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LIOUVILLE-TYPE THEOREMS FOR
FUNCTIONS OF FINITE ORDER

B.N. KHABIBULLIN

Abstract. A convex, subharmonic or plurisubharmonic function respectively on the real
axis, on a finite dimensional real of complex space is called a function of a finite order if
it grows not faster than some positive power of the absolute value of the variable as the
latter tends to infinity. An entire function on a finite-dimensional complex space is called
a function of a finite order if the logarithm of its absolute value is a (pluri-)subharmonic
function of a finite order. A measurable set in an m-dimensional space is called a set of a
zero density with respect to the Lebesgue density if the Lebesgue measure of the part of
this set in the ball of a radius r is of order o(r™) as r — +o0. In this paper we show that
convex function of a finite order on the real axis and subharmonic functions of a finite order
on a finite-dimensional real space bounded from above outside some set of a zero relative
Lebesgue measure are bounded from above everywhere. This implies that subharmonic
functions of a finite order on the complex plane, entire and subharmonic functions of a
finite order, as well as convex and harmonic functions of a finite order bounded outside
some set of a zero relative Lebesgue measure are constant.
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The base of this work is a classical Liouville theorem for entire functions, that is, for holo-
morphic on complex plane C or on C", where n € IN := {1,2,... } functions.

Liouville theorem. A bounded entire function is constant.

The same statement holds for bounded from above subharmonic functions on C [Il, Cor.
2.3.4] and as an obvious corollary, for plurisubharmonic functions on C", convex functions on
the real line R and as an immediate corollary, on R"™ with 1 < m € N, as well as for harmonic
functions on R™ for all m € N [2 Thm. 1.19].

Recently in work [3, Lm. 4.2], there was given a version of Liouville theorem for entire
functions of finite order on C bounded not everywhere but only outside some small set £ C C.
In 4, Lm. 4.2], its proof was corrected and before its formulation in Theorem 2.1 in [5] it
was said that this theorem was established by A.A. Borichev. The proofs in [3] and [4] employ
rather advanced facts and arguing from the theory of complex variable and the potential theory
on the complex plane.

Theorem B. ([3, Lm. 4.2], [4, Lm. 4.2], [5, Thm. 2.1]) If an entire function of a finite
order on C is bounded outside some set EE C C measurable by the planar Lebesque measure A
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and this set has a zero planar density in the sense that

. /\({zeEZQM <r}) —0, (1)

r——+00 r

then this function is constant.

The main result of this work develops and extends Theorem B on plurisubharmonic and
entire functions on C" for all n € IN, as well as on convex and harmonic functions on R™. At
the same time, our proof is simpler in the case of entire functions of a single complex variable
and it is based on an approach differing from that employed in the former proofs of Theorem B.

Let a function M with values in an extended real line R := RU {400} is defined on a positive
half-line R* := {z € R: 2 > 0}, in R™ or in C" identified with R?", with the Euclidean norm
| - |, but, generally speaking, outside some closed ball B(r) of a bounded radius » € R and
centered at the origin. The order of the function M at infinity can be defined as [0, Sect. 2.1]

In(1+ M+
ord[M] := lim sup n(l+ (=)
|$\—>00 ln |$‘

€ RT U {+o0c}, (2)

where M*: z — max{0, M (z)} is a positive part of the function M. The order of entire
function f on € is defined as order ord[In |f|] in the sense of (2).

Definition. (c¢f. with (1)) A relative upper Lebesgue density a subset E C R™ measurable
by the Lebesgue measure X on R™ is the quantity
_ MENB
L.»(F) := limsup w

r—-+o0o

o € RY U {+o0}. (3)
If in the right hand side of the above identity the usual limit lim,_, ., is well-defined, we call
it simply relative Lebesgure density L,,(E) € R™ U {+oco} of the set E. The definitions are
obviously extended to C™ identified with R?*" and the notations are Lo, and Lay,.

Theorem 1. Letm € IN and E C R™ be a subset of zero relative Lebesgue density L,,(E) = 0
in R™. If a subharmonic function v of a finite order on R™ is bounded from above on R™\ E,
then

supv = sup v < +00. (4)
R™ R™\E

Let n € IN. A function C" is called plurisubharmonic if its restriction on each complex
straight line is a subharmonic function. In particular, as n = 1, these notions coincide, while
each plurisubharmonic function on C" is subharmonic on R?". By Theorem , the classical
Liouville theorem for plurisubharmonic and entire functions implies the following statement.

Theorem 2. Let n € N and E C C" be a set of zero relative Lebesque density in C"
in the sense of the above definition on R*" identified with C", that is, Lo,(E) = 0. If a
plurisubharmonic or entire function of a finite order on C™ is bounded from above on C"\ E,
then it is constant.

Subharmonic functions on R are exactly convex functions. For each m € IN, each convex
of harmonic function on R™ is also subharmonic. Thus, by Theorem [1| and classical Liouville
theorems for convex or harmonic functions on R™ we obtain immediately the following theorem.

Theorem 3. Let m € IN and E C R™ be a set of zero relative Lebesque density in R™. If a
convex or harmonic function of entire order on R™ is bounded from above on R™ \ E, then it
18 constant.
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It remains to prove Theorem [1] and we proceed to this.

Form € N,z € R™ and r € R" by B(x,r) := {2’ € R™: |2/ —z| < r} we denote a closed ball
in R™ of radius r centered at x, and as above, B(r) := B(0,r). Similar notation is introduced
C" identified with R?". For a A-integrable function v: B(z,r) — R we let

1 1

B,(z,7) = ——— A\ = A\, B, (r) := B,(0,7), 5

)= ey ] TP [ 8 BO=EON,
Ble,) B(a,r)

where by, is the volume of the unit ball. These are respectively mean functions of v over closed
balls B(x,r) and B(r). The positivity is understood as > 0, the negativity does as < 0.

Lemma 1. Let 0 < R € R' and v be a positive \-measurable function on a closed ball

B(R) CR™, 0<r < R. Then
Bu(z,R—1) < <1 + ﬁ)va(R) for each point x € B(r). (6)

Proof. By definition and owing to the positivity of v on B(R) and the inclusions B(x, R —
r) C B(R) for all x € B(r) we obtain:

1 / 1 /
By(z,R—1r) =———— A ——— dA
(o B=r) = Ry TS B )
B(x,R—r) B(R)
b, R™ 1 r m
- a2 (1 —> B, (R),
b (R — 1) b R / v =) BA)
B(R)
and this completes the proof. O

By sbh(S) we denote the class of all subharmonic (locally convex as m = 1) functions on some
open neighbourhoods of the set S C R™. The role of means over balls in for subharmonic
functions is due to the inequality on mean over ball [1], [2]; this inequality characterizes them
completely under the upper semi-continuity and local integrability in the sense of Lebesgue
measure \. In particular,

v(z) < By(z,7) asv € sbh(B(xz,7)). (7)

Lemma 2. Let 0 < R € R* and v be a subharmonic function on a closed ball B(R) C R™,
0<r <R, and E C B(r) be a \-measurable set. Then

/v A < (1+ RT )m)\(E)BU+(R). 8)

—r

E
Proof. By inequality on mean over ball we obtain
v(x) < By(z, R —71) < By+(x, R—1) for each point x € B(r).
Integrating this inequality over the set E by the Lebesgue measure A\ gives the inequality
/v dA < /BU+(:1:,R —r) dA(x).
E E

Hence, by inequality (@ in Lemma [1| applied to the integrand with a positive function v™ in
the latter integral, we obtain

/v X < /(1+ Rr T>mBU+(R) dA(z) = (1+ - )mBU+(R)>\(E),

R—r
E E

and this proves . The proof is complete. O
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Lemma 3. Let 0 < R € RT, and v be a subharmonic function on a closed ball B(R) C R™.
Then for each number r € (0,R) and for each \-measurable subset E C B(r) we have the
imequality

1 1 T \NmA(E)
< — .
B.(r) < / v A (1+ R_T) B () (9)
B(r\E
Proof. By definition ,
1 1
B,(r) = —— —
(1) T / v d\+ b /v dA,
B

B(r)\E

and by inequality in Lemma [2| applied to the latter integral, we arrive at @ The proof is
complete. O

Proof of Theorem[1. We let

M := sup v € R. (10)
R™\E
Thanks to the boundedness from above of the function v on R™ \ E, we can consider a sub-
harmonic function v — M negative on R™ \ E. We apply Lemma [3| for aribtrary 0 < r € R*
with R = 2r and with the set obtained by the intersection E N B(r) C B(r) as the set E to
a subharmonic function (v — M)* > 0, where the first integral in the right hand side in (9)
vanishes. As a result we obtain:

1 r \mA(ENB(r))
Blo-an+(r) SE (1 Tz r) rm
2 A(ENB(r))

b rm

B(v,M)+<2T)
Bw_n)+(2r) forall 0 <reR".

By condition L,,(£) = 0 for the function

ro— B(U—M)+<7") cR* (11)
0<reR"
this yields
Bo—an+ (1) = 0(Bu—n+(2r)) asr — +oo. (12)

Function is of a finite order ord[B(,_as)+] € R" since ord[(v — M)"] € R" thanks to the
finiteness of the order ord[v]. Hence, (12) is possible only in the case B,_an+ = 0 and, as an
implication, (v — M)* = 0. Together with this implies . The proof is complete. m

Remark. The condition of zero Lebesgue density L,,(E) = 0 in Thearems and@ as well as
the same condition with m := 2n in Theorem[3, can be replaced by a formally weaker condition:
there exists an unbounded sequence of positive numbers (1 )ren, for which

AMENB(r
lim sup Tkt < 400 and lim M =0,
k—o00 Tk k—o0 7‘21

since the latter implies L, (E) = 0.

The author is deeply grateful to A.D. Baranov. Exactly thanks to his very informative ple-
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