R,̂︀𝑔0(𝑡, 𝑥) = |𝑥| +
√︀

|𝑥|, 𝑥 ∈ R, 𝑡 ∈ [0, 1]. (3.16)

It is easy to confirm, by the same arguing as in Example 1, that for 𝛼 = 1, each 𝑥 ∈ S and
𝑦 ∈ S+, the assumptions of Proposition 2 are satisfied, where Ω(𝑡) ≡ R. Thus,

∀(𝑥, 𝑦) ∈ S× S+ (𝑥, 𝑦) ∈ Cov𝛼[𝑁̂︀𝑔0 ;S], where 𝛼 = 1.

Proposition 3. Suppose that we are given 𝑥, 𝑦 ∈ S, 𝛽 > 0 and a measurable multi-valued
mapping Ω : [0, 𝜏 ]⇒ R and for a.e. 𝑡 ∈ [0, 𝜏 ] the implication

∀𝑢 ∈ Ω(𝑡) 𝑔(𝑡, 𝑢) = 𝑦(𝑡) ⇒ 𝜃
(︀
𝑔(𝑡, 𝑥(𝑡)), 𝑦(𝑡)

)︀
6 𝛽

⃒⃒
𝑥(𝑡) − 𝑢

⃒⃒
(3.17)

holds true. Then (𝑥, 𝑦) ∈ Lip𝛽[𝑁𝑔; Sel(Ω)], where the operator 𝑁𝑔 : 𝑆𝜃0 → S𝜃 is defined by
relation (3.3).

Proof. Let for some function ̂︀𝑢 ∈ Sel(Ω) the identity 𝑁𝑔̂︀𝑢 = 𝑦 holds true. Then it follows from
relation (3.17) that

𝑑 𝜃
(︀
𝑁𝑔𝑥, 𝑦

)︀
= vrai sup

𝑡∈[0,𝜏 ]
𝜃
(︀
𝑔(𝑡, 𝑥(𝑡)), 𝑦(𝑡)

)︀
6 𝛽vrai sup

𝑡∈[0,𝜏 ]

⃒⃒
𝑥(𝑡) − ̂︀𝑢(𝑡)

⃒⃒
= 𝛽𝜌(𝑥, ̂︀𝑢).

Thus, (𝑥, 𝑦) ∈ Lip𝛽[𝑁𝑔; Sel(Ω)]. The proof is complete.

Remark 2. Implication (3.17) means that the belonging

(𝑥(𝑡), 𝑦(𝑡)) ∈ Lip𝛽[𝑔(𝑡, ·),Ω(𝑡)], 𝑔(𝑡, ·) : R→ R𝜃, 𝑡 ∈ [0, 𝜏 ], (3.18)

holds. This is why Proposition 2 can be formulated as follows: if for some 𝑥, 𝑦 ∈ S and 𝛽 > 0
belonging (3.18) holds, then (𝑥, 𝑦) ∈ Lip𝛽[𝑁𝑔; Sel(Ω)], 𝑁𝑔 : S𝜃0 → S𝜃.

Corollary 1. Suppose that we are given a multi-valued mapping Ω : [0, 𝜏 ]⇒ R. Assume that
for a.e. 𝑡 ∈ [0, 𝜏 ] the mapping 𝑔(𝑡, ·) : R → R𝜃 is 𝛽-Lipschitz on the set Ω(𝑡), that is, for all
𝑥, 𝑢 ∈ Ω(𝑡) the inequality holds:

𝜃
(︀
𝑔(𝑡, 𝑥), 𝑔(𝑡, 𝑢)

)︀
6 𝛽

⃒⃒
𝑥− 𝑢

⃒⃒
. (3.19)

Then for all 𝑥 ∈ Sel(Ω), 𝑦 ∈ S𝜃 we have (𝑥, 𝑦) ∈ Lip𝛽[𝑁𝑔; Sel(Ω)], where 𝑁𝑔 : S𝜃0 → S𝜃, that is,
the operator 𝑁𝑔 is 𝛽-Lipschitz on the set Sel(Ω).

Example 3. As in Example 1, we define a function 𝜃 by formulae (3.10), (3.11). By the
inequality 𝜃(𝑧1, 𝑧2) > |𝑧1 − 𝑧2|, each function 𝑔 : [0, 1] × R → R obeying condition (3.19) for
some 𝛽 > 0 satisfies also usual Lipschitz condition:

|𝑔(𝑡, 𝑥) − 𝑔(𝑡, 𝑢)| 6 𝛽|𝑥− 𝑢|, 𝑥, 𝑢 ∈ Ω(𝑡). (3.20)

The opposite statement is false. Since for the function 𝑔(𝑡, 𝑥) = 𝑥 relation (3.20) holds as
Ω(𝑡) ≡ R with the Lipschitz coefficient being equal to 1 but equation (3.19) fails for each 𝛽 > 0
even if Ω(𝑡) ≡ [0, 𝜀], where 𝜀 > 0 is arbitrary small. Indeed, for each 𝑥 > 0 we have

𝜃
(︀
𝑔(𝑡, 𝑥), 𝑔(𝑡, 0)

)︀
=

√
𝑥 = 𝛽𝑥|𝑥− 0|,

where 𝛽𝑥 = 1/
√
𝑥 → ∞ as 𝑥 → 0 + .

Now we consider a function obeying condition (3.19). Suppose that we are given a function
𝑝 ∈ S such that 𝑝(𝑡) > 1/2 for a.e. 𝑡 ∈ [0, 1] and a number 𝛽 > 0. We let

𝑔2 : [0, 1] ×R→ R, 𝑔2(𝑡, 𝑥) = 𝛽|𝑥| + 𝑝(𝑡), 𝑥 ∈ R, 𝑡 ∈ [0, 1]. (3.21)

The values of this function satisfies the inequality 𝑔2(𝑡, 𝑥) > 1/2 for all 𝑡, 𝑥 and this is why by
formula (3.10) we have:

𝜃
(︀
𝑔2(𝑡, 𝑥), 𝑔2(𝑡, 𝑢)

)︀
=

⃒⃒
𝑔2(𝑡, 𝑥) − 𝑔2(𝑡, 𝑢)

⃒⃒
= 𝛽

⃒⃒
|𝑥| − |𝑢|

⃒⃒
6 𝛽|𝑥− 𝑢|, 𝑥, 𝑢 ∈ R, 𝑡 ∈ [0, 1].
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Hence, the assumptions of Corollary 1 are satisfied with Ω(𝑡) ≡ R and this is why the Nemytskii
operator 𝑁𝑔2 : S𝜃0 → S𝜃 defined by the function 𝑔2 is Lipschitz with a constant 𝛽 on entire
space S. We also note that according Proposition 1, the operator 𝑁𝑔2 is closed.

Example 4. As in Example 2, we define a function 𝜃 by formulae (3.14), (3.15) and a
function ̂︀𝑔0 : [0, 1]×R→ R by relation (3.16). This function satisfies inequality (3.19) with the
coefficient 𝛽 = 4 for all 𝑥, 𝑢 ∈ R. According Corollary 1, the Nemytskii operator 𝑁̂︀𝑔0 : S𝜃0 → S𝜃

defined by the function ̂︀𝑔0 is Lipschitz with constant 𝛽 = 4 on entire space S.

Let us formulate conditions ensuring Lipschitz property for one more mapping, which will
be used in studying various functional equations with deviating variable.

Suppose we are given a function ℎ : [0, 𝜏 ] → [0, 𝜏 ] such that

∀𝐸 ⊂ [0, 𝜏 ] 𝜇(𝐸) = 0 ⇒ 𝜇(ℎ−1(𝐸)) = 0. (3.22)

This condition ensures the measurability of the function 𝑢(ℎ(·)) for each measurable function
𝑢 : [0, 𝜏 ] → R, see [13], [14, Sect. 1.3] and this allows us to define the operator

𝑆ℎ : S → S, (𝑆ℎ𝑢)(𝑡) = 𝑢(ℎ(𝑡)), 𝑡 ∈ [0, 𝜏 ].

Employing Proposition 3, let us study the set Lip𝛽[𝑁𝑔𝑆ℎ] for the composition

𝑁𝑔𝑆ℎ : S𝜃0 → S𝜃, (𝑁𝑔𝑆ℎ𝑥)(𝑡) = 𝑔
(︀
𝑡, 𝑥(ℎ(𝑡))

)︀
, 𝑡 ∈ [0, 𝜏 ]. (3.23)

In order to do this, we shall need the following statement.

Lemma 3.1. For a measurable multi-valued mapping Ω : [0, 𝜏 ] ⇒ R, the composition Ωℎ :
[0, 𝜏 ] ⇒ R is also measurable. If the function 𝜔 ∈ S is a section of the mapping Ω, that is,
𝜔(𝑡) ∈ Ω(𝑡) for a.e. 𝑡 ∈ [0, 𝜏 ], then the function 𝑆ℎ𝜔 is measurable and is a section of the
mapping Ωℎ, i.e., 𝜔(ℎ(𝑡)) ∈ Ω(ℎ(𝑡)) for a.e. 𝑡 ∈ [0, 𝜏 ].

Proof. A multi-valued mapping is measurable if and only if it possesses Castaing representation,
see [12, Thm. 1.5.6, Rem. 1.5.7], and this is why there exists a countable set of measurable
sections 𝜔𝑛, 𝑛 = 1, 2, . . . , of the mapping Ω such that

Ω(𝑡) =
∞⋃︁
𝑛=1

{𝜔𝑛(𝑡)} for a.e. 𝑡 ∈ [0, 𝜏 ];

here the bar denotes the closure of a set in the space R. By condition (3.22), the functions
𝑆ℎ𝜔𝑛, 𝑛 = 1, 2, . . . , are measurable. Let us prove the relation

Ω(ℎ(𝑡)) =
∞⋃︁
𝑛=1

{𝜔𝑛(ℎ(𝑡))} for a.e. 𝑡 ∈ [0, 𝜏 ]. (3.24)

We define a set

𝐼 =
{︁
𝑡 ∈ [0, 𝜏 ] | Ω(ℎ(𝑡)) ̸=

∞⋃︁
𝑛=1

{𝜔𝑛(ℎ(𝑡))}
}︁
.

We obviously have 𝐼 = ℎ−1(𝐸), where

𝐸 =
{︁
𝑠 ∈ [0, 𝜏 ] | Ω(𝑠) ̸=

∞⋃︁
𝑛=1

{𝜔𝑛(𝑠)}
}︁
.

Since 𝜇(𝐸) = 0, by condition (3.22) we have 𝜇(𝐼) = 0. Thus, relation (3.24) is satisfied and
the multi-valued mapping Ωℎ : [0, 𝜏 ] ⇒ R possesses the Castaing representation. Hence, this
mapping is measurable.

Suppose that for some function 𝜔 ∈ S, for a.e. 𝑡 ∈ [0, 𝜏 ] the belonging holds 𝜔(𝑡) ∈ Ω(𝑡). We
define a set

𝐼 =
{︀
𝑡 ∈ [0, 𝜏 ] | 𝜔(ℎ(𝑡)) /∈ Ω(ℎ(𝑡))

}︀
.
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We represent this set as 𝐼 = ℎ−1(𝐸), where

𝐸 =
{︀
𝑠 ∈ [0, 𝜏 ] | 𝜔(𝑠) /∈ Ω(𝑠)

}︀
.

Since 𝜇(𝐸) = 0, by condition (3.22) we have 𝜇(𝐼) = 0. Thus, 𝜔(ℎ(𝑡)) ∈ Ω(ℎ(𝑡)) for a.e. 𝑡 ∈ [0, 𝜏 ].
The proof is complete.

Proposition 4. Suppose that we are given 𝑥, 𝑦 ∈ S, 𝛽 > 0 and a measurable multi-
valued mapping Ω : [0, 𝜏 ] ⇒ R. Let for a.e. 𝑡 ∈ [0, 𝜏 ], the belonging (𝑥(ℎ(𝑡)), 𝑦(𝑡)) ∈
Lip𝛽[𝑔(𝑡, ·),Ω(ℎ(𝑡))], 𝑔(𝑡, ·) : R→ R𝜃 holds, that is, the assertion

∀𝑢 ∈ Ω(ℎ(𝑡)) 𝑔(𝑡, 𝑢) = 𝑦(𝑡) ⇒ 𝜃
(︀
𝑔(𝑡, 𝑥(ℎ(𝑡))), 𝑦(𝑡)

)︀
6 𝛽

⃒⃒
𝑥(ℎ(𝑡)) − 𝑢

⃒⃒
(3.25)

is valid. Then (𝑥, 𝑦) ∈ Lip𝛽[𝑁𝑔𝑆ℎ; Sel(Ω)], where 𝑁𝑔𝑆ℎ : S𝜃0 → S𝜃 is defined by relation (3.23).

Proof. Let some function ̂︀𝑢 ∈ Sel(Ω) satisfies the identity 𝑁𝑔𝑆ℎ̂︀𝑢 = 𝑦. According Lemma 3.1,̂︀𝑢(ℎ(𝑡)) ∈ Ω(ℎ(𝑡)) for a.e. 𝑡 ∈ [0, 𝜏 ]. It follows from relation (3.25) that

𝑑 𝜃
(︀
𝑁𝑔𝑆ℎ𝑥, 𝑦

)︀
= vrai sup

𝑡∈[0,𝜏 ]
𝜃
(︀
𝑔(𝑡, 𝑥(ℎ(𝑡))), 𝑦(𝑡)

)︀
6 𝛽vrai sup

𝑡∈[0,𝜏 ]

⃒⃒
𝑥(ℎ(𝑡)) − ̂︀𝑢(ℎ(𝑡))

⃒⃒
. (3.26)

We define a set

𝐼 =
{︀
𝑡 ∈ [0, 𝜏 ] |

⃒⃒
𝑥(ℎ(𝑡)) − ̂︀𝑢(ℎ(𝑡))

⃒⃒
> 𝜌(𝑥, ̂︀𝑢)

}︀
.

We represent this set as 𝐼 = ℎ−1(𝐸), 𝐸 =
{︀
𝑠 ∈ [0, 𝜏 ] |

⃒⃒
𝑥(𝑠)− ̂︀𝑢(𝑠)

⃒⃒
> 𝜌(𝑥, ̂︀𝑢)

}︀
. Since 𝜇(𝐸) = 0,

we obtain 𝜇(𝐼) = 0 and this is why
⃒⃒
𝑥(ℎ(𝑡)) − ̂︀𝑢(ℎ(𝑡))

⃒⃒
6 𝜌(𝑥, ̂︀𝑢) for a.e. 𝑡 ∈ [0, 𝜏 ]. Taking into

consideration this inequality, by relation (3.26) we get:

𝑑 𝜃
(︀
𝑁𝑔𝑆ℎ𝑥, 𝑦

)︀
6 𝛽𝜌(𝑥, ̂︀𝑢).

Thus, (𝑥, 𝑦) ∈ Lip𝛽[𝑁𝑔𝑆ℎ; Sel(Ω)]. The proof is complete.

Corollary 2. Suppose we are given a multi-valued mapping Ω : [0, 𝜏 ]⇒ R. Assume that for
a.e. 𝑡 ∈ [0, 𝜏 ], the mapping 𝑔(𝑡, ·) : R → R𝜃 is 𝛽-Lipschtiz on the set Ω(ℎ(𝑡)), that is, for all
𝑥, 𝑢 ∈ Ω(ℎ(𝑡)), inequality (3.19) holds true. Then the operator 𝑁𝑔𝑆ℎ : S𝜃0 → S𝜃 defined by
relation (3.23) satisfies the belonging (𝑥, 𝑦) ∈ Lip𝛽[𝑁𝑔𝑆ℎ; Sel(Ω)] for all 𝑥 ∈ Sel(Ω), 𝑦 ∈ S𝜃,
that is, the operator 𝑁𝑔𝑆ℎ is a 𝛽-Lipschitz on the set Sel(Ω).

Example 5. Let a function 𝜃 : R × R → R+ be defined by formulae (3.10), (3.11), and a
function 𝑔2 : [0, 1] × R → R is defined by relation (3.21), where 𝛽 > 0 and 𝑝(𝑡) > 1/2 for a.e.
𝑡 ∈ [0, 1]. As it was shown in example 3, this function satisfies condition (3.19) for all 𝑥, 𝑢 ∈ R.
This is why, by Corollary 2, the composition

𝑁𝑔2𝑆ℎ : S𝜃0 → S𝜃, (𝑁𝑔2𝑆ℎ𝑥)(𝑡) = 𝛽
⃒⃒
𝑥(ℎ(𝑡))

⃒⃒
+ 𝑝(𝑡),

is a 𝛽-Lipschitz operator on entire space S.

We are going to apply the obtained statement to studying a functional equation with a
deviating variable. Suppose that we are given a function 𝑓 : [0, 𝜏 ] × R × R → R measurable
in the first variable and jointly continuous in the second and third variables, a function ℎ :
[0, 𝜏 ] → [0, 𝜏 ] obeying condition (3.22) and a measurable function ̂︀𝑦 : [0, 𝜏 ] → R. We consider
an equation

𝑓
(︀
𝑡, 𝑥(ℎ(𝑡)), 𝑥(𝑡)

)︀
= ̂︀𝑦(𝑡), 𝑡 ∈ [0, 𝜏 ], (3.27)

for an unknown measurable function 𝑥 : [0, 𝜏 ] → R.

For an arbitrary function 𝑣 ∈ S, we define functions 𝑔
[𝑣]
1 , 𝑔

[𝑣]
2 : [0, 𝜏 ] ×R→ R by relations

𝑔
[𝑣]
1 (𝑡, 𝑥) = 𝑓(𝑡, 𝑣(ℎ(𝑡)), 𝑥), 𝑔

[𝑣]
2 (𝑡, 𝑥) = 𝑓(𝑡, 𝑥, 𝑣(𝑡)), 𝑡 ∈ [0, 𝜏 ], 𝑥 ∈ R.

The functions 𝑔
[𝑣]
1 , 𝑔

[𝑣]
2 obviously satisfy the Caratheodory condition.
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Theorem 3.1. Suppose that we are given 𝛼 > 𝛽 > 0, 𝑥0 ∈ S such that

𝑅 :=
1

𝛼− 𝛽
vrai sup

𝑡∈[0,𝜏 ]
𝜃
(︀
𝑓(𝑡, 𝑥0(ℎ(𝑡)), 𝑥0(𝑡)), ̂︀𝑦(𝑡)

)︀
< ∞. (3.28)

Let for each 𝑣 ∈ 𝐵S𝜃0 (𝑥0, 𝑅), the function 𝑔
[𝑣]
1 satisfies condition (3.8) for each 𝑥 ∈ 𝐵S𝜃0 (𝑥0, 𝑅),

given 𝑦 = ̂︀𝑦 and Ω(𝑡) ≡ R, while the function 𝑔
[𝑣]
2 satisfies condition (3.25) with the same

functions 𝑥, 𝑦, but with another multi-valued mapping: Ω(𝑡) = 𝐵R(𝑥0(𝑡), 𝑅) for a.e. 𝑡 ∈ [0, 𝜏 ].
Then there exists a solution ̂︀𝑥 ∈ 𝐵S𝜃0 (𝑥0, 𝑅) to equation (3.27).

Proof. We denote by 𝑁𝑓 : S𝜃0 × S𝜃0 → 𝑆𝜃 the Nemytskii operator

(𝑁𝑓 (𝑥, 𝑢))(𝑡) = 𝑓(𝑡, 𝑢(𝑡), 𝑥(𝑡)), 𝑡 ∈ [0, 𝜏 ],

and we define the mappings

𝐹 : S𝜃0 × S𝜃0 → 𝑆𝜃, 𝐹 (𝑥, 𝑢) = 𝑁𝑓 (𝑥, 𝑆ℎ𝑢); 𝐺 : S𝜃0 → S𝜃, 𝐺(𝑥) = 𝐹 (𝑥, 𝑥).

We are going to prove that the mappings 𝐹 , 𝐺 are closed. We choose arbitrary sequences
{𝑥𝑖}, {𝑢𝑖} ⊂ S𝜃0 , elements 𝑥, 𝑢 ∈ S𝜃0 and 𝑤 ∈ S𝜃 satisfy 𝜌(𝑥𝑖, 𝑥) → 0, 𝜌(𝑢𝑖, 𝑢) → 0 and
𝑑 𝜃

(︀
𝐹 (𝑥𝑖, 𝑢𝑖), 𝑤

)︀
→ 0 as 𝑖 → ∞. Then, as it has been shown in the proof of Proposition 1, for

a.e. 𝑡 ∈ [0, 𝜏 ], the convergences hold: 𝑥𝑖(𝑡) → 𝑥(𝑡), 𝑢𝑖(𝑡) → 𝑢(𝑡) and (𝐹 (𝑥𝑖, 𝑢𝑖))(𝑡) → 𝑤(𝑡). By
the second relation, for a.e. 𝑡 ∈ [0, 𝜏 ] we have 𝑢𝑖(ℎ(𝑡)) → 𝑢(ℎ(𝑡)). This is why, by the continuity
of the function 𝑓(𝑡, ·, ·), for a.e. 𝑡 ∈ [0, 𝜏 ] we have 𝑓(𝑡, 𝑢𝑖(ℎ(𝑡)), 𝑥𝑖(𝑡)) → 𝑓(𝑡, 𝑢(ℎ(𝑡)), 𝑥(𝑡)).
Thus, (𝐹 (𝑥𝑖, 𝑢𝑖))(𝑡) → (𝐹 (𝑥, 𝑢))(𝑡) and (𝐹 (𝑥𝑖, 𝑢𝑖))(𝑡) → 𝑤(𝑡), and hence, (𝐹 (𝑥, 𝑢))(𝑡) = 𝑤(𝑡),
𝑡 ∈ [0, 𝜏 ]. We have proved that the mapping 𝐹 is closed and therefore, the mapping 𝐺 is also
closed.

For an arbitrary function 𝑣 ∈ 𝐵S𝜃0 (𝑥0, 𝑅), the operator 𝐹 (·, 𝑣) : S𝜃0 → S𝜃 is the Ne-

mytskii operator 𝑁
𝑔
[𝑣]
1

generated by the function 𝑔
[𝑣]
1 . This operator satisfies the assump-

tions of Proposition 2 with 𝑦 = ̂︀𝑦, arbitrary 𝑥 ∈ 𝐵S𝜃0 (𝑥0, 𝑅) and a multi-valued mapping
𝑡 ∈ [0, 𝜏 ] ↦→ Ω(𝑡) = R. According Proposition 2, for each 𝑥 ∈ 𝐵S𝜃0 (𝑥0, 𝑅), a pair (𝑥, ̂︀𝑦) belongs
to the set Cov𝛼[𝐹 (·, 𝑣);S]. Therefore, a pair (𝑣, ̂︀𝑦) also belongs to the set Cov𝛼[𝐹 (·, 𝑣);S].

The operator 𝐹 (𝑣, ·) : S𝜃0 → S𝜃 is a composition 𝑁
𝑔
[𝑣]
2
𝑆ℎ satisfying the assumptions of

Proposition 4 for 𝑦 = ̂︀𝑦, each 𝑥 ∈ 𝐵S𝜃0 (𝑥0, 𝑅) and a multi-valued mapping 𝑡 ∈ [0, 𝜏 ] ↦→
Ω(𝑡) = 𝐵R(𝑥0(𝑡), 𝑅). By Proposition 4, for each 𝑥 ∈ 𝐵S𝜃0 (𝑥0, 𝑅), we have (𝑥, ̂︀𝑦) ∈
Lip𝛽[𝐹 (𝑣, ·);𝐵S𝜃0 (𝑥0, 𝑅)]. Therefore, (𝑣, ̂︀𝑦) ∈ Lip𝛽[𝐹 (𝑢, ·);𝐵S𝜃0 (𝑥0, 𝑅)].

In conclusion we recall that the space S𝜃0 is complete. Thus, all assumptions of Theorem 2.1
are satisfied and according this theorem, there exists a solution ̂︀𝑥 ∈ 𝐵S𝜃0 (𝑥0, 𝑅) to equation
(3.27).

Remark 3. It is assumed in Theorem 3.1 that the function 𝑔
[𝑣]
2 satisfies condition (3.25),

where 𝑦 = ̂︀𝑦, 𝑥 ∈ 𝐵S𝜃0 (𝑥0, 𝑅) and Ω(𝑡) = 𝐵R(𝑥0(𝑡), 𝑅). According Corollary 2, to ensure

this condition, it is sufficient the mapping 𝑔
[𝑣]
2 (𝑡, ·) : R → R𝜃 to be 𝛽-Lipschitz on the set

[𝑥0(ℎ(𝑡)) −𝑅, 𝑥0(ℎ(𝑡)) + 𝑅] for a.e. 𝑡 ∈ [0, 𝜏 ].

Example 6. Suppose that we are given functions 𝑝, ̂︀𝑦 ∈ S+, 𝛾 > 0 and a function ℎ : [0, 1] →
[0, 1] obeying condition (3.22) with 𝜏 = 1. We consider the equation

𝑥2(𝑡)
(︀
𝑝(𝑡) + 𝛾𝑥(ℎ(𝑡))

)︀
= ̂︀𝑦(𝑡), 𝑡 ∈ [0, 1]. (3.29)

We are interesting in existence of a non-negative solution to this equation belonging to some
neighbourhood of the function 𝑥0(𝑡) ≡ 0 in the space S. The mappings

𝑥(·) ∈ S ↦→ 𝑥2(·) ∈ S, 𝑥(·) ∈ S ↦→ 𝑥(ℎ(𝑡)) ∈ S,
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involved in the left hand side of equation (3.29) are not 𝛼-coverging with respect to the usual
metrics 𝑑 𝜃0 in the space S for all 𝛼 > 0. Thus, we can not apply theorems on such mappings
to this equation. Let us demonstrate the abilities of Theorem 3.1 in studying equation (3.29).

We let

𝑅 = 2vrai sup
𝑡∈[0,1]

̂︀𝑦(𝑡). (3.30)

We are going to show that under the conditions

𝑝(𝑡) > 1 for a.e. 𝑡 ∈ [0, 1]; 2𝛾 𝑅 < 1 and 2𝛾 𝑅2 < 1,

equation (3.29) possesses a solution 𝑥 ∈ S+ such that 𝑥(𝑡) 6 𝑅 for a.e. on [0, 1].
We define an auxiliary equation

𝑥2(𝑡)
(︀
𝑝(𝑡) + 𝛾

⃒⃒
𝑥(ℎ(𝑡))

⃒⃒)︀
= ̂︀𝑦(𝑡), 𝑡 ∈ [0, 1]. (3.31)

For each solution 𝑥 ∈ S of equation (3.31), the function |𝑥(·)| is a solution of equation (3.29),
and by a solution 𝑥 ∈ S+ of equation (3.29) we obviously find a solution to equation (3.31).
Thus, the solvability of equations (3.29), (3.31) in S+ are equivalent, but the domain of the
function

𝑓(𝑡, 𝑥1, 𝑥2) = 𝑥2
2

(︀
𝑝(𝑡) + 𝛾|𝑥1

⃒⃒
)

is [0, 1] × R × R and this is why it is more convenient for us to study an auxiliary equation
(3.31).

We define a function 𝜃 : R × R → R+ by formula (3.10) and define the function 𝑑 𝜃 in the
space S.

For an arbitrary function 𝑣 ∈ S we define functions 𝑔
[𝑣]
1 , 𝑔

[𝑣]
2 : [0, 1] ×R→ R as

𝑔
[𝑣]
1 (𝑡, 𝑥) = 𝑥2

(︀
𝑝(𝑡) + 𝛾|𝑣(ℎ(𝑡))|

)︀
, 𝑔

[𝑣]
2 (𝑡, 𝑥) = 𝑣2(𝑡)

(︀
𝑝(𝑡) + 𝛾|𝑥|

)︀
.

We let 𝛼 = 1, 𝛽 = 1/2 and 𝑥0(𝑡) ≡ 0 on [0, 1]. The value 𝑅 calculated by formula (3.28)

coincides with (3.30). As it has been shown in Example 1, the function 𝑔
[𝑣]
1 satisfies condition

(3.8), in which Ω(𝑡) ≡ R, and 𝑥, 𝑦 ∈ S are arbitrary functions including the case 𝑥 ∈ 𝐵S𝜃0 (𝑥0, 𝑅)
and 𝑦 = ̂︀𝑦 is a given right hand side of equation (3.29).

According Example 3, the function 𝑔2(𝑡, 𝑥) = 𝑝(𝑡) + 𝛾|𝑥| satisfies condition (3.19) with
the coefficient 𝛾 for all 𝑥, 𝑢 ∈ R. It follows from inequalities (3.12), (3.13) that for each

𝑣 ∈ 𝐵S𝜃0 (𝑥0, 𝑅) the function 𝑔
[𝑣]
2 satisfies condition (3.19) with the coefficient

max
{︀
𝛾 𝑅2, 𝛾 𝑅

}︀
6

1

2
= 𝛽.

According Theorem 3.1, equation (3.31), and hence, equation (3.29), possesses a solution
𝑥 ∈ S+ such that 𝑥(𝑡) 6 𝑅 a.e. on [0, 1].

4. Cauchy problem for an implicit differential equation

In the space S = S([0, 𝜏 ],R), we select a subspace L = L([0, 𝜏 ],R) of Lebesgue summable
functions. This space with a distance 𝑑 𝜃 defined by formula (3.2) is denoted by L𝜃. The space
L𝜃0 is complete. We note that for each 𝑥 ∈ L, 𝑟 ∈ R+ we have 𝐵L𝜃0 (𝑥, 𝑟) = 𝐵S𝜃0 (𝑥, 𝑟). We
denote by AC = AC([0, 𝜏 ],R) the space of absolutely continuous functions 𝑥 : [0, 𝜏 ] → R having
a derivative 𝑥̇ ∈ L a.e. on [0, 𝜏 ].

Let a function ̂︀𝑦 : R+ → R be measurable, the function 𝑓 : R+×R×R→ R be measurable
with respect to the first variable and is jointly continuous with respect to the second and third
variables. We consider an implicit differential equation

𝑓
(︀
𝑡, 𝑥(𝑡), 𝑥̇(𝑡)

)︀
= ̂︀𝑦(𝑡), 𝑡 > 0. (4.1)
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Let 𝜏 > 0. A solution to equation (4.1) defined on [0, 𝜏 ] is a function 𝑥 ∈ AC([0, 𝜏 ],R)
satisfying this equation for a.e. 𝑡 ∈ [0, 𝜏 ]. We are going to obtain conditions on existence of
solution 𝑥 ∈ AC([0, 𝜏 ],R) to equation (4.1) satisfying the initial condition

𝑥(0) = 𝐴 (4.2)

for a given 𝐴 ∈ R.

For arbitrary functions 𝑣 ∈ AC([0, 𝜏 ],R) and 𝑤 ∈ L([0, 𝜏 ],R) we define the functions 𝑔
[𝑣]
1 , 𝑔

[𝑤]
2 :

[0, 𝜏 ] ×R→ R by the relations

𝑔
[𝑣]
1 (𝑡, 𝑥) = 𝑓(𝑡, 𝑣(𝑡), 𝑥), 𝑔

[𝑤]
2 (𝑡, 𝑥) = 𝑓(𝑡, 𝑥, 𝑤(𝑡)), 𝑡 ∈ [0, 𝜏 ], 𝑥 ∈ R.

Theorem 4.1. Suppose that we are given numbers 𝛼 > 0, 𝛽 > 0, 𝜏 > 0 such that 𝛽𝜏 < 𝛼
and a function 𝑥0 ∈ AC([0, 𝜏 ],R) satisfying condition (4.2). Let

𝑅 :=
1

𝛼− 𝛽𝜏
vrai sup

𝑡∈[0,𝜏 ]
𝜃
(︀
𝑓(𝑡, 𝑥0(𝑡), 𝑥̇0(𝑡)), ̂︀𝑦(𝑡)

)︀
< ∞. (4.3)

We define multi-valued mappings 𝑉, 𝑉̇ : [0, 𝜏 ]⇒ R by the relations

𝑉 (𝑡) = 𝐵R(𝑥0(𝑡), 𝑅𝑡), 𝑉̇ (𝑡) = 𝐵R(𝑥0(𝑡), 𝑅), 𝑡 ∈ [0, 𝜏 ]. (4.4)

Assume that for each absolutely continuous function 𝑣 ∈ Sel(𝑉 ), the function 𝑔
[𝑣]
1 satisfies

condition (3.8) for 𝑦 = ̂︀𝑦, all 𝑥 ∈ Sel(𝑉̇ ), Ω(𝑡) ≡ R and that for each 𝑤 ∈ Sel(𝑉̇ ) the function

𝑔
[𝑤]
2 satisfies condition (3.17) for 𝑦 = ̂︀𝑦, all absolutely continuous functions 𝑥 ∈ Sel(𝑉 ) and

Ω = 𝑉 . Then there exists a solution 𝑥 to problem (4.1), (4.2) defined on [0, 𝜏 ] such that
𝑥̇ ∈ 𝐵L𝜃0 (𝑥̇0, 𝑅).

Proof. We write problem (4.1), (4.2) as the equation

𝑓
(︀
𝑡, 𝐴 +

∫︁ 𝑡

0

𝑢(𝑠)𝑑𝑠, 𝑢(𝑡)
)︀

= ̂︀𝑦(𝑡), 𝑡 ∈ [0, 𝜏 ], (4.5)

for an unknown function 𝑢 = 𝑥̇ ∈ L([0, 𝜏 ]). We define a mapping

𝐹 : L𝜃0 × L𝜃0 → S𝜃, (𝐹 (𝑢, 𝑧))(𝑡) = 𝑓
(︀
𝑡, 𝐴 +

∫︁ 𝑡

0

𝑧(𝑠)𝑑𝑠, 𝑢(𝑡)
)︀
, 𝑡 ∈ [0, 𝜏 ],

and a mapping 𝐺 : L𝜃0 → S𝜃, 𝐺(𝑢) = 𝐹 (𝑢, 𝑢). Under such definition of the mapping 𝐺, equation
(4.5) becomes (2.1) and its solvability can be proved on the base of Theorem 2.1; we are going
to check the assumptions of this theorem.

We begin with proving the closedness of the mappings 𝐹 , 𝐺. Let for some {𝑢𝑖}, {𝑧𝑖} ⊂ L𝜃0 ,
𝑢, 𝑧 ∈ L𝜃0 and 𝑦 ∈ S𝜃 we have 𝜌(𝑢𝑖, 𝑢) → 0, 𝜌(𝑧𝑖, 𝑧) → 0 and 𝑑 𝜃

(︀
𝐹 (𝑢𝑖, 𝑧𝑖), 𝑦

)︀
→ 0. The

latter relation implies the convergence (𝐹 (𝑢𝑖, 𝑧𝑖))(𝑡) → 𝑦(𝑡) for a.e. 𝑡 ∈ [0, 𝜏 ], see the proof of

Proposition 1. By the second relation we obtain
∫︀ 𝑡

0
𝑧𝑖(𝑠)𝑑𝑠 →

∫︀ 𝑡

0
𝑧(𝑠)𝑑𝑠 for a.e. 𝑡 ∈ [0, 𝜏 ]. By

the continuity of the function 𝑓(𝑡, ·, ·), for a.e. 𝑡 ∈ [0, 𝜏 ] we have (𝐹 (𝑢𝑖, 𝑧𝑖))(𝑡) → (𝐹 (𝑢, 𝑧))(𝑡).
And since (𝐹 (𝑢𝑖, 𝑧𝑖))(𝑡) → 𝑦(𝑡), we obtain (𝐹 (𝑢, 𝑧))(𝑡) = 𝑦(𝑡), 𝑡 ∈ [0, 𝜏 ]. Thus, we have proved
that the mapping 𝐹 is closed and respectively, the mapping 𝐺 is also closed.

For an arbitrary function 𝑤 ∈ Sel(𝑉̇ ), the operator 𝐹 (·, 𝑤) : L𝜃0 → S𝜃 is the Nemytskii

operator 𝑁
𝑔
[𝑣]
1

generated by the function 𝑔
[𝑣]
1 , where 𝑣(𝑡) = 𝐴 +

∫︀ 𝑡

0
𝑤(𝑠)𝑑𝑠. It is obvious that

𝑣 ∈ Sel(𝑉 ) and 𝑣 ∈ AC([0, 𝜏 ],R). According our assumptions, the operator 𝑁
𝑔
[𝑣]
1

satisfies the

assumptions of Proposition 2 for 𝑦 = ̂︀𝑦, each 𝑥 ∈ Sel(𝑉̇ ) and Ω(𝑡) ≡ R. According Proposition 2,
the embedding Sel(𝑉̇ ) × {̂︀𝑦} ⊂ Cov𝛼[𝐹 (·, 𝑤);S] holds and therefore, (𝑤, ̂︀𝑦) ∈ Cov𝛼[𝐹 (·, 𝑤);S].

Now we consider the operator 𝐹 (𝑤, ·) : L𝜃0 → S𝜃, where 𝑤 is an arbitrary measurable section
of the multi-valued mapping 𝑉̇ . The operator 𝐹 (𝑤, ·) is a composition of the integral operator

𝐾 : L𝜃0 → L𝜃0 defined by the formula (𝐾𝑧)(𝑡) =
∫︀ 𝑡

0
𝑧(𝑠)𝑑𝑠 and the Nemytskii operator 𝑁

𝑔
[𝑤]
2

:
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L𝜃0 → S𝜃 generated by the function 𝑔
[𝑤]
2 . The operator 𝐾 with the coefficient 𝜏 on the set Sel(𝑉̇ )

and 𝐾(Sel(𝑉̇ )) ⊂ AC∩Sel(𝑉 ). The function 𝑔
[𝑤]
2 satisfies the assumptions of Proposition 3 with

𝑦 = ̂︀𝑦, each 𝑥 ∈ AC∩Sel(𝑉 ) and Ω = 𝑉. Hence, by Proposition 3, for each 𝑥 ∈ AC∩Sel(𝑉 ) we
have (𝑥, ̂︀𝑦) ∈ Lip𝛽[𝑁

𝑔
[𝑤]
2

; Sel(𝑉 )]. Therefore, (𝑧, ̂︀𝑦) ∈ Lip𝛽𝜏 [𝑁
𝑔
[𝑤]
2
𝐾; Sel(𝑉̇ )] for each 𝑧 ∈ Sel(𝑉̇ ).

Thus, Sel(𝑉̇ ) × ̂︀𝑦 ⊂ Lip𝛽𝜏 [𝑁
𝑔
[𝑤]
2
𝐾; Sel(𝑉̇ )], and hence, (𝑤, ̂︀𝑦) ∈ Lip𝛽𝜏 [𝑁

𝑔
[𝑤]
2
𝐾; Sel(𝑉̇ )].

Hence, equation (4.5) satisfies the assumptions of Theorem 2.1 and this is why this equation
possesses a solution ̂︀𝑢 ∈ Sel(𝑉̇ ) = 𝐵L𝜃0 (𝑥̇0, 𝑅). Hence, there exists a solution 𝑥 to problem
(4.1), (4.2) defined on [0, 𝜏 ] such that 𝑥̇ ∈ 𝐵L𝜃0 (𝑥̇0, 𝑅).

Example 7. Suppose that we are given measurable non-negative functions 𝑝, ̂︀𝑦 : R+ → R+

and a number 𝛾 > 0. We assume that 𝑝(𝑡) > 1 for a.e. 𝑡 > 0. We consider a differential equation

𝑥̇2(𝑡)
(︀
𝑝(𝑡) + 𝛾|𝑥(𝑡)|

)︀
= ̂︀𝑦(𝑡), 𝑡 > 0. (4.6)

We let

𝑅 := 2vrai sup
𝑡∈[0,1]

̂︀𝑦(𝑡). (4.7)

We are going to show that for each 𝜏 > 0 such that

2𝛾 𝑅𝜏 < 1, 2𝛾 𝑅2𝜏 < 1, (4.8)

there exists a solution 𝑥 to equation (4.6) defined on [0, 𝜏 ] obeying initial condition 𝑥(0) = 0
such that |𝑥̇(𝑡)| 6 𝑅 for a.e. 𝑡 ∈ [0, 𝜏 ].

We fix and arbitrary 𝜏 > 0 satisfying inequalities (4.8). We define a function 𝜃 : R×R→ R+

by formula (3.10) and an appropriate distance 𝑑 𝜃 in the space S. For arbitrary functions 𝑣 ∈ AC
and 𝑤 ∈ L we define functions 𝑔

[𝑣]
1 , 𝑔

[𝑤]
2 : [0, 𝜏 ] ×R→ R by the relations

𝑔
[𝑣]
1 (𝑡, 𝑥) = 𝑥2

(︀
𝑝(𝑡) + 𝛾|𝑣(𝑡)|

)︀
, 𝑔

[𝑤]
2 (𝑡, 𝑥) = 𝑤2(𝑡)

(︀
𝑝(𝑡) + 𝛾|𝑥|

)︀
, 𝑡 ∈ [0, 𝜏 ], 𝑥 ∈ R.

We let 𝑥0(𝑡) ≡ 0 on [0, 𝜏 ]. We define multi-valued mappings 𝑉, 𝑉̇ : [0, 𝜏 ]⇒ R by formulae (4.4).

For each function 𝑣 ∈ AC, including 𝑣 ∈ Sel(𝑉 )∩AC, the function 𝑔
[𝑣]
1 satisfies condition (3.8)

with the coefficient 𝛼 = 1 for each 𝑥, 𝑦 ∈ 𝑆, including 𝑦 = ̂︀𝑦 and 𝑥 ∈ Sel(𝑉̇ ), and Ω(𝑡) ≡ R, see

Example 6. For each 𝑤 ∈ Sel(𝑉̇ ), the function 𝑔
[𝑤]
2 satisfies Condition (3.17) with the coefficient

𝛽 = max{𝛾𝑅, 𝛾𝑅2} for 𝑦 = ̂︀𝑦, all absolutely continuous functions 𝑥 ∈ Sel(𝑉 ) and Ω = 𝑉 , see
Example 6.

By inequalities (4.8) we have 𝛽 6 (2𝜏)−1. Thus, 𝛼 − 𝛽𝜏 > 2−1. Therefore, the value 𝑅
calculated by formula (4.7) does not exceed value (4.3). In accordance with Theorem 4.1, there
exists a solution 𝑥 to equation (4.6) defined on [0, 𝜏 ] such that 𝑥(0) = 0 and |𝑥̇(𝑡)| 6 𝑅 a.e. on
[0, 𝜏 ].
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