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INVERSE SPECTRAL PROBLEM FOR STURM-LIOUVILLE

OPERATOR WITH PRESCRIBED PARTIAL TRACE

N.F. VALEEV, Y.Sh. ILYASOV

Abstract. This work is aimed at studying optimization inverse spectral problems with a
so-called incomplete spectral data. As incomplete spectral data, the partial traces of the
Sturm-Liouville operator serve. We study the following formulation of the inverse spectral
problem with incomplete data (optimization problem): find a potential 𝑉 closest to a given

function 𝑉0 such that a partial trace of the Sturm-Liouville operator with the potential 𝑉
has a prescribed value. As a main result, we prove the existence and uniqueness theorem for
solutions of this optimization inverse spectral problem. A new type of relationship between
linear spectral problems and systems of nonlinear differential equations is established. This
allows us to find a solution to the inverse optimal spectral problem by solving a boundary
value problem for a system of nonlinear differential equations and to obtain a solvability of
the system of nonlinear differential equations. To prove the uniqueness of solutions, we use
the convexity property of the partial trace of the Sturm-Liouville operator with the potential
𝑉 ; the trace is treated as a functional of the potential 𝑉 . We obtain a new generalization
of the Lidskii-Wielandt inequality to arbitrary self-adjoint semi-bounded operators with a
discrete spectrum.
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1. Introduction

We consider an eigenvalue Sturm-Liouville problem

ℒ0[𝑉 ]𝜓 := −𝜓′′ + 𝑉 𝜓 = 𝜆𝜓 (1)

on an interval (0, 𝑙) subject to the Dirichlet condition

𝜓(0) = 𝜓(𝑙) = 0. (2)

It is well-known that if a real-valued potential 𝑉 belongs to 𝐿2(0, 𝑙), then the differential
expression ℒ0[𝑉 ] and boundary conditions (2) define an self-adjoint differential operator in the
Hilbert space 𝐿2(0, 𝑙), see, for instance, [7], [26]. We denote this operator by ℒ[𝑉 ]. The spectrum
of the operator ℒ[𝑉 ] is discrete and consists in a sequence of eigenvalues 𝜎(ℒ[𝑉 ]) := {𝜆𝑖(𝑉 )}∞𝑖=1.
We arrange these eigenvalues in the ascending order: 𝜆1(𝑉 ) < 𝜆2(𝑉 ) < . . ..

The present work is aimed on studying inverse spectral problems with so-called incomplete
spectral data, see, for instance, [20], [16], [22].

An inverse spectral problem on recovering the potential 𝑉 (𝑥) by given spectral data 𝜆𝑖(𝑉 )∞𝑖=1,
the study of which was initiated in famous works by Ambarzumian [1] in 1929, Borg [4] in 1946,
Gelfand and Levitan [10] in 1951, is one of the central places in the theory of inverse problems.
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Nowadays, there is a huge amount of literature on this subject but the interest to this problem
is still high, see, for instance, [17].

In general, various formulations of inverse spectral problems come from many natural origins:
mathematical physics, quantum mechanics, optics, mechanics, engineering sciences as well as
various fields in mathematics, see, for instance, [22], [9], [6]. Despite on an obvious topicality,
many of these problems remains unsolved.

It is well-known that an inverse spectral problem with incomplete spectral data, for instance,
once only finitely many eigenvalues {𝜆𝑖(𝑉 )}𝑚𝑖=1 are known possesses infinitely many solutions
and is ill-posed, see, for instance, [4], [10]. However, such problems arise in various applications
and this motivate the studying of them. One of the issue generating such problems is that
it is impossible to measure a complete system of spectral data, for instance, in problems on
diagnosing and identification of objects. In problems on constructing a linear dynamical system
closest to a standard system by prescribed frequency-resonance properties, one do not need to
consider entire range of frequency-resonance characteristics. The said above explains the inter-
est to studying new rich in content formulations of inverse spectral problems with incomplete
data.

In the present work, as incomplete spectral data we consider a sum of the following form:

Λ(𝑉, 𝑘) =
𝑘∑︁

𝑖=1

𝜆𝑖(𝑉 ),

which we call a 𝑘th partial trace of an operator ℒ[𝑉 ]. We study the following optimization
inverse spectral problem with incomplete spectral data for the Sturm-Liouville operator:

(𝒫𝒢𝑚): Given a real number Λ𝑚 and a function 𝑉0(𝑥) ∈ 𝐿2(0, 𝑙), find a potential 𝑉 (𝑥) ∈
𝐿2(0, 𝑙) such that

∙ Λ(𝑉,𝑚) =
𝑚∑︁
𝑖=1

𝜆𝑖(𝑉 ) = Λ𝑚,

∙ ‖𝑉0 − 𝑉 ‖2𝐿2 = min
𝑉 ∈𝐿2

{︃
‖𝑉0 − 𝑉 ‖2𝐿2 :

𝑚∑︁
𝑖=1

𝜆𝑖(𝑉 ) = Λ𝑚

}︃
. (3)

The main result of the present work establishes that the solution to the above optimization
inverse spectral problem 𝒫𝒢𝑚 is expressed via a solution of the following boundary value
problem for a system of nonlinear differential equations:⎧⎪⎨⎪⎩− 𝑢′′𝑖 + 𝑉0𝑢𝑖 = 𝜆̄𝑖𝑢𝑖 −

𝑚∑︁
𝑗=1

𝑢2𝑗𝑢𝑖, 𝑖 = 1, 2, . . . ,𝑚,

𝑢𝑖(0) = 𝑢𝑖(𝑙) = 0, 𝑖 = 1, 2, . . . ,𝑚;

(4)

where 0 < 𝑙 < +∞. For this system we pose a problem on finding ordered set of numbers
𝜆̄1, . . . , 𝜆̄𝑚 and systems of functions (𝑢1, . . . , 𝑢𝑚) ∈ (𝐶2(0, 𝑙) ∩ 𝐶1[0, 𝑙])𝑚.

Our first result states the unique solvability of the optimization inverse spectral problem
𝒫𝒢𝑚.

Theorem 1.1. Let Λ𝑚 ∈ R and 𝑉0 ∈ 𝐿2 be given and 𝑚 > 1. Then
(1𝑜) Problem (𝒫𝒢𝑚) possesses a unique solution 𝑉 ∈ 𝐿2(0, 𝑙);
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(2𝑜) If
𝑚∑︀
𝑖=1

𝜆𝑖(𝑉0) < Λ𝑚, then 𝑉 ̸= 𝑉0. Moreover, the function 𝑉 is expressed via the unique

solution (𝜆̄, 𝑢̄) of system of equations (4), namely,

𝑉 = 𝑉0 +
𝑚∑︁
𝑖=1

𝑢̄2𝑖 a.e. in (0, 𝑙). (5)

Our second theorem establishes the existence and uniqueness of solution to nonlinear bound-
ary value problem (4).

Theorem 1.2. Assume that we are given an arbitrary number Λ𝑚 ∈ R and a potential

𝑉0 ∈ 𝐿2(0, 𝑙) and let
𝑚∑︀
𝑖=1

𝜆𝑖(𝑉0) < Λ𝑚. Then there exists a unique set of numbers 𝜆̄1, . . . , 𝜆̄𝑚

taken in the increasing order

𝜆̄1 < . . . < 𝜆̄𝑚 and
∑︁

𝑖 = 1𝑚𝜆̄𝑖 = Λ𝑚

such that system of equations (4) has a unique non-zero solution (𝑢1, . . . , 𝑢𝑚) ∈ (𝐶2(0, 𝑙) ∩
𝐶1[0, 𝑙])𝑚. Moreover, each function 𝑢𝑖(𝑥), 𝑖 = 1, . . . ,𝑚, on the interval (0, 𝑙) has exactly (𝑖−1)
zeroes.

We observe that both these statements are of a dual nature: the solvability of system of
equations implies the solvability of problem (𝒫𝒢𝑚) and vice versa, a constructive solving of
problem (𝒫𝒢𝑚) is reduced to system of equations (4). We also mention that each of the
formulated problem is of an independent interest. In particular, such problems arise in the
multi-spectral operator theory, see, for instance, [2]. A one-parametric optimization inverse
spectral problem (𝒫𝒢𝑚), that is, as 𝑚 = 1, was studied in works [15], [20], [15], including the
case of an 𝑁 -dimensional Schrödinger equation.

The existence of solution to an equation similar to (4) with 𝑚 = 1 was studied in [21], [27],
[11], [18]. In these works the nonlinear equation was obtained while studying a so-called dual
problem on finding extremal eigenvalues in a ball. However, we do not know whether it is
possible to obtain a system of nonlinear equation of form (4) with 𝑚 > 1 on the base of the
duality approach.

It should also be said that in the framework of quantum mechanical models, the formulation
of problem (𝒫𝒢𝑚) has a certain physical meaning, namely, we need to find a potential 𝑉 (𝑥)
closest to a standard potential 𝑉0(𝑥) so that the total energy of the first 𝑚 bound states of
system is equal to a given value Λ𝑚, see, for instance, [22].

2. Auxiliary statements and results

2.1. In this subsection we prove an inequality for 𝑚-partial traces Λ(𝑉,𝑚) =
𝑚∑︀
𝑖=1

𝜆𝑖(𝑉 ) of the

operator ℒ[𝑉 ]. This inequality is a key ingredient in the proof of the uniqueness of solution to
problem (𝒫𝒢𝑚).

Suppose that for 0 6 𝛼 6 1 we are given a family of operators ℒ[𝛼𝑉1 + (1 − 𝛼)𝑉2], 𝑉1, 𝑉2 ∈
𝐿2(0, 𝑙). For each 𝛼 ∈ [0, 𝑙], the eigenvalues of the family of operators ℒ[𝛼𝑉1 + (1 − 𝛼)𝑉2] are
taken in the increasing order

𝜆1(𝛼𝑉1 + (1 − 𝛼)𝑉2) < 𝜆2(𝛼𝑉1 + (1 − 𝛼)𝑉2) < . . . < 𝜆𝑚(𝛼𝑉1 + (1 − 𝛼)𝑉2) . . .

The aim of the present subsection is to prove the following inequality:

𝛼Λ(𝑉1,𝑚) + (1 − 𝛼)Λ(𝑉2,𝑚) 6 Λ(𝛼𝑉1 + (1 − 𝛼)𝑉2,𝑚) (6)

for a fixed 1 6 𝑚.
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We reformulate and prove this inequality on a convexity of the partial sum of the eigenvalue
in a more general situation, namely, for lower-bounded operators with a discrete spectrum.

Let 𝐴 be Hermitian matrices on R𝑟. We denote by {𝜆𝑖(𝐴)}𝑟𝑖=1 the set of the eigenvalues of
𝐴 taken in the increasing order:

𝜆1(𝐴) 6 𝜆2(𝐴) 6 . . . 6 𝜆𝑟(𝐴).

The following theorem on the convexity of partial traces is known.

Theorem (Lidskii-Wielandt inequality). Let 𝐴, 𝐵 be symmetric matrices acting in Eu-
clidean space E𝑟. Then for all 1 6 𝑚 6 𝑟 the inequality holds:

𝑚∑︁
𝑖=1

𝜆𝑖(𝐴+𝐵) >
𝑚∑︁
𝑖=1

𝜆𝑖(𝐴) +
𝑚∑︁
𝑖=1

𝜆𝑖(𝐵)

We note that this known inequality was independently rediscovered and generalized by many
authors, see, for instance, [14], [13], [12], [3]. Nevertheless, we do not know a generalization of
this inequality for self-adjoint lower-semibounded operators with a discrete spectrum. To give
a complete picture, we provide our original proof of the above inequality. The main difficulty
comes from the unboundedness of the operator and the multiplicity of its eigenvalues.

In a separable Hilbert space 𝐻 we consider a linear operator 𝐴 on a dense domain 𝐷(𝐴) ⊂ 𝐻
such that:

(a) 𝐴 is self-adjoint and lower-semibounded; without loss of generality we suppose that 𝐴 is
strictly positive with a lower bound 𝑐0 > 0;
(b) the spectrum of the operator 𝐴 is discrete and consists in an infinite series of eigenvalues
𝑐0 = 𝜆1(𝐴) 6 𝜆2(𝐴) 6 . . .;

Let 𝐷𝑚 be the Cartesian product of 𝑚 copies of 𝐷(𝐴) so that

𝐷𝑚 = 𝐷(𝐴) ×𝐷(𝐴) ×𝐷(𝐴) × . . .×𝐷(𝐴);

the elements of the set 𝐷𝑚 are denoted by Φ = (𝜑1, 𝜑2, . . . , 𝜑𝑚). We introduce a functional

𝑓 : 𝐷𝑚 ↦→ R,

acting by the rule

𝑓(Φ) = 𝑓(𝜑1, 𝜑2, . . . , 𝜑𝑚) =
𝑚∑︁
𝑗=1

(𝐴
1
2𝜑𝑗, 𝐴

1
2𝜑𝑗), 𝜑𝑗 ∈ 𝐷(𝐴). (7)

In 𝐷𝑚, we define a manifold:

S𝑚 =
{︀

(𝜑1, 𝜑2, . . . , 𝜑𝑚) ∈ 𝐷𝑚 | (𝜑𝑘, 𝜑𝑗) = 𝛿𝑗𝑘, 𝑘, 𝑗 = 1, . . . ,𝑚
}︀
. (8)

Now we consider the minimization problem for the functional 𝑓 = 𝑓(Φ): find a minimum of
the functional 𝑓 = 𝑓(Φ) = 𝑓(𝜑1, 𝜑2, . . . , 𝜑𝑚) on the manifold S𝑚.

The following statement holds true.

Lemma 2.1. The minimization problem

Φ* = arg min
Φ∈S𝑚

𝑓(𝜑1, 𝜑2, . . . , 𝜑𝑚)

possesses a unique solution Φ* = (𝜑*
1, 𝜑

*
2, . . . , 𝜑

*
𝑚) ∈ S𝑚. Moreover,

min
Φ∈S𝑚

𝑓(Φ) = 𝑓(Φ*) = 𝜆1(𝐴) + 𝜆2(𝐴) + . . .+ 𝜆𝑚(𝐴).
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Proof. The functional

𝑓(𝜑1, 𝜑2, . . . , 𝜑𝑚) =
𝑚∑︁
𝑗=1

(𝐴
1
2𝜑𝑗, 𝐴

1
2𝜑𝑗)

is bounded from below on the manifold S𝑚 since the operator 𝐴 is lower-semibounded. There-
fore, there exists a minimizing sequence Φ𝑗 = (𝜑𝑗

1, 𝜑
𝑗
2, . . . , 𝜑

𝑗
𝑚) ∈ S𝑚. We are going to show that

the set {Φ𝑗}∞𝑗=1 is compact in the space 𝐻.
We equip the linear manifold 𝐷(𝐴) with the scalar product

(𝑢, 𝑣)𝐻𝐴
= (𝐴

1
2𝑢,𝐴

1
2𝑣), 𝑢, 𝑣 ∈ 𝐷(𝐴)

Closing 𝐷(𝐴) with respect to the norm ‖ · ‖𝐻𝐴
, we obtain a new Hilbert space 𝐻𝐴. Then we

extend the functional

𝑓(𝜑1, 𝜑2, . . . , 𝜑𝑚) =
𝑚∑︁
𝑘=1

(𝐴
1
2𝜑𝑘, 𝐴

1
2𝜑𝑘), 𝜑𝑘 ∈ 𝐷(𝐴)

on the entire space 𝐻𝐴.
Since the operator 𝐴−1 is compact and 𝑓(Φ𝑗) → minΦ∈S𝑚 𝑓(Φ), the sets {𝜑𝑗

𝑘}∞𝑗=1 are bounded

in the space 𝐻𝐴. This yields that each set {𝜑𝑗
𝑘}∞𝑗=1 is compact in the space 𝐻, 𝑘 = 1, 2, . . . ,𝑚.

Hence, the sequence {Φ𝑗}∞𝑗=1 contains a subsequence converging to some

Φ* = (𝜑*
1, 𝜑

*
2, . . . , 𝜑

*
𝑚) ∈ 𝐻 ×𝐻 ×𝐻 . . .×𝐻.

We are going to show that each of 𝜑*
1, 𝜑

*
2, . . . , 𝜑

*
𝑚 belongs to the Hilbert space 𝐻𝐴. In order to

do this, we observe that the corresponding sequences {𝜑𝑗
1}∞𝑗=1, {𝜑

𝑗
1}∞𝑗=1, . . . , {𝜑𝑗

𝑚}∞𝑗=1 are bounded
in 𝐻𝐴. Now we are going to apply the following statement, see Thm. 1.16 in [8]:

Let 𝑓 [𝜑] = (𝐴
1
2𝜑,𝐴

1
2𝜑) be a closed sectorial form. Let 𝜑𝑗 ∈ 𝐷(𝑓), 𝜑𝑗 → 𝜑* and the sequence

𝑓 [𝜑𝑗] be bounded. Then 𝜑* ∈ 𝐷(𝑓).
This statement implies that 𝜑*

𝑘 ∈ 𝐻𝐴 for each 𝑘 = 1, . . .𝑚. And since

(𝜑*
𝑘, 𝜑

*
𝑗) = 𝛿𝑗𝑘, 𝑘, 𝑗 = 1, . . . ,𝑚,

then Φ* = (𝜑*
1, 𝜑

*
2, . . . , 𝜑

*
𝑚) ∈ S𝑚, where S𝑚 is the closure of S𝑚 in the space 𝐻𝐴.

Thus, the functional ; 𝑓(𝜑1, 𝜑2, . . . , 𝜑𝑚) =
𝑚∑︀
𝑗=1

(𝐴
1
2𝜑𝑗, 𝐴

1
2𝜑𝑗) attains its minimum at some point

Φ* = (𝜑*
1, 𝜑

*
2, . . . , 𝜑

*
𝑚) ∈ S𝑚. We observe that 𝑓(𝜑1, 𝜑2, . . . , 𝜑𝑚) is differentiable in 𝐻𝐴 in thee

Fréchet sense.
We consider a Lagrange functional:

𝐹 (𝜑1, 𝜑2, . . . , 𝜑𝑚) =
𝑚∑︁
𝑗=1

(𝐴
1
2𝜑𝑗, 𝐴

1
2𝜑𝑗) −

𝑚∑︁
𝑘=1

𝑚∑︁
𝑗=1

𝜎𝑘,𝑗((𝜑𝑘, 𝜑𝑗) − 𝛿𝑗𝑘) (9)

The functional 𝐹 (𝜑1, 𝜑2, . . . , 𝜑𝑚) is defined on entire space 𝐻𝐴 and is differentiable in the
Fréchet sense at the point Φ* = (𝜑*

1, 𝜑
*
2, . . . , 𝜑

*
𝑚) ∈ S𝑚. Therefore,

𝐴
1
2𝜑*

𝑘 −
𝑚∑︁
𝑗=1

𝜎𝑘,𝑗𝐴
− 1

2𝜑*
𝑗 = 0, 𝑘 = 1, . . . ,𝑚. (10)

It is easy to see that system of equations (10) implies that 𝜑*
1, 𝜑

*
2, . . . , 𝜑

*
𝑚 ∈ 𝐷(𝐴).

Let 𝐻Φ* be a linear subspace 𝐻𝐴 formed by the elements 𝜑*
1, 𝜑

*
2, . . . , 𝜑

*
𝑚 and 𝑃 be the or-

thogonal projector on the subspace 𝐻Φ* , then 𝐼 − 𝑃 is the orthogonal projector on 𝐻⊥
Φ* . It is

obvious that 𝐻Φ* ⊕𝐻⊥
Φ* = 𝐻.
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Then it follows from system of equations (10) that 𝐻Φ* amd 𝐻⊥
Φ* are invariant subspaces of

the operator 𝐴, namely,

𝐴 : 𝐻Φ* → 𝐻Φ* , 𝐴 : 𝐻⊥
Φ* ∩𝐷(𝐴) → 𝐻⊥

Φ*

We denote:

𝐴11 = 𝑃𝐴𝑃, 𝐴22 = (𝐼 + 𝑃 )𝐴(𝐼 + 𝑃 ), 𝐴21 = (𝐼 + 𝑃 )𝐴𝑃, 𝐴12 = 𝑃𝐴(𝐼 + 𝑃 ).

We observe that

𝐴21 = 𝐴12 = 0 and 𝐴11𝐴22 = 0

and this implies immediately that 𝐴 = 𝐴11 + 𝐴22. Therefore, there exists an orthonormalized
basis

{𝜑*
1, 𝜑

*
2, . . . , 𝜑

*
𝑚, 𝜑𝑚+1, . . . , 𝜑𝑛, . . .} ⊂ 𝐷(𝐴),

in which the operator 𝐴 has a block structure:

𝐴 =

(︂
𝐴11 0

0 𝐴22

)︂
, (11)

where 𝐴11 is a finite-dimensional operator-matrix of size 𝑚×𝑚.
The eigenvalues of the matrix 𝐴11 are equal to some 𝑚 eigenvalues of the operator 𝐴, which

we arrange in the ascending order counting their multiplicities and we denote them as

𝜆𝑗1(𝐴) 6 𝜆𝑗2(𝐴) 6 . . . 6 𝜆𝑗𝑚(𝐴).

Then, on one hand,

Λ(𝐴11,𝑚) =
𝑚∑︁
𝑗=1

(𝐴
1
2𝜑*

𝑗 , 𝐴
1
2𝜑*

𝑗),

while at the other we have

Λ(𝐴11,𝑚) = 𝜆𝑗1(𝐴) + 𝜆𝑗2(𝐴) + . . .+ 𝜆𝑗𝑚(𝐴).

Let

𝜆1(𝐴) 6 𝜆2(𝐴) 6 . . . 6 𝜆𝑚(𝐴)

be some first 𝑚 eigenvalues of the operator 𝐴 taken in the ascending order counting their
multiplicities and 𝜓1, 𝜓2, . . . , 𝜓𝑚 be the associated eigenvectors of the operator 𝐴 belonging to
the manifold S𝑚. Then we can write the inequality:

min
Φ∈S𝑚

𝑓(Φ) =
𝑚∑︁
𝑗=1

(𝐴
1
2𝜑*

𝑗 , 𝐴
1
2𝜑*

𝑗)

=𝜆𝑗1(𝐴) + 𝜆𝑗2(𝐴) + . . .+ 𝜆𝑗𝑚(𝐴) > 𝜆1(𝐴) + 𝜆2(𝐴) + . . .+ 𝜆𝑚(𝐴)

=
𝑚∑︁
𝑗=1

(𝐴
1
2𝜓*

𝑗 , 𝐴
1
2𝜓*

𝑗 ).

(12)

It follows from inequality (12) that

min
Φ∈S𝑚

𝑓(Φ) =
𝑚∑︁
𝑗=1

(𝐴
1
2𝜑*

𝑗 , 𝐴
1
2𝜑*

𝑗) = 𝜆1(𝐴) + 𝜆2(𝐴) + . . .+ 𝜆𝑚(𝐴).

This complete the proof.
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We return back to proving inequality (6). We see that the operator family

ℒ[𝛼𝑉1 + (1 − 𝛼)𝑉2], 𝑉1, 𝑉2 ∈ 𝐿𝑝(0, 𝑙),

is uniformly lower-semibounded for all 0 6 𝛼 6 1, which is implied by the following statement,
see Corollary 2 in [16].

Lemma 2.2. Let 𝐵 be a bounded set of the functions in 𝐿2(0, 𝑙), then the smallest eigenvalue
of the operator— ℒ[𝑉 ] is uniformly bounded from below:

𝜆1(𝑉 ) > 𝜇 > −∞ for all 𝑉 ∈ 𝐵,

where 𝜇 is independent of 𝑉 ∈ 𝐵.

Therefore, we can apply the results of Lemma 2.1 to the considered operator family. Then
we obtain:

Λ(𝛼𝑉1 + (1 − 𝛼)𝑉2,𝑚) =
𝑚∑︁
𝑗=1

𝜆𝑗(𝛼𝑉1 + (1 − 𝛼)𝑉2) = min
Φ∈S𝑚

𝑓(Φ)

= min
Φ∈S𝑚

𝑚∑︁
𝑗=1

(ℒ[𝛼𝑉1 + (1 − 𝛼)𝑉2]𝜑𝑗, 𝜑𝑗)

=
𝑚∑︁
𝑗=1

(ℒ[𝛼𝑉1 + (1 − 𝛼)𝑉2]𝜑
*
𝑗 , 𝜑

*
𝑗)

=𝛼
𝑚∑︁
𝑗=1

(ℒ[𝑉1]𝜑
*
𝑗 , 𝜑

*
𝑗) + (1 − 𝛼)

𝑚∑︁
𝑗=1

(ℒ[𝑉2]𝜑
*
𝑗 , 𝜑

*
𝑗)

>𝛼 min
Ψ∈S𝑚

𝑚∑︁
𝑗=1

(ℒ[𝑉1]𝜓𝑗, 𝜓𝑗) + (1 − 𝛼) min
Ψ∈S𝑚

𝑚∑︁
𝑗=1

(ℒ[𝑉2]𝜓𝑗, 𝜓𝑗)

=𝛼
𝑚∑︁
𝑗=1

𝜆𝑗(𝑉1) + (1 − 𝛼)
𝑚∑︁
𝑗=1

𝜆𝑗(𝑉2))

=𝛼Λ(𝑉1,𝑚) + (1 − 𝛼)Λ(𝑉2,𝑚)

This proves inequality (6).
2.2. In this subsection we study the smoothness of the functional Λ(·,𝑚) : 𝐿2(0, 𝑙) → R.

Lemma 2.3. For each 𝑚 > 1 the functional Λ(·,𝑚) : 𝐿2(0, 𝑙) → R is continuously differen-
tiable in the Fréchet sense. The Fréchet differential of the functional Λ(𝑉,𝑚) can be represented
as

𝐷𝑉 [Λ(𝑉,𝑚)](ℎ) =
𝑚∑︁
𝑗=1

(𝜑2
𝑗(𝑉 ), ℎ)

‖𝜑𝑗(𝑉 )‖2
∀ℎ(𝑥) ∈ 𝐿2. (13)

Proof. The eigenvalues of the operator ℒ[𝑉 ] are simple and this is why it follows from Corol-
lary 4.2 in [17] that each eigenvalue 𝜆𝑘(𝑉 ) is differentiable in the Fréchet sense and

𝐷𝑉 [𝜆𝑘(𝑉 )](ℎ) =
1

‖𝜑𝑘(𝑉 )‖2𝐿2

∫︁ 𝑙

0

𝜑2
𝑘(𝑉 )ℎ 𝑑𝑥, ∀𝑉, ℎ ∈ 𝐿2(0, 𝑙). (14)

This implies immediately formula (13). Now we are going to show that a linear functional
𝐷𝑉 [Λ(𝑉,𝑚)](ℎ) is continuous in 𝑉 ∈ 𝐿2(0, 𝑙). In order to do this, we observe that by the
analyticity property [19] the mapping 𝜑𝑘(·) : 𝐿2(0, 𝑙) → 𝑊 2,2(0, 𝐿) is continuous, and in fact,
even analytic.
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By the Sobolev embedding theorem, the embedding 𝑊 2,2(0, 𝑙) ⊂ 𝐿4(0, 𝑙) is continuous. Then
the mapping 𝜑𝑘(·) : 𝐿2(0, 𝑙) → 𝐿4(0, 𝑙) is also continuous and therefore, the norm of the
derivative of the functional 𝐷𝑉 [Λ(𝑉,𝑚)] depends continuously on 𝑉 ∈ 𝐿2(0, 𝑙). This implies
that the functional Λ(𝑉,𝑚) in continuously differentiable in the Fréchet sense in 𝐿2(0, 𝑙).

3. Proof of Theorems 1.1 and 1.2

We introduce a set

𝑀𝑚 := {𝑉 ∈ 𝐿2 : Λ𝑚 6
𝑘∑︁

𝑖=1

𝜆𝑖(𝑉 )}

and consider the following minimization problem:

𝑃 = min{𝜌(𝑉 ) := ‖𝑉0 − 𝑉 ‖2𝐿2 : 𝑉 ∈𝑀𝑚}. (15)

It is obvious that the set 𝑀𝑚 is non-empty and it follows from inequality (6) that 𝑀𝑚 is a
convex set. The coercitivity of distance functional 𝜌(·) : 𝐿2 → R implies the existence of the

minimizer 𝑉 ∈ 𝑀𝑚 for problem (15). A strict inequality
𝑚∑︀
𝑖=1

𝜆𝑖(𝑉0) < Λ𝑚 yields that 𝑉 ̸= 𝑉0.

The convexity of the set 𝑀𝑚 and of the distance functional 𝜌(𝑉 ) ensure the uniqueness of 𝑉
and

𝑉 ∈ 𝜕𝑀𝑚 =

{︃
𝑉 ∈𝑀𝑚 :

𝑘∑︁
𝑖=1

𝜆𝑖(𝑉 ) = Λ𝑚

}︃
.

Hence, we have proved the existence and uniqueness of problem (𝒫𝒢𝑚) and this proves state-
ment (1𝑜) of Theorem 1.1.

We proceed to proving the second statement of Theorem 1.1. Since the functionals 𝜌(·) :
𝐿2 → R are continuously differentiable in the Fréchet sense and, according Lemma 2.3, the
same is true for the functionals Λ(·,𝑚) → R, by the Lagrange multipliers methods we conclude
on existence of 𝜇0, 𝜇1 ∈ R such that |𝜇0| + |𝜇1| ≠ 0 and

𝜇0[𝐷𝑉 𝜌(𝑉 )](ℎ) + 𝜇1𝐷𝑉 [Λ(𝑉,𝑚)](ℎ) = 0, ∀ℎ ∈ 𝐿2, (16)

𝜇0 > 0, 𝜇1 6 0, (17)

𝜇1 (Λ(𝑉,𝑚) − Λ𝑚) = 0 (18)

as 𝑉 (𝑥) = 𝑉 (𝑥).

Employing formula (13) with normalized ‖𝜑2
𝑘(𝑉 )‖ = 1, we get∫︁ 𝑙

0

(︃
2𝜇0(𝑉0 − 𝑉 ) + 𝜇1

𝑚∑︁
𝑘=1

𝜑2
𝑘(𝑉 )

)︃
ℎ 𝑑𝑥 = 0, ∀ℎ ∈ 𝐿2, (19)

which is equivalent to the identity

𝜇0(𝑉 − 𝑉0) = −𝜇1

𝑚∑︁
𝑘=1

𝜑2
𝑘(𝑉 ).

Assume that 𝜇0 = 0, then
𝑚∑︀
𝑘=1

𝜑2
𝑘(𝑉 ) = 0 and we arrive at a contradiction. On the other hand,

if we assume that 𝜇1 = 0, then 𝑉0 = 𝑉 and therefore,
𝑚∑︀
𝑖=1

𝜆𝑖(𝑉0) = Λ𝑚, which contradicts to

our assumption
𝑚∑︀
𝑖=1

𝜆𝑖(𝑉0) < Λ𝑚. Thus, we can suppose that 𝜇0 = 1. Moreover, since 𝜇1 6 0,
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we conclude that 𝑉0 < 𝑉 a.e. in (0; 𝑙) and

𝑉 = 𝑉0 − 𝜇1

𝑚∑︁
𝑘=1

𝜑2
𝑘(𝑉 ) a.e. in (0; 𝑙). (20)

We denote 𝜆̂𝑖 = 𝜆𝑖(𝑉 ), 𝑖 = 1, . . . ,𝑚. Then we obtain:

− 𝜑′′
𝑖 (𝑉 ) + 𝑉0𝜑𝑖(𝑉 ) = 𝜆̂𝑖𝜑𝑖(𝑉 ) +

(︃
𝜇1

𝑚∑︁
𝑘=1

𝜑2
𝑘(𝑉 )

)︃
𝜑𝑖(𝑉 ), 𝑗 = 1, . . . ,𝑚. (21)

Thus, the functions 𝑢̂𝑖 = (−𝜇1)
1/2𝜑𝑖(𝑉 ), 𝑖 = 1, . . . ,𝑚, solve system of equations (4). By (20)

this leads us to desired representation (5) for the optimal potential 𝑉 . This completes the proof
of Theorem 1.

We proceed to proving Theorem 2. According Theorem 1.1, system of equation (4) is solvable.
We are going to prove that this solution is unique, that is, there exists only one set of numbers
𝜆̄1, . . . , 𝜆̄𝑚 such that

𝜆̄1 < . . . < 𝜆̄𝑚,

𝑚∑︁
𝑖=1

𝜆̄𝑖 = Λ𝑚

and only unique system of functions (𝑢1, . . . , 𝑢𝑚) ∈ (𝐶2(0, 𝑙) ∩ 𝐶1[0, 𝑙])𝑚 satisfying (4).
We shall make use of the following lemma.

Lemma 3.1. Let (𝜆̃, 𝑤̄) be a solution to system (4) such that 𝑤𝑘 has exactly 𝑘− 1 zeroes for
each 𝑘 = 1, . . . ,𝑚 and

𝜆̃1 < . . . < 𝜆̃𝑚,
𝑚∑︁
𝑖=1

𝜆̃𝑖 = Λ𝑚.

Then the function

𝑉 = 𝑉0 +
𝑚∑︁
𝑖=1

𝑤2
𝑖

is a local minimum of the functional 𝜌 in 𝑀𝑚.

Proof. Let (𝜆̃, 𝑤̄) be a solution to (4) obeying the assumptions of the lemma. Then 𝑤𝑘, 𝑘 =

1, . . . ,𝑚, are the eigenfunctions of ℒ𝑉 associated with eigenvalues 𝜆̃𝑘, that is, 𝑤𝑘 = 𝜑𝑘(𝑉 ) and

𝜆̃𝑘 = 𝜆𝑘(𝑉 ). According Lemma 2.3 and Lyusternik theorem [25], the tangential space 𝜕𝑀𝑚 at
the point 𝑉 ∈ 𝜕𝑀𝜆 is expressed as follows:

𝑇𝑉 (𝜕𝑀𝑚) :=

⎧⎨⎩ℎ ∈ 𝐿2 :
𝑚∑︁
𝑘=1

𝐷𝑉 [𝜆𝑘(𝑉 )](ℎ) ≡
𝑙∫︁

0

𝑚∑︁
𝑘=1

𝑤2
𝑘 · ℎ 𝑑𝑥 = 0

⎫⎬⎭ . (22)

On the other hand,

𝐷𝑉 [𝜌(𝑉 )](ℎ) = 2

𝑙∫︁
0

𝑚∑︁
𝑘=1

𝑤2
𝑘 · ℎ𝑑𝑥.

Therefore, 𝐷𝑉 [𝜌(𝑉 )](ℎ) = 0 for each ℎ ∈ 𝑇𝑉 (𝜕𝑀𝑚). Now, in view of the identity

𝐷𝑉 𝑉 [𝜌(𝑉 )](ℎ, ℎ) = 2

𝑙∫︁
0

ℎ2 𝑑𝑥 > 0, ∀ℎ ∈ 𝐿2,

we obtain the inequality
𝜌(𝑉 + ℎ) > 𝜌(𝑉 )

for each ℎ ∈ 𝑇𝑉 (𝜕𝑀𝑚) with a sufficiently small norm. The proof is complete.
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We are going to complete the proof of Theorem 1.2. According the said above, system of
equations (4) possesses a solution (𝜆̄, 𝑢̄) such that the distance functional 𝜌 attains its global

minimum at the point 𝑉 = 𝑉0 +
𝑚∑︀
𝑖=1

𝑢2𝑖 on 𝑀𝑚. Suppose that there exists another solution

(𝜆̃, 𝑤̄) to system (4). Then, by Lemma 3.1, 𝑉 = 𝑉0 +
𝑚∑︀
𝑖=1

𝑤2
𝑖 is a local minimum of 𝜌 in 𝑀𝑚.

However, because of a strict convexity of the functionals
𝑚∑︀
𝑖=1

𝜆𝑖(𝑉 ) and 𝜌, this is possible only

in the case if 𝑉 = 𝑉 and this is why 𝜆̄ = 𝜆̃, 𝑢̄ = 𝑤̄. We note that 𝑢̂𝑖 are the eigenfunctions of
the Sturm-Liouville operator:

−𝑢′′𝑖 +

(︃
𝑉0 +

𝑚∑︁
𝑗=1

𝑢2𝑗

)︃
𝑢𝑖 = 𝜆̄𝑖𝑢𝑖, 𝑖 = 1, . . .𝑚.

Therefore, each eigenfunction 𝑢̂𝑘 = (−𝜇1)
1/2𝜑𝑘(𝑉 ) as one associated with the eigenvalue 𝜆𝑘(𝑉 ),

𝑘 = 1, . . . ,𝑚, possesses exactly (𝑘 − 1) zeroes on the interval (0, 𝑙). This completes the proof
of Theorem 1.2.
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