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LIOUVILLE-TYPE THEOREMS FOR

FUNCTIONS OF FINITE ORDER

B.N. KHABIBULLIN

Abstract. A convex, subharmonic or plurisubharmonic function respectively on the real
axis, on a finite dimensional real of complex space is called a function of a finite order if
it grows not faster than some positive power of the absolute value of the variable as the
latter tends to infinity. An entire function on a finite-dimensional complex space is called
a function of a finite order if the logarithm of its absolute value is a (pluri-)subharmonic
function of a finite order. A measurable set in an 𝑚-dimensional space is called a set of a
zero density with respect to the Lebesgue density if the Lebesgue measure of the part of
this set in the ball of a radius 𝑟 is of order 𝑜(𝑟𝑚) as 𝑟 → +∞. In this paper we show that
convex function of a finite order on the real axis and subharmonic functions of a finite order
on a finite-dimensional real space bounded from above outside some set of a zero relative
Lebesgue measure are bounded from above everywhere. This implies that subharmonic
functions of a finite order on the complex plane, entire and subharmonic functions of a
finite order, as well as convex and harmonic functions of a finite order bounded outside
some set of a zero relative Lebesgue measure are constant.
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The base of this work is a classical Liouville theorem for entire functions, that is, for holo-
morphic on complex plane C or on C𝑛, where 𝑛 ∈ N := {1, 2, . . . } functions.

Liouville theorem. A bounded entire function is constant.

The same statement holds for bounded from above subharmonic functions on C [1, Cor.
2.3.4] and as an obvious corollary, for plurisubharmonic functions on C𝑛, convex functions on
the real line R and as an immediate corollary, on R𝑚 with 1 < 𝑚 ∈ N, as well as for harmonic
functions on R𝑚 for all 𝑚 ∈ N [2, Thm. 1.19].

Recently in work [3, Lm. 4.2], there was given a version of Liouville theorem for entire
functions of finite order on C bounded not everywhere but only outside some small set 𝐸 ⊂ C.
In [4, Lm. 4.2], its proof was corrected and before its formulation in Theorem 2.1 in [5] it
was said that this theorem was established by A.A. Borichev. The proofs in [3] and [4] employ
rather advanced facts and arguing from the theory of complex variable and the potential theory
on the complex plane.

Theorem B. ([3, Lm. 4.2], [4, Lm. 4.2], [5, Thm. 2.1]) If an entire function of a finite
order on C is bounded outside some set 𝐸 ⊂ C measurable by the planar Lebesgue measure 𝜆
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and this set has a zero planar density in the sense that

lim
𝑟→+∞

𝜆
(︀
{𝑧 ∈ 𝐸 : |𝑧| 6 𝑟}

)︀
𝑟2

= 0, (1)

then this function is constant.

The main result of this work develops and extends Theorem B on plurisubharmonic and
entire functions on C𝑛 for all 𝑛 ∈ N, as well as on convex and harmonic functions on R𝑚. At
the same time, our proof is simpler in the case of entire functions of a single complex variable
and it is based on an approach differing from that employed in the former proofs of Theorem B.

Let a function 𝑀 with values in an extended real line R := R∪{±∞} is defined on a positive
half-line R+ := {𝑥 ∈ R : 𝑥 > 0}, in R𝑚 or in C𝑛 identified with R2𝑛, with the Euclidean norm
| · |, but, generally speaking, outside some closed ball 𝐵(𝑟) of a bounded radius 𝑟 ∈ R+ and
centered at the origin. The order of the function 𝑀 at infinity can be defined as [6, Sect. 2.1]

ord[𝑀 ] := lim sup
|𝑥|→∞

ln
(︀
1 + 𝑀+(𝑥)

)︀
ln |𝑥|

∈ R+ ∪ {+∞}, (2)

where 𝑀+ : 𝑥 ↦→ max{0,𝑀(𝑥)} is a positive part of the function 𝑀 . The order of entire
function 𝑓 on C𝑛 is defined as order ord

[︀
ln |𝑓 |

]︀
in the sense of (2).

Definition. (cf. with (1)) A relative upper Lebesgue density a subset 𝐸 ⊂ R𝑚 measurable
by the Lebesgue measure 𝜆 on R𝑚 is the quantity

L𝑚(𝐸) := lim sup
𝑟→+∞

𝜆
(︀
𝐸 ∩𝐵(𝑟)

)︀
𝑟𝑚

∈ R+ ∪ {+∞}. (3)

If in the right hand side of the above identity the usual limit lim𝑟→+∞ is well-defined, we call
it simply relative Lebesgure density L𝑚(𝐸) ∈ R+ ∪ {+∞} of the set 𝐸. The definitions are
obviously extended to C𝑛 identified with R2𝑛 and the notations are L2𝑛 and L2𝑛.

Theorem 1. Let 𝑚 ∈ N and 𝐸 ⊂ R𝑚 be a subset of zero relative Lebesgue density L𝑚(𝐸) = 0
in R𝑚. If a subharmonic function 𝑣 of a finite order on R𝑚 is bounded from above on R𝑚 ∖𝐸,
then

sup
R𝑚

𝑣 = sup
R𝑚∖𝐸

𝑣 < +∞. (4)

Let 𝑛 ∈ N. A function C𝑛 is called plurisubharmonic if its restriction on each complex
straight line is a subharmonic function. In particular, as 𝑛 = 1, these notions coincide, while
each plurisubharmonic function on C𝑛 is subharmonic on R2𝑛. By Theorem 1, the classical
Liouville theorem for plurisubharmonic and entire functions implies the following statement.

Theorem 2. Let 𝑛 ∈ N and 𝐸 ⊂ C𝑛 be a set of zero relative Lebesgue density in C𝑛

in the sense of the above definition on R2𝑛 identified with C𝑛, that is, L2𝑛(𝐸) = 0. If a
plurisubharmonic or entire function of a finite order on C𝑛 is bounded from above on C𝑛 ∖ 𝐸,
then it is constant.

Subharmonic functions on R are exactly convex functions. For each 𝑚 ∈ N, each convex
of harmonic function on R𝑚 is also subharmonic. Thus, by Theorem 1 and classical Liouville
theorems for convex or harmonic functions on R𝑚 we obtain immediately the following theorem.

Theorem 3. Let 𝑚 ∈ N and 𝐸 ⊂ R𝑚 be a set of zero relative Lebesgue density in R𝑚. If a
convex or harmonic function of entire order on R𝑚 is bounded from above on R𝑚 ∖ 𝐸, then it
is constant.
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It remains to prove Theorem 1 and we proceed to this.
For 𝑚 ∈ N, 𝑥 ∈ R𝑚 and 𝑟 ∈ R+ by 𝐵(𝑥, 𝑟) := {𝑥′ ∈ R𝑚 : |𝑥′−𝑥| 6 𝑟} we denote a closed ball

in R𝑚 of radius 𝑟 centered at 𝑥, and as above, 𝐵(𝑟) := 𝐵(0, 𝑟). Similar notation is introduced
C𝑛 identified with R2𝑛. For a 𝜆-integrable function 𝑣 : 𝐵(𝑥, 𝑟) → R we let

B𝑣(𝑥, 𝑟) :=
1

𝜆
(︀
𝐵(𝑥, 𝑟)

)︀ ∫︁
𝐵(𝑥,𝑟)

𝑣 d𝜆 =
1

𝑏𝑚𝑟𝑚

∫︁
𝐵(𝑥,𝑟)

𝑣 d𝜆, B𝑣(𝑟) := B𝑣(0, 𝑟), (5)

where 𝑏𝑚 is the volume of the unit ball. These are respectively mean functions of 𝑣 over closed
balls 𝐵(𝑥, 𝑟) and 𝐵(𝑟). The positivity is understood as > 0, the negativity does as 6 0.

Lemma 1. Let 0 < 𝑅 ∈ R+ and 𝑣 be a positive 𝜆-measurable function on a closed ball
𝐵(𝑅) ⊂ R𝑚, 0 < 𝑟 < 𝑅. Then

B𝑣(𝑥,𝑅− 𝑟) 6
(︁

1 +
𝑟

𝑅− 𝑟

)︁𝑚

B𝑣(𝑅) for each point 𝑥 ∈ 𝐵(𝑟). (6)

Proof. By definition (5) and owing to the positivity of 𝑣 on 𝐵(𝑅) and the inclusions 𝐵(𝑥,𝑅−
𝑟) ⊂ 𝐵(𝑅) for all 𝑥 ∈ 𝐵(𝑟) we obtain:

B𝑣(𝑥,𝑅− 𝑟)
(5)
=

1

𝑏𝑚(𝑅− 𝑟)𝑚

∫︁
𝐵(𝑥,𝑅−𝑟)

𝑣 d𝜆 6
1

𝑏𝑚(𝑅− 𝑟)𝑚

∫︁
𝐵(𝑅)

𝑣 d𝜆

=
𝑏𝑚𝑅

𝑚

𝑏𝑚(𝑅− 𝑟)𝑚
1

𝑏𝑚𝑅𝑚

∫︁
𝐵(𝑅)

𝑣 d𝜆
(5)
=

(︁
1 +

𝑟

𝑅− 𝑟

)︁𝑚

B𝑣(𝑅),

and this completes the proof.

By sbh(𝑆) we denote the class of all subharmonic (locally convex as 𝑚 = 1) functions on some
open neighbourhoods of the set 𝑆 ⊂ R𝑚. The role of means over balls in (5) for subharmonic
functions is due to the inequality on mean over ball [1], [2]; this inequality characterizes them
completely under the upper semi-continuity and local integrability in the sense of Lebesgue
measure 𝜆. In particular,

𝑣(𝑥) 6 B𝑣(𝑥, 𝑟) as 𝑣 ∈ sbh
(︀
𝐵(𝑥, 𝑟)

)︀
. (7)

Lemma 2. Let 0 < 𝑅 ∈ R+ and 𝑣 be a subharmonic function on a closed ball 𝐵(𝑅) ⊂ R𝑚,
0 < 𝑟 < 𝑅, and 𝐸 ⊂ 𝐵(𝑟) be a 𝜆-measurable set. Then∫︁

𝐸

𝑣 d𝜆 6
(︁

1 +
𝑟

𝑅− 𝑟

)︁𝑚

𝜆(𝐸)B𝑣+(𝑅). (8)

Proof. By inequality (7) on mean over ball we obtain

𝑣(𝑥) 6 B𝑣(𝑥,𝑅− 𝑟) 6 B𝑣+(𝑥,𝑅− 𝑟) for each point 𝑥 ∈ 𝐵(𝑟).

Integrating this inequality over the set 𝐸 by the Lebesgue measure 𝜆 gives the inequality∫︁
𝐸

𝑣 d𝜆 6
∫︁
𝐸

B𝑣+(𝑥,𝑅− 𝑟) d𝜆(𝑥).

Hence, by inequality (6) in Lemma 1 applied to the integrand with a positive function 𝑣+ in
the latter integral, we obtain∫︁

𝐸

𝑣 d𝜆 6
∫︁
𝐸

(︁
1 +

𝑟

𝑅− 𝑟

)︁𝑚

B𝑣+(𝑅) d𝜆(𝑥) =
(︁

1 +
𝑟

𝑅− 𝑟

)︁𝑚

B𝑣+(𝑅)𝜆(𝐸),

and this proves (8). The proof is complete.
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Lemma 3. Let 0 < 𝑅 ∈ R+, and 𝑣 be a subharmonic function on a closed ball 𝐵(𝑅) ⊂ R𝑚.
Then for each number 𝑟 ∈ (0, 𝑅) and for each 𝜆-measurable subset 𝐸 ⊂ 𝐵(𝑟) we have the
inequality

B𝑣(𝑟) 6
1

𝑏𝑚𝑟𝑚

∫︁
𝐵(𝑟)∖𝐸

𝑣 d𝜆 +
1

𝑏𝑚

(︁
1 +

𝑟

𝑅− 𝑟

)︁𝑚𝜆(𝐸)

𝑟𝑚
B𝑣+(𝑅). (9)

Proof. By definition (5),

B𝑣(𝑟) =
1

𝑏𝑚𝑟𝑚

∫︁
𝐵(𝑟)∖𝐸

𝑣 d𝜆 +
1

𝑏𝑚𝑟𝑚

∫︁
𝐸

𝑣 d𝜆,

and by inequality (8) in Lemma 2 applied to the latter integral, we arrive at (9). The proof is
complete.

Proof of Theorem 1. We let

𝑀 := sup
R𝑚∖𝐸

𝑣 ∈ R. (10)

Thanks to the boundedness from above of the function 𝑣 on R𝑚 ∖ 𝐸, we can consider a sub-
harmonic function 𝑣 −𝑀 negative on R𝑚 ∖ 𝐸. We apply Lemma 3 for aribtrary 0 < 𝑟 ∈ R+

with 𝑅 = 2𝑟 and with the set obtained by the intersection 𝐸 ∩ 𝐵(𝑟) ⊂ 𝐵(𝑟) as the set 𝐸 to
a subharmonic function (𝑣 − 𝑀)+ > 0, where the first integral in the right hand side in (9)
vanishes. As a result we obtain:

B(𝑣−𝑀)+(𝑟) 6
1

𝑏𝑚

(︁
1 +

𝑟

2𝑟 − 𝑟

)︁𝑚𝜆
(︀
𝐸 ∩𝐵(𝑟)

)︀
𝑟𝑚

B(𝑣−𝑀)+(2𝑟)

=
2𝑚

𝑏𝑚

𝜆
(︀
𝐸 ∩𝐵(𝑟)

)︀
𝑟𝑚

B(𝑣−𝑀)+(2𝑟) for all 0 < 𝑟 ∈ R+.

By condition L𝑚(𝐸) = 0 for the function

𝑟 ↦−→
0 < 𝑟 ∈ R+

B(𝑣−𝑀)+(𝑟) ∈ R+ (11)

this yields

B(𝑣−𝑀)+(𝑟) = 𝑜
(︀
B(𝑣−𝑀)+(2𝑟)

)︀
as 𝑟 → +∞. (12)

Function (11) is of a finite order ord[B(𝑣−𝑀)+ ] ∈ R+ since ord[(𝑣 − 𝑀)+] ∈ R+ thanks to the
finiteness of the order ord[𝑣]. Hence, (12) is possible only in the case B(𝑣−𝑀)+ ≡ 0 and, as an
implication, (𝑣 −𝑀)+ ≡ 0. Together with (10) this implies (4). The proof is complete.

Remark. The condition of zero Lebesgue density L𝑚(𝐸) = 0 in Theorems 1 and 3, as well as
the same condition with 𝑚 := 2𝑛 in Theorem 2, can be replaced by a formally weaker condition:
there exists an unbounded sequence of positive numbers (𝑟𝑘)𝑘∈N, for which

lim sup
𝑘→∞

𝑟𝑘+1

𝑟𝑘
< +∞ and lim

𝑘→∞

𝜆
(︀
𝐸 ∩𝐵(𝑟𝑘)

)︀
𝑟𝑚𝑘

= 0,

since the latter implies L𝑚(𝐸) = 0.
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