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INVERSE PROBLEM FOR FRACTIONAL ORDER
PSEUDO-PARABOLIC EQUATION WITH INVOLUTION

D. SERIKBAEV

Abstract. In this paper, we consider an inverse problem on recovering the right-hand side
of a fractional pseudo-parabolic equation with an involution operator. The major obstacle
for considering the inverse problems is related with the well-posedness of the problem.
Inverse problems are often ill-posed. For example, the inverse heat equation, deducing a
previous distribution of temperature from final data, is not well-posed since the solution is
highly sensitive to variations in the final data.

The advantage of this paper is two-fold. On the one hand, we investigate the solvability
of the direct problem and prove the solvability to this problem. On the other hand, we
study the inverse problem based on this direct problem and prove the solvability results in
this problem, too.

First, we investigate the Cauchy problem for the time-fractional pseudo-parabolic equa-
tion with the involution operator, and secondly, we consider the inverse problem on re-
covering the right-hand side from an overdetermined final condition and prove that it is
solvable.

To achieve our goals, we use methods corresponding to the different areas of mathematics
such as the theory of partial differential equations, mathematical physics, and functional
analysis. In particular, we use the £-Fourier analysis method to establish the existence and
uniqueness of solutions to this problem on the Sobolev space.

The classical and generalized solutions of the inverse problem are studied.

Keywords: fractional differential equation, inverse problem, involution, pseudo—parabolic
equation.
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1. INTRODUCTION

In this paper we study the inverse problem for the nonlocal pseudo-parabolic equation with
an involution of the space variable x. We investigate the equation

D [ult, ) — tuge(t, ) + g (6, T — &) — Upe(t, ) + €U (t, 7 — ) = f(2), (1.1)
for
(t,x) eQ={0<t<T <00, 0<z<T}, 0<a<l,

where D is the Caputo derivative (see [14]) for 0 < a < 1 and DY := 9, for a = 1. In L*(0, )
we consider a second order differential operator generated by the differential expression

L(u) =—u"(z) +eu" (7 — x), 0<z<m, (1.2)
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subject to the boundary conditions
u(0) =0, u(m) =0, (1.3)

where |¢|] < 1, e € R. We can check easily that the introduced operator is self-adjoint (see
[1,/13,28]). For all |e] < 1, nonlocal problem (1.2), (1.3]) has the following eigenvalues:

Mo =4(1+e)k*>, k€N and  Agq = (1 —¢)(2k +1)%, keZ,,

and the corresponding system of eigenfunctions

2
uor () = \/;sin 2kx, ke NN,

2
Ugg 11 () = \/;Sin (2k + 1)z, ke NU{0}.

As a motivation, we mention that pseudo-parabolic equations have numerous applications in
sciences and engineering. For example, the energy functions of the isotropic materials can be
expressed as solutions of pseudo-parabolic equations [5]. Some wave processes [3], filtration of
the two-phase flow in porous media with the dynamic capillary pressure [4] are also modeled
by pseudo-parabolic equations. The time-fractional pseudo-parabolic equation occurs in
studying flows of the Oldroyd-B fluid, one of the most important classes of dilute solutions of
polymers [7,27].

The study of inverse problems for pseudo-parabolic equations was initiated in the 1980s. The
first result obtained by Rundell [22] refers to the inverse identification problems for an unknown
source function f in the following equation

(1.4)

0
—lu(t, ) + Lu(t, o)) + Lu(t,2) = f, (15)

where L is an even order linear differential operator. Rundell proved global existence and
uniqueness theorems for then cases when f depends either only on z or only on ¢.

The inverse problems on identifying the right hand sides of the pseudo-parabolic equations
from a local over-determination condition have important applications in various areas of ap-
plied sciences and engineering. Inverse source problems for the diffusion, sub-diffusion and for
other types of equations are well studied. In this area some recent progresses have been done
in the series of articles, see, for example, [1,/2,9,10,12,/13,/15,21,23,24,26,28]. However, inverse
problems for pseudo-parabolic equations and for their fractional analogues have been studied
relatively less, see [8]/11},17-19,22]. In our paper, we aim to fill this gap.

For more information on pseudo-parabolic equations, we refer to a book by Demidenko and
Uspenskii [6] and the references therein.

2. DIRECT PROBLEM

Before formulating a problem, we first introduce fractional differentiation operators.

Definition 2.1. The Riemann-Liouville fractional integral I* of order 0 < a < 1 for an
integrable function f is defined by the formula

() = < ) [ =y is. teled,

()

where I' is the Euler gamma function.
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The Caputo fractional derivative of order 0 < o < 1 of a differentiable function f is defined
by the formula

1 L)
DRfI(t) = I'"°[f'(t)] = ds, t € [c,d).
PO = 0] = ey | s t€ e
Further information on fractional derivatives can be found in [14].
In what follows, we widely use the properties of the Mittag-Leffler type function (see [16]),

which is introduced as
[oe)

Zm
E,p5(z) = _.
8(2) mzzo Tam + )
In [25], the following estimate for the Mittag-Leffler function was proved:
1 1
— < F,i(—2) < , > 0,
3T =) S P S Topar s ¢
as 0 < a < 1 and this estimate fails for a > 1. Thus, it follows that
0< Eyqi(—2) <1, z> 0. (2.1)

Definition 2.2. The space W%?[0, 7] is a Hilbert one consisting of all elements of L*[0, 7]
having generalized derivatives up to order 2 in L2 i.e.

W2’2[077T] = {f S L2[077TH fluf,/ S Lz[ovﬂ-]}

and the norm is defined by

2 2

d'f
1 220, = ; -
o Zo x|l 2o
o W3[0, 7] is the subspace W?2[0, 7] defined as the closure with respect to || - |[wz2(.q of

all twice continuously differentiable in [0, 7| functions vanishing at the points 0 and 7.
e The L?-scalar product of two functions f, g : [0, 7] — R is defined by

(fs9)12 = /07T f(@)g(z)dz.

In this section, we study the Cauchy problem for the pseudo-parabolic equation
D [u(t, ) — uge(t, ) + gy (t, m — )]

— U (t, ) + e (t, m — ) = f(t, ), (t,z) € Q, (22)
with the initial data
u(0, ) = (), z € [0, 7], (2.3)
and the homogeneous Dirichlet boundary conditions
u(t,0) = u(t,m) =0, (2.4)

where Q:={0 <t <T <00, 0 <z <7}, f(t,z) and ¢(x) are given functions.
The following statement holds true.

Theorem 2.3. Let |e| < 1, f € C([0,T];C?[0,7]) and f(t,0) = f(t,7) =0, ¢ € C*0, 7]
and ©D(0) = W (x) = 0, i = 0,2. Then there erists a unique reqular solution u €
C([0,T7; C?[0,7]) of problem (2.2)—(2.4) and this solution can be written in the form

u(t,z) = Z wi(t) sin(2k + 1)z + Z v () sin 2k,
k=0 k=1
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where

A2kt1 1 /t d ( < Aokt1 >) 1
1) 1By | — L2 o) LB, [——2%H e t— s)ds,
wn(t) =P1Fa < 1+ Aoks1 ) Aokt1 Jo ds ! 1+ )\2k+15 Jilt = s)ds

(t) =porFay | — A%k o —i/ti Foy (——22 o F2(t—s)d
Ve\l) =2k L1 1+ Mor ot Jo ds a,l 1+)\2k3 & s)as,

fort € [0,T] and for all k € N, where

Pk = (SO,UzkH)L?, Yok = (SO,U%)L?,

fli(t) = (f(tv ')7u2k+1>L27 fl?(t) = (f<t7 ')7 u2k)L2'

Proof. We begin with proving the existence. Since the system of eigenfunctions ([1.4)) is an
orthonormal basis in L?*(0, ), we seek the function (¢, z) in the form

u(t,z) = i wi(t) sin(2k + 1)z + i v () sin 2k, (2.5)

where wy(t) and vg(t) are unknown functions. Substituting equation (12.5)) into equations ([2.2)),
(2.3)), we obtain the following equations corresponding to the functions wy(t) and vg(t):

D wg(t) + Mw (t) = M, k € INy, (2.6)
1 + )\2k+1 1 + >\2k+1
wi(0) = @1, k € INo, (2.7)
and
A2k fr(t)

Doy, (t t) = ——— ke N 2.8

Fudt) + () = RS ke, 28

Uk(O) = P9k, k € IN. (29)

According to [16], the solutions of equations (2.6) and (2.8 satisfying initial conditions (2.7)
and ([2.9) can be represented in the form

Aokt1 ) 1 /t d ( ( Aok 11 )) 1
1) = @By [ ——22H ga) L E,, (-2 e t— s)ds, (2.10
un(®) = uBos (225w ) = o [ (B (2 ) - s, (210

and

Ao 1 /t d Aok 9
t) = oorBuy | — o) — [ (e, (- @ t—s)ds, (211
Uk(t) = por L ( T ) ot o s T )\%s fro(t —s)ds (2.11)

for t € [0,7T] and for all £ € IN. Substituting (2.10]) and (2.11)) into (2.5)), we obtain a solution
of problem ([2.2))-(2.4)).

Now we are going to prove the convergence of the obtained infinite series corresponding to
the functions u(t, z), Dfu(t, x), U (t, x) and Dfug,(t, ).
By the assumptions of the theorem we have

©?(0) = 0, eD(m)=0, i=0,2, f(t,0) = f(t,m) = 0.
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This implies that

O1p = \/>/ )sin(2k + 1)zdx
1 N
(2k + Vzde = —————¢
2k:+ \/>/ )sin(2k + 1)zdr = (2k+1)4901k7
Dol = \/i/ o(x) sin 2kxdx
I @
161{:4\/»/ ) sin 2kxdx = 16k4902k7
= \/j/ f(t, z)sin(2k + 1)xdx
m™Jo
1 2 [T, i 1 1(2)
- /= ok + 1 - =
<2k+1)2\/;/0 f7(t, x)sin(2k + 1)xdx o 1)2fk (1),
2 s
= \/j/ f(t, x) sin 2kxdx
= 4]{:2\/7/ 1 (t, x) sin 2kxdx = 4]{:ka ().
Here gogl,?, gogi), f,i@)(t) and f,?(Q)(t) are
ol = \/>/ )sin(2k + 1)xdz,
gog,? = \/7/ ) sin 2kzdx,
JAR( \/7/ I (¢, z) sin(2k + 1)xdz,
2(2) \/>/ f"(t, x) sin 2kzdzx,

d2
F(t,0) = Sh (1),

Our next step is to calculate Dfu(t, x), Uz, (t, ) and Dy, (t, x). We have:

(2.12)

(2.13)

where

Diu ZDO‘wk (t)sin(2k + 1)z + ZD vk (t) sin 2kzx. (2.14)
k=0 k=1

By (2.6) and (2.8)) we find D{wy(t) and Doy (t):

f]% (t> >\2k+1
Diwg(t) = — t 2.15
t wk( ) 1 _'_ )\2k+1 1 + )\2k+1 wk( )’ ( )

and
RO
T+ X 14 Ay

Dto‘vk(t) = Uk(t) (216)
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Substituting ([2.15) , into - and taking into consideration formulae , -
ED). E13) we eet:

S /S0 N
Dt =— 2k 1)z 2k
vult,2) ,; (7 dan ) (2§ D @R 2 1+A2k 4k2 s 2k
- l—¢ (4) Agk+1 ) :
Eyi | ———t° 2k+1
Z (14 Aogr1)(2k + 1)2901’“ ! < 1+ Mgt sin( )z

k=0

sin(2k 4 1) /t d < ( A2k+1 )) 1(2)
T Bar | —7 ¢ t—s)ds (2.17
L+ M) (2 + D2y ds \ 7\ T+ haerr fe 7t —s)ds (2.17)

(1 -+ 8) sin 2kx (4) Aok
E, — t
(1 + Agg)4k? Par el \ T A2k

sin 2kx td Aok 2(2)
B — | E, 1| — @ t — s)ds.
(1+/\2k)4k2/0 ds( ’1< 1+ ho )) bt s)ds

Applying the operator 88—;2 to (2.5) and taking into consideration formulae (2.10)), (2.11)), (2.12)),

(2.13), we have

p'qg

k=0

WE

k=1

NE

i

1

OO 4) A
Upe(t, ) = — Z (LEQJ (—At“) sin(2k + 1)z
k=

< (2 + 1)? T+ Aot
2. sin(2k 4+ 1) /t d ( < A2k41 )) 1(2)
+y 2= 2By -2 e t—s)ds
% A2kt1 o ds ! L+ Aokt fk ( )

(2.18)

o0 (4) >\2k
— - t* ) sin 2k
24;@ ( e )sm v
sin 2kx Aok
E, t— s)ds.
Z Aok / ( ’1< 1+)\2kz ))fk (t=s)ds

Finally, applying the operator 8‘9—;2 to (2.17)), we have

L) = ()
Dy, (t, x) Z k v sin(2k + 1)x + Z k27 sin 2kx

1-— A
+z LW <_¢ta)sm<zk+1>x

1+ Aoks1

- 1 td Aok +1 1(2)
_— — | E, —— 7 s® t—s)d in(2k + 1 .
+ E L +>\2k+1/ I ( 1 ( T )\2k+18 )) . (t— s)ds| sin(2k + 1)z (2.19)

@ p Aok o\ L
—_t 2k
ap% ( s ) sin 2kx

A
(Ea,l (— . +2f\2k so‘)) f,fm) (t — s)ds] sin 2kx.
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Let us to show the convergence of the integral term:

152(%( o)) e
j( ( a))‘mi(t—sﬂds
< puax|ie - o) [ f(E( 1&5&))

td%(Eavl( 1—1-)\5 ))

<
max |fi )|/0

Hereinafter we suppose that ¢ = 1,2 and if 1 = 1, then £ = 2k + 1, k € INg, while if 1 = 2, then
¢ =2k, k € IN. In the above estimates, the integrand is the derivative of the Mittag-Leffler
function, which is a non-positive function since

d Ae Ae a1 Ae
— | E, s“) ) =— T Faal - “) <0. 2.21
ds< ’1( T+ A" )) T+ ™ < T+ A (2:21)

It is known that

(2.20)
ds

Eoo(—2) >0, 2z >0,
see, for instance, [20]. Hence,

‘| d Ae td Ae
R o “))|d o oy “) ) ds.
/ods( ( 1“3)) /ods( ( 1+Ags)) ’

Substituting the latter relations into (2.20)) and employing ({2.1]), we obtain:

' d A¢ Ae o
o ds (Ea’l (_1+)\5 )) Fill = $)ds| = gooeg 1£u(0) (1 ™ et (_1+A5t )) (2.23)

<C max | fy(t)].
Using the estimates ([2.1)), (2.23]) and taking into consideration the formulae (2.12), (2.13),

o<t<T
we arrive at the following inequality:

5= (2.22)

- ’(plkz S
lellen.@ <O 31y Z 16k4
il k=1
=A% >| FrelC >
k
+ C()rgtagi% kZ: )\2k+1 (Qk' +1 0<t<T Z )\2k4k2 .
By formula (2.17)), we have
- (4)| |§02k
Dy <C
IPeulo..a kz—() 1+ /\2k+1 )(2k +1)2 * Z (1 + Agg)4k?
— N |f1 o 0 . |f2(2) (2.25)
C 2 —-
+ (]llltggf% (]_ + )\2k+1)(2k + ]_ Z ]- + /\Qk 4k2
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It follows from formula ([2.18)) that

’901k |0 (4)‘
||Ux:v||cm(§2) CZ (2k + 1)2 +CZ 4k2

N (2.26)
O ma Z 2Ol o 3 52 @)
0<t<T Aokt 0<t<T Ao
and by the formula (2.19)), we have
S AR (5]
Dy a <C +C Yy —=—
1Pzl @ < kz_; + A2k+1 Z L+ Ao
- (2.27)

= rf,i<2>< 120
+ Corgfi)% pre 1+ )\QkH O<t<TZ 1+ )\Qk

Hence, series (2.24)), (2.25)), (2.26]) and (2.27) converge absolutely and uniformly in the domain
Q.
Now we are in a position to show the uniqueness of the solutions. Let w(¢,z) and v(x,t) be

solutions of problem ([2.2] - . that is,

Diw(t,x) — wee(t, ) + eWer(t, ™ — )] — Waa(t, ) + cwye (t,m — ) = f(t,2), w(0,2) = p(z),
D [v(t, ) — vy (t, ) + €pe(t, T — )] — V(b ) + v (b, m — ) = f(t,2), ©v(0,2) = ¢(z).

By subtracting these equations one from the other and denoting u(t,z) = w(t,z) — v(t, z), we
obtain that

D u(t, ) — gy (t, ) + ety (t, 7 — )] — Uge (, ) + €Uge(t, m — ) =0, (2.28)

u(0,x) = 0. (2.29)

2 K
= \/i/ u(t, z) sin(2k + 1)zdz, k € INo,
T Jo

We also have

(2.30)

2 ™

= \/j/ u(t, x) sin 2kxdzx, ke IN.
T Jo
Applying the operator Df to (2.30]), we obtain
2 ™
Diwg(t) = \/j/ Diu(t, x) sin(2k + 1)zdz, k€ Ny,

7r

(2.31)

Do (t) f/ Diu(t, x) sin 2kzdz, ke IN.

We multiply both sides of equations (2.28)), (2.29) by the functions sin (2k + 1)z, sin 2kz and
integrate in the variable x from 0 to . Taking into consideration the self-adjointness of the

nonlocal operator £, and by (2.30)—(2.31]), we have

A
Dwy(t) + —=tL i (t) =0, ke Ny, (2.32)
1+ Aokg1

we(0) =0, ke Ny, (2.33)
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and
Deu(t) + Aok ve(t) =0, ke, (2.34)
14 Ao
ve(0) =0, kel. (2.35)

By formulae (2.10), (2.11)) with 1 = 0, fi(t) =0, por = 0, f2(t) = 0, the solutions of problem
(2.32), (2.33) and (2.34)), (2.35) read as wy(t) = vg(t) = 0. Hence, by the completeness of the
system ugy, (), gy 1(z) in L?, we obtain u(z,t) = 0. O

2.1. Generalized solution. In this section we provide a solution to the direct problem with
data from Sobolev spaces.

Theorem 2.4. Let || < 1, f € C([0,T]; L*[0,7]) and ¢ € WS?[0,7]. Then there exists
a unique generalized solution u € C’l([O,T];Wg’Q[O,W]) of problem (2.2)—(2.4) and it can be
written as

T) = Z wg(t) sin(2k + 1)x + Z vg(t) sin 2kzx,
k=0 k=1
where

/\2k+1 1 /t d ( ( /\2k+1 )> 1
1) = 1By | — ) + 2B, (-2 t— s)ds,
wnlt) = @b ( 1+ Aogt1 > Aok+1 Jo ds ! 1+ /\2k+18 Jult = s)ds

and
Aok 1 /t d Aok 9
1) = popEay | — )+ — [ LB, (- @ t— s)ds,
U (t) = Qo ,1( 1T oo >+ Sor ) s 1 1+)\2k8 fi(t —s)ds

for all t € [0,T] and for each k € N, where

P1k = (; Uzk+1) 12, Par = (¢, ua) 12,
fii(t) = (f(t,"), ua+1) L2, fl?(t) = (f(t,"), uan) L2
Proof. Using property (2.1)), we get the following estimates:

2 1fe@)? )P

||u||C’([O,T],L2[0ﬂ- CHWHI}[O T CO<t<TZ 2k+1 0012,585%; /\—gkv
AP — R@®F
Dy <C C —————+Cm
| UHC ([0,77,L2[0,x]) H(p”LQOTr] + OIE;?% (1 o)’ + 0<t<TZ (1 + dop)?’
C
Huch ((0,7),L2[0,7]) X CH‘PIIHB[M w“f”%qo,ﬂ,m[o,ﬂp
HD?UZEJL“H%‘([O,T],LQ[Om]) < CH%xH%qo,W] + CHfH%‘([O,T},LQ[OJr])'
Arguing as in the proof of Theorem [2.3] we complete the proof. O

3. INVERSE PROBLEM
In this Section, we study an inverse problem for the pseudo—parabolic equation (|L.1J).

Problem 3.1. Find a pair of functions (u(t,z), f(x)) satisfying equation (1.1)), the homoge-
neous Dirichlet boundary conditions

u(t,0) = u(t,m) =0, (3.1)

and an initial condition
u(0,z) = ¢(x), x € (0,7, (3.2)
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with an additional condition
u(Tz)= (), «eo], (33)
where p(x) and Y(x) are sufficiently smooth given functions.

Using the Fourier method, one can check the unique solvability of this problem. A regular
solution of problem [3.1]is a pair of functions (u(t, z), f(z)), where u € C*([0,T], C*([0,7])) and
f € C*([0,7]). A generalized solution of problem [3.1]is a pair of functions (u(t,z), f(x)), where
u € CY([0,T], W?%([0,n])) and f € L3([0,7]).

3.1. Main results. For equation (|1.1)) with conditions (3.1)—(3.3) the following theorem
holds true.

Theorem 3.2. Let T > 0, |e| < 1, ¢, € C*0, 7] and
A00) = ¢0(r) = y(0) = y(m) =0, i=02

Then there exists a unique regular solution u € C*([0,T)],C?0, 7)), f € C2[0, 7] of problem[3.1]
and it can be written as

- (1 — Eqs (—@jk—;lta)) sin(2k + 1)z

u(t, z) =p(x) + (P8 = vid)
k=0 (1 -~ Ea,l( Akt Ta)) (2k + 1)2

T 1o

. (1 — B, (—l%v%ta)) sin 2k
2 2
+ Z (Soék) - ¢§k))u
k=1 (1 _ Ea,l <_ A2k Ta)> 4k2

1+Aok

0 (2) (2)
1— _
(@) = — e () + £Qe(m — x) + Z ( 8)(80”1 Vi) sin(2k + 1)z
1 B (- )

[e.9]

2 2
by (e =)

sin 2k,
S B ()
for (t,x) € Q, where
ngi) = (Spmcau2k+1>L27 Spgi) - (Somca u2k>L27 ¢S€) = <w:13:z:7 u2k+1)L27 éi) - (wmmqu)LQ-

Proof. We begin with proving the existence. Since the eigenfunctions (1.4]) form an orthonormal
basis in L?[0, 7], we seek functions u(t,z) and f(x) in the form

u(t,x) = i wg(t) sin(2k + 1)x + i vg(t) sin 2k, (3.4)
k=0 k=1
and . .
f(z) = Z fesin(2k + D)x + Z f2sin 2k, (3.5)
k=0 k=1

where wy (), vg(t), fi and fZ are unknown. Substituting equations ([3.4) and (3.5)) into equation
(1.1]), we obtain the following equations for the functions wy,(t), vx(t) and the constants f;, f2:

Down(t) + — 25 (1) = — T Do)+ 2y () = i
! 1+ Aok 1+ Nogt1 ! 1+ Ao 1+ Ao
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Solving these equations, we obtain
fi

A2k+1 fi Aok
4 — Eoq | ——E ), t o, ),
wi(?) A2k41  CuiBla ( 1+ Aokt > ul(t) = Aok + CarBas 1+ Ao

where the constants f}, f2, C1j and Cy are unknown. To find these constants, we use conditions

and (3.3). Let

©11 = (P, Ugkt1) L2, Vo = (¢, Uak) 2, Y1 = (¥, Ugkt1) L2, Yok, = (¥, ugk) 12
We first find C:

1
wi(0) = )\f + Cik = O,
2k+1
fk A2k41
T — O Ea _—TOC = .
k(1) A2k+1 T Ok L 1+ Aokt Vi
Then we have
Cup = ©1e — Y1k

_ __A2k41 o
1 Ea,1< 1+/\2k+1T

f;i = 901k)\2k+1 - Clk)\2k+1-

The constant f; is represented as

Now we find Cyy:

2

vi(0) = —A% + Co = Pop;
fk Aok
T CorE, T | = ,
v(T) = o + Cog a1 1+ o (9

Aok
— Oy +CorE 1| — T | = .
P2k 2k 2k ,1( 1+ Mo ) Yoy,

Then we obtain

O — Pk — Yok ‘
A
1 o~ 2577)

fr = pardae — Cordar.
Substituting wy(t), vx(t), f and fZ into equations (3.4]) and (3.5), we find

u(t, z) =p(x) + Y Ciy (Ea,l (—Mt“) - 1) sin(2k + 1)z
k=0

For the constant f7 we find

1+ Aokt
S Aok .
+ Z Co (E%l (— to‘) — 1) sin 2kx.
— L+ Aok

By the assumption of the theorem we have

©(0) = p(m) = 1(0) = ¢(m) = 0.
This implies

Clk _ P1k — wlk _ Splk wlk

A A .
1 = Eqq (_ 1+2>\I€2:LT06) (1 — Faa (_ 1+2>\kg:1 Ta)) (2k +1)2
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In the same way we obtain:

Then we get

o (1 — B4 (-112;—2:;#)) sin(2k + 1)z
ut,z) = p(x) + Y

2 2
A (o2 i)
h=0 (1 — Lo, <_ 1+i\l;:1+1Ta)) (2 +1)2

(3.6)
o (1 — Eq, (—liﬁta» sin 2kz
2 2
™ Z (@ék) - @k))‘
k=1 (1 — Eqap (—ﬁgf;kw)) Ak?
As above, we also find that
0 (2) (2
1—¢ —
(@) = — 0pe(T) + £Qe(m — x) + Z ( )(90”1 Vi) sin(2k + 1)z
1 BT
(3.7)

00 2 (2
QMUEDIC At

sin 2kx.
1= B (-2

The assumption 7" > 0 and the estimate (2.1) guarantee that the denominators in formulae
(3.6) and (3.7) do not vanish. Moreover, there exists a constant C' > 0 such that

)\&
1—Fu1| — s , .
,1( T+ A )>C>0 (3.8)

for all £ € Z,.
Let us calculate D{u(t, x), ty.(t, z) and Dfug,(t, ). According to [16], we have

D (Eaa(=At%)) = =AEq1(=At?). (3.9)
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Applying the operator D{ to (3.6) and taking into consideration (3.9)), we have

(1—¢€)E, ( %t‘? sin(2k + 1)z

2 2
- (o1 —vi2)
k=0 (1 — Ea,l ( l_ij\k—;;ilTa)> (1 + )\Q]H_l)

(3.10)
o (1+¢e)Ean (— 14/\-2;\k t“) sin 2kx (2)
+ Z (5 %k ),
k=1 (1 — Ea,l( 112; Ta)) (14 Aor)
00 (1 - Ea71< 1i2)\k;;1 ta>) sm(2k + 1)1’
Ugzx (t, I’) :praz(l') - \ (Splk wlk )
— 2k+1 o
k=0 1—FE.q1 <_—1+/\2:+1T ) ( |
3.11
00 (1 — Ea,l( lif\’“ ta)) sin 2kx o "
- Z (P26 — ¥or ),
S B (-2T)
and we also have
) . A%HEa,l( e vra ) smZe+ Do
Dt Umr<t7 I) - N (Splk wlk: )
k=0 (1 - Eml( 1+2;221+1Ta)) (1 + Aggs1)
(3.12)

00 )\ngaJ( 153\’“ ta) sin 2kx o o
- (Par — Vo )-
k=t (1 - Eavl( Es v T“)) (1+ Aax)

In view of estimate (2.1]), in order to ensure the convergence of series (3.6]), (3.10)), (3.11)),
(3.12) and (3.7)), we have the following estimate

P I [ e Ny 123 R
T < = C R TR (O R T 3.13
lulle, . < lellogo + k§:0: i ?:f e (3.13)

By the assumptions of the theorem we have

0, 0
»®(0) =0, YO (1) =0, i=0,2.

This implies that the coefficients of the function ¥ (x) satisfy identities (2.12]). Using this fact
for f(z), we arrive at the estimate

R N e S o
zx 7 —_— —_= == .14
1 lloqom < Cllgwsllo, >+c§j IR +c§klj e (3.14)
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We also have:

> 2) (2)
||Dau||0tz CZ ygplk ’ + ’wlk ‘ + CZ ‘90% ‘ + ‘ka |’

2% |+|1/1 o5 | + |5y |
[tazllc, . @) CZ (kT 1 ”“ +OZM

. |} m | + WH o5 | + 05|
1D el ) Z +CZT

This completes the proof of the existence of the solution.
We proceed to proving the uniqueness. We suppose that {u(¢,z), fi(x)} and {us(t, x), fo(z)}

are solutions of Problem .1} Then u(t, ) = ui(t,x) —us(t,z) and f(z) = fi(z) — fo(z) satisty
the following problem:

D [u(t, ) — Uge(t, ) + EUpe (t, T — )] — Uge(t, T) + €Uz (t, 7 — ) = f(2), (3.15)
u(0,2) = 0, (3.16)
uw(T,xz) =0. (3.17)

We also have

2 ™
= \/j/ u(t, z) sin(2k + 1)xdzx, k € Ny,
T Jo

(3.18)
2 K
= \/j/ u(t, x) sin 2kxdx, ke N,
m™Jo
and
1 2 (7 -
fo=1/— [ [f(z)sin(2k + 1)zdz, k € Ny,
;T . (3.19)
fi= \/j/ f(z) sin 2kzdx, k € No.
T™Jo
Applying the operator Dy to (3.18), we get
2 (7 .
Dfw(t) = \/j/ Diu(t, z) sin(2k + 1)zdz, k € Ny,
m™Jo
(3.20)

2 ™
Divg(t) = \/;/0 Diu(t, x) sin 2kzdz, ke NN.

We multiply both sides of equations (3.15)—(3.17) by the functions sin (2k + 1)z, sin 2kz and
integrate in the variable x from 0 to . Takmg into consideration the self-adjointness of the

nonlocal operator £, and by (3.18)—(3.20]), we have

Aok+1 fk
Dy (1) + —2EE (¢ ke Ny, 3.21
rwe(t) 1+)\2k+1wk< )= 1+ Aogt1 0 (3:21)
wg(0) =0, k € Ny, (3.22)

wi(T) =0, k&N, (3.23)
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and
Aok fr
D (¢ t kelN 3.24
tvk()+1+)\2k () 1+)\2k € 9 ( )
w(0)=0, keN, (3.25)
w(T)=0, keN. (3.26)

Arguing as in the proof of the existence result, we confirm easily that the solutions of equations

B21) (3:23) and (324) (B26) are wy(t) = v(t) = f = J2 = 0. Then

2 s

0= \/j/ u(t, z) sin(2k + 1)xdz, k € N,
T Jo
2 [T ,

0= \/i/ u(t, z) sin 2kxdz, ke NN,
T Jo

2 ™

0= \/j/ f(z)sin(2k + 1)xdz, k € N,
T™Jo
2 [T .

0= \/j/ f(z) sin 2kzdz, k € INy.
T Jo

Therefore, owing to the completeness of the system ugy, (), usgi1(x) in L%, we obtain u(z,t) =
0 and f(z) = 0. This prove the uniqueness of the solution of problem . The proof is
complete. O

and

3.2. Generalized solutions. Once we deal with a generalized solution instead of the regular
one of problem [3.1] Theorem [3.2] can be modified as follows.

Theorem 3.3. Let T > 0, |g| < 1 and ¢,¢0 € WZ?[0,7]. Then there exists a unique

generalized solution u € C([0,T], Wy?[0,7]), f € L?[0,7] of problem|3. ] l and it can be written
as

50 (1 — Ea,l( %t‘”)) sin(2k + 1)z
x) + Z ) (‘Pug ¢1k )
k=0 (1 - EaJ( 143\16;r Ta)) (2k + 1)
oo (1 — EM( En t“)) sin 2kx .
+ (or, = Usi):

k=1 (1 _Ea,1< 1?_2/\1@ Ta)) 4k2

() (o® @
f(x) = — @ue(x) + €ppp(m — ) + Z (1 =)oy — ¥ix)

A
k=0 _ o 2k+1 [e%
1—FEqu < Thwr T

sin 2k,

sin(2k + 1)z

0o 2 (2
I QMIEDIC At

1= B (-2
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for (t,x) € Q, where

2 2
‘ng) = (@xmau%—i-l)ma Spék) = (QOM«,U%)L%

D — (g U1 12 ) = (g, i) 2

Proof. Reproducing the proof of Theorem [3.2] we can prove the unique solvability in the con-
sidered case, too. We just need to clarify the functional classes. By using Plancherel identity
and orthogonality of uo, usr1, we get:

‘flk‘Q ’wlk ‘ |1‘ |2 ’w(2)|2
U < Clp +C E +C E
|| ||C ([0,77,L2[0,m]) || ||L207r] Qk 1) " (Qk) )

Hf”L2[0,7r] S CH@mHL?[O,ﬂ + CH%xHLZ[o,w]-

Moreover, we find:

)12

16D+ [ 2 OS2+ [ |2
D u \ +C )
|| HC ([0,7,L2[0,7]) § : 1+A2k+1 § : 1+)\2k

||U:c:v||0([o,T],L2[o,7r]) X C”%xHLz[o,ﬂ] + C”%z”m[o,ﬂa
1D e G0 11, 2210.77) < Cll Pl Fo0.m + ClltoaallT2p0 x-

These estimates allow us to reproduce the arguing from the proof of Theorem [3.2] The proof
is complete. O
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