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ON LOCALIZATION CONDITIONS FOR SPECTRUM OF

MODEL OPERATOR FOR ORR–SOMMERFELD EQUATION

KH.K. ISHKIN, R.I. MARVANOV

Abstract. For a model operator 𝐿(𝜀) related with Orr-Sommerfeld equation, we study the
necessity of known Shkalikov conditions sufficient for a localization of the spectrum at a
graph of Y-shape. We consider two types of the potentials, for which an unbounded part Γ∞
of the limiting spectral graph (LSG) is constructed in an explicit form. The first of them is
a piece-wise potential with countably many jumps. We show that if the discontinuity points
of this potential converge rather fast to one of the end-points of the interval (0, 1), then
Γ∞ consists in countably many rays. The second potential is glued from two holomorphic
functions. We show that Γ∞ consists in two curves if the derivative at the gluing point
has a jump and Langer conditions are satisfied in the domain enveloped by the Stokes
lines ensuring the possibility of constructing WKB-expansions. If the gluing is infinitely
differentiable, WKB-estimates are insufficient to clarify the spectral picture. Because of
this we consider an inverse problem: given some spectral data, clarify analytic properties
of the potential in the vicinity of the interval (0, 1). In order to understand the nature
of spectral data, we first solve a direct problem extended to a complex 𝜀-plane. It turns
out that if we assume the holomorphy of the potential in the vicinity of the segment [0, 1],
then for small 𝜀 in the sector ℰ of opening 𝜋/2, the part of the spectrum 𝐿(𝜀) outside some
circle satisfies quantizaion conditions of Bohr-Sommerfeld type. In the concluding part of
the work we solve the inverse problem. As spectral data, quantization conditions obtained
in the direct problem and taken in a slightly weaker form serve. We prove that if the
potential is a monotone continuously differentiable function and the mentioned conditions
are satisfied, then the potential admits an analytic continuation into some neighbourhood
of the interval (0, 1). This proves the necessity of Shkalikov conditions at least in a local
sense.
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1. Introduction

We consider a family of operators 𝐿(𝜀) generated in 𝐿2(0, 1) by a differential expression
𝑙𝜀𝑦 = 𝑖𝜀2𝑦′′ + 𝑞𝑦 and boundary conditions 𝑦(0) = 𝑦(1) = 0, where 𝑞 is a bounded measurable
real-valued function, 𝜀 is a small positive parameter. For each 𝜀, the spectrum of the operator
𝐿(𝜀) is discrete and lies in the closure of the domain

Π = {𝑧 ∈ C : 𝑚 < Re 𝑧 < 𝑀, Im𝑧 < 0},
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where 𝑚 = inf
(0,1)

𝑞,𝑀 = sup
(0,1)

𝑞.

The operator 𝐿(𝜀) is usually treated as a simplified model for the Orr–Sommerfeld operator
well-known in hydrodynamics, see [1] and [2] for details. It was proved in work [3] that for
𝑞(𝑥) = 𝑥 or 𝑥2, as the Reynolds number 𝑅 > 0 is large enough and 𝜀 > 0 is small enough,
the spectra of Orr-Sommerfeld operators and of 𝐿(𝜀) accumulate along a set called the limiting
spectral graph (LSG) formed by the curves connecting some point 𝜆0 ∈ Π with points 𝑚, 𝑀
and −𝑖∞ (“spectral tie”). Later, in work [2], this result was extended to the class of functions
𝑞 obeying the conditions

(i) the function 𝑞 is real for 𝑥 ∈ [0, 1] and there exists a domain 𝐺 ⊂ C such that 𝑞 is
holomorphic in 𝐺 and maps bijectively 𝐺 onto the half-plane Π;

(ii) for each 𝑎 ∈ (0, 1) the pre-image of the ray 𝑟𝑎 = {𝜆 : 𝜆 = 𝑎− 𝑖𝑡, 0 < 𝑡 < ∞} is a function
with respect to the imaginary axis, that is, each straight line Im 𝜆 = const either intersects the
pre-image of the ray 𝑟𝑎 at a single point or does not intersect.

Following A.A. Shkalikov, we shall denote this class by 𝐴𝑀 . By Γ(𝑐) we denote a part of
LSG located in the half-strip Π𝑐 = {𝜆 ∈ C : 𝑚 < Re𝜆 < 𝑀, Im𝜆 < −𝑐}.

It follows from condition (i) that if 𝑞 ∈ 𝐴𝑀 , then 𝑞 is strictly monotone on [0, 1]. If 𝑞 is
non-monotone, then, as it was shown in [2] and [4], LSG of the operators 𝐿(𝜀)(𝜀 > 0) can be
of a more complicated form. However, in both cases, for sufficiently large 𝑐 > 0 we have

Γ(𝑐) = 𝛾(𝑐) := {𝜆 ∈ Π𝑐 : Im(𝑄(𝜆)) = 0}, (1.1)

where

𝑄(𝜆) =

1∫︁
0

√︀
𝑖(𝜆− 𝑞(𝑥))𝑑𝑥, (1.2)

and the branch of the square root is fixed so that arg 𝑄(𝑀) = 𝜋/4.
In view of the said above, a question arises:
What is the behavior of the spectrum of the operator 𝐿(𝜀) for small 𝜀 in the case, when the

function 𝑞 is not holomorphic on (0, 1)? Whether a finite or infinite smoothness of the function
𝑞 is sufficient to ensure that the eigenvalues of 𝐿(𝜀) located in Π𝑐 to accumulate to a single
curve 𝛾(𝑐)?

In this work we consider two types of piece-wise holomorphic potentials, under which it is
possible to construct the set Γ(𝑐) explicitly. In the first part of the work, Section 2, we study
the case of a step-like potential with countably many jumps. We show that if the discontinuity
points converge to one of the end-points of the interval (0, 1), then Γ(𝑐) consists in countably
many rays so that each piece of the potential corresponds to one ray. Since the cardinality of
the set of the pieces is the same as of the set of the rays, another question arises: whether each
localization ray is generated by a corresponding discontinuity of the function 𝑞, whether it is
possible to glue the pieces sufficiently smoothly so that one has only a single corresponding
localization ray? This issue is discussed in Section 3. We consider a potential 𝑞 glued at some
intermediate point 𝑎 ∈ (0; 1) from two functions 𝑞1 and 𝑞2 holomorphic in some neighbourhoods
of the segments [0; 𝑎) and (𝑎; 1], respectively, and obeying standard conditions in terms of the
Stokes lines, under which WKB-estimates are possible. In the case of an infinite differentiability
of the potential 𝑞 at the gluing point, WKB-estimates are not sufficient to clarify the spectral
portraits. Because of this we solve an inverse problem: by some spectral data we establish a
holomorphy of 𝑞 at some interval (0, 1). In order to understand the nature of spectral data,
we first solve a direct problem going out to a complex 𝜀-plane, see Section 4. In a concluding
part, Section 5, we obtain the main result of the paper, Theorem 5.1, in which we solve an
inverse problem: if 𝑞 is monotone and continuously differentiable and for a part of the spectrum
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of 𝐿(𝜀) in the sector {𝑟𝑒𝑖𝜙 : 𝑟 > 0, |𝜙| 6 𝜋/4} outside some circle, for sufficiently small 𝜀,
Bohr-Sommerfeld kind quantization conditions hold, then 𝑞 admits an analytic continuation
into some neighbourhood of the interval (0, 1).

2. Step-like potential

We consider the following function

𝑞(𝑥) = 𝑞𝑛, 𝑥 ∈ [𝑥𝑛−1, 𝑥𝑛) , 𝑛 = 1, 2, . . . , (2.1)

where 𝑥𝑛 = 1 − 1/(𝑛 + 1), and numbers 𝑞𝑛 satisfy the following conditions:
a) 𝑚 := 𝑞1 < 𝑞2 < . . . ;
b) There exists a finite limit 𝑀 = lim

𝑛→∞
𝑞𝑛 and

𝑞𝑛 = 𝑀 + 𝑂(𝑛−𝛾), 𝑛 → ∞, 𝛾 > 1. (2.2)

We let

𝛾𝑛(𝑐) = {𝜆 = 𝜇− 𝑖𝜈, 𝜇 = 𝑞𝑛, 𝜈 > 𝑐}.
The first main result is formulated in the following theorem.

Theorem 2.1. Let the function 𝑞 is of form (2.1) and identity (2.2) holds. Then

Γ(𝑐) =
∞⋃︁
𝑛=1

𝛾𝑛(𝑐). (2.3)

We prove this theorem in several steps. First we show that if 𝜆0 is some point in Π𝑐 belonging
to none of the rays 𝛾𝑛(𝑐), then each circle 𝑈𝛿(𝜆0) = {|𝜆− 𝜆0| < 𝛿} not intersecting with 𝛾𝑛(𝑐),
𝑛 = 1, 2, . . . , contains no points of the operator 𝐿(𝜀) as 0 < 𝜀 < 𝜀(𝛿), where 𝜀(𝛿) is some
constant depending on 𝛿 only.

Let 𝑦1(𝑥, 𝜆, 𝜀) and 𝑦2(𝑥, 𝜆, 𝜀) be solutions to equation

𝑖𝜀2𝑦′′ + 𝑞𝑦 = 𝜆𝑦, (2.4)

satisfying the conditions

𝑦1(0, 𝜆, 𝜀) = 𝑦2(1, 𝜆, 𝜀) = 0 and 𝑦′1(0, 𝜆, 𝜀) = 𝑦′2(1, 𝜆, 𝜀) = 1.

Then the eigenvalues of the operator 𝐿(𝜀) coincide with the roots of the equation

𝑊 (𝑦1, 𝑦2)|𝑥=𝑏 = 0, (2.5)

where 𝑊 is the Wronskian, 𝑏 is some intermediate point in the interval (0; 1). Our aim is to
choose 𝑏 = 𝑏(𝜀) so that for small 𝜀 > 0, the functions 𝑦1 and 𝑦2 admits an asymptotic expansion
uniform in 𝜆 ∈ 𝑈𝛿(𝜆0).

We choose a solution 𝑦2 in the following form:

𝑦2(𝑥, 𝜆, 𝜀) = 𝜀 sin 𝜀−1𝑝∞(𝑥− 1) +
𝑖

𝜀𝑝∞

1∫︁
𝑥

sin 𝜀−1𝑝∞(𝑥− 𝑡) [𝑀 − 𝑞(𝑡)] 𝑦2𝑑𝑡,

where 𝑝∞ = 𝑝∞(𝜆) =
√︀

𝑖(𝜆−𝑀). Hereinafter the branch of the root is chosen so that 𝑛
√
𝑧 > 0

as 𝑧 > 0.
We let

𝑏𝜀 = 1 − 𝜀𝜎,
1

𝛾 + 1
< 𝜎 < 1,

Π𝑐𝑎 := {𝜆 = 𝜇− 𝑖𝜈 : 𝑚 < 𝜇 6 𝑀 − 𝑎, 𝜈 > 𝑐}, 0 < 𝑎 < 𝑀 −𝑚.
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Lemma 2.1. For small 𝜀 > 0, uniform in 𝜆 ∈ Π𝑐𝑎 asymptotic estimates hold:

𝑦
(𝑘)
2 (𝑏𝜀, 𝜆, 𝜀) = − 𝜀

2𝑖

(︂
−𝑖𝑝∞
𝜀

)︂𝑘

exp
(︀
𝑖𝜀𝜎−1𝑝∞

)︀ (︀
1 + 𝑂

(︀
𝜀(𝛾+1)𝜎−1

)︀)︀
, 𝑘 = 0, 1. (2.6)

Proof. It is easy to confirm that

−𝜋

2
< arg 𝑝∞(𝜆) 6 −𝛿(𝑎) < 0

for all 𝜆 ∈ Π𝑐𝑎. We let

𝑓 = −2𝑖

𝜀
𝑒𝑖𝜀

−1𝑝∞(𝑥−1)𝑦2(𝑥, 𝜆, 𝜀).

Then the function 𝑓 solves the equation

𝑓 = 1 − 𝑒−2𝑖𝜀−1𝑝∞(1−𝑥) + 𝐴(𝜆, 𝜀)𝑓,

where

𝐴(𝜆, 𝜀)𝑓 = − 1

2𝜀𝑝∞

1∫︁
𝑥

[︁
1 − 𝑒2𝑖𝜀

−1𝑝∞(𝑡−𝑥)
]︁

[𝑀 − 𝑞(𝑡)] 𝑓𝑑𝑡.

It follows from condition (2.2) that the norm of the operator 𝐴(𝜆, 𝜀) in the space 𝐶[𝑏𝜀; 1]
satisfies the estimate ‖𝐴(𝜆, 𝜀)‖ = 𝑂

(︀
𝜀𝜎(𝛾+1)−1

)︀
, 𝜀 → 0, uniformly in 𝜆 ∈ Π𝑐𝑎. This implies

easily relations (2.6).

Remark 2.1. It follows from the above proof that formula (2.6) remains valid if 𝑏𝜀 is replaced
by an arbitrary point 𝑥 greater than 𝑏𝜀. At that, the exponent in (2.6) is 𝑖𝜀𝑞∞(1 − 𝑥).

Lemma 2.2. Let 𝑞𝑛 < Re𝜆0 < 𝑞𝑛+1 and 𝑚(𝜀) = [𝜀−𝜎], 0 < 𝜎 < 1/2. Then for small 𝜀 > 0,
the following uniform in 𝜆 ∈ 𝑈𝛿(𝜆0) asymptotic estimates hold:

𝑦
(𝑘)
1 (𝑥𝑚(𝜀), 𝜆, 𝜀) = − 𝜀

2𝑖𝑝1

(︂
𝑖𝑝𝑚(𝜀)

𝜀

)︂𝑘
⎛⎝𝑚(𝜀)∏︁

𝑘=2

𝑝𝑘 + 𝑝𝑘−1

2𝑝𝑘

⎞⎠𝐹𝑛(𝜆, 𝜀), 𝑘 = 0, 1, (2.7)

where 𝑝𝑘 =
√︀

𝑖(𝜆− 𝑞𝑘),

𝐹𝑛(𝜆, 𝜀) = exp

⎛⎝−𝑖𝜀−1

⎛⎝ 𝑥𝑛∫︁
0

√︀
𝑖(𝜆− 𝑞)𝑑𝑡 +

𝑥𝑚(𝜀)∫︁
𝑥𝑛

√︀
𝑖(𝜆− 𝑞)𝑑𝑡

⎞⎠⎞⎠
·
(︂
𝑝𝑛 − 𝑝𝑛−1

𝑝𝑛 + 𝑝𝑛−1

− 𝑝𝑛+1 − 𝑝𝑛
𝑝𝑛+1 + 𝑝𝑛

𝑒−2𝑖𝜀−1𝑝𝑛Δ𝑛 + 𝑂
(︀
exp(−𝑐0𝜀

−1+2𝜎)
)︀)︂

,

where

∆𝑘 = 𝑥𝑘 − 𝑥𝑘−1 =
1

(𝑘 + 1)𝑘

and 𝑐0 is a positive constant independent of 𝜀 and 𝜆.

Proof. Letting 𝑌 = (𝑦, 𝑦′)𝑇 , we get 𝑌 = 𝑌𝑘 · 𝐶𝑘, 𝑥 ∈ [𝑥𝑘−1;𝑥𝑘], 𝑘 = 1, 2, . . . , where

𝑌𝑘 = 𝑇𝑘𝑊𝐷𝑘, 𝑇𝑘 = diag(1, 𝑖𝜀−1𝑝𝑘), 𝐷𝑘 = diag(𝑒𝑖𝜀
−1𝑝𝑘𝑥, 𝑒−𝑖𝜀−1𝑝𝑘𝑥), 𝑊 =

(︂
1 1
1 −1

)︂
.

By the continuity of 𝑌 at the point 𝑥𝑘−1, we have:

𝑌𝑘(𝑥𝑘−1)𝐶𝑘 = 𝑌𝑘−1(𝑥𝑘−1)𝐶𝑘−1,

and hence,

𝐶𝑘 = Ω𝑘𝐶𝑘−1, where Ω𝑘 = 𝑌 −1
𝑘 (𝑥𝑘−1)𝑌𝑘−1(𝑥𝑘−1).
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Therefore, 𝐶𝑘 = Ω𝑘 · · ·Ω2𝐶1. Since 𝑌 (0) = (0, 1)𝑇 , then 𝐶1 = 𝜀
2𝑖𝑝1

(1,−1)𝑇 . Substituting the

expression for 𝑌𝑘, we obtain:

Ω𝑘 = 𝐷−1
𝑘 (𝑥𝑘−1)Φ𝑘𝐷𝑘−1(𝑥𝑘−1), Φ𝑘 = 𝐼 + 𝛽𝑘

(︂
−1 1

1 −1

)︂
, 𝛽𝑘 =

𝑝𝑘 − 𝑝𝑘−1

2𝑝𝑘
.

Thus,

𝑌 (𝑥𝑚(𝜀)) = 𝑇𝑚(𝜀)𝑊

⎛⎝ 2∏︁
𝑘=𝑚(𝜀)

𝐷𝑘(∆𝑘)Φ𝑘

⎞⎠𝐷1(𝑥1)𝐶1. (2.8)

Let 𝜆 ∈ 𝑈𝛿(𝜆0) and 0 < 𝜀 ≪ 1. Then

𝐷𝑘(∆𝑘) =

⎧⎨⎩ 𝑒−𝑖𝜀−1𝑝𝑘Δ𝑘

[︁
diag(0, 1) + 𝑂

(︁
𝑒−2𝛿𝑘𝜀

−1
)︁]︁

, 𝑘 = 1, 𝑛− 1,

𝑒𝑖𝜀
−1𝑝𝑘Δ𝑘

[︁
diag(1, 0) + 𝑂

(︁
𝑒−𝛿𝑘𝜀

−1
)︁]︁

, 𝑘 = 𝑛 + 1,𝑚(𝜀),
(2.9)

where
𝛿𝑘 = min

{︁
Im

√︀
𝑖(𝑞𝑛 − 𝑞𝑛−1 + 𝜈,

⃒⃒⃒
Im

√︀
𝑖(𝑞𝑛+1 − 𝑞𝑛+2 + 𝜈

⃒⃒⃒}︁
∆𝑘. (2.10)

In view of relation (2.10) we see that for all 𝜆 ∈ 𝑈𝛿(𝜆0) the inequality 𝛿𝑘 > 𝐶𝑚(𝜀)−2 holds,
where 𝐶 = 𝐶(𝑛, 𝛿, 𝜆0) > 0. Substuting relations (2.9) into (2.8) and taking into consideration
the latter estimate for 𝛿𝑘, we obtain (2.7). The proof is complete.

Now, in (2.5) we let

𝑏(𝜀) = 𝑥𝑚(𝜀) = 1 − 1

[𝜀−𝜎] + 1
, where

1

𝛾 + 1
< 𝜎 <

1

2
.

Replacing in (2.5) the functions 𝑦1 and 𝑦2 by their asymptotics (2.7) and (2.6), in view of
Remark 2.1, we obtain:

𝑦1(1, 𝜆, 𝜀) := Φ(𝜆, 𝜀) = 𝑒−2𝑖𝜀−1𝑝𝑛Δ𝑛 − 𝛼𝑛 + 𝑂
(︀
exp(−𝑐𝑛𝜀

−1+2𝜎)
)︀
, (2.11)

where

𝛼𝑛 =
(𝑝𝑛+1 + 𝑝𝑛)(𝑝𝑛 − 𝑝𝑛−1)

(𝑝𝑛 + 𝑝𝑛−1)(𝑝𝑛+1 − 𝑝𝑛)
.

We introduce a function Φ0(𝜆, 𝜀) = 𝑒2𝑖𝜀
−1𝑝𝑛Δ𝑛 − 𝛼𝑛 and denote by {𝜇𝑛

𝑘(𝜀)}∞𝑘=1 its zeroes in
the half-plane Π𝑛(𝑐) = {𝜆 = 𝑥− 𝑖𝑦, 𝑞𝑛 < 𝑥 < 𝑞𝑛+1, 𝑦 > 𝑐} taken in the order of non-decreasing
absolute values. Applying the Rouché theorem to the function Φ0, we obtain that starting from
some index 𝐾𝑛, each eigenvalue of the operator 𝐿(𝜀) in Π𝑛(𝑐) is located in a circle centered at

a point 𝜇𝑛
𝑘(𝜀) and of a radius 𝑟𝑛𝑘 = 𝑀𝑛𝑒

−𝜎𝑛𝑘𝛿 , where 𝑀𝑛, 𝜎𝑛, 𝛿 are some positive numbers. This

means that 𝜆𝑛
𝑘 = 𝜇𝑛

𝑘+𝑚𝑛
+ 𝑂(𝑒−𝜎𝑛𝑘𝛿), 𝑘 > 𝐾𝑛, and 𝑚𝑛 is an integer number depending on 𝑛

only. This implies the statement of Theorem 2.1.

3. Potentials of finite smoothness

In this section we consider potentials of the form

𝑞(𝑥) =

{︂
𝑞1(𝑥), 𝑥 ∈ [0; 𝑎),
𝑞2(𝑥), 𝑥 ∈ (𝑎; 1],

(3.1)

where the functions 𝑞1 and 𝑞2 satisfy the following conditions:

1) the function 𝑞 is real and does not decrease on [0, 1];
2) the functions 𝑞1 and 𝑞2 are holomorphic in some neighbourhoods Ω1 and Ω2 of the segments

[0; 𝑎) and (𝑎; 1], respectively

3) for some 𝑛 > 2, there exist finite limits 𝑙𝑗𝑘 := lim
𝑥→𝑎

𝑞
(𝑘)
𝑗 (𝑥), 𝑘 = 0, 𝑛, such that 𝑙1𝑘 = 𝑙2𝑘,

𝑘 = 0, 𝑛− 1 and 𝑙1𝑛 ̸= 𝑙2𝑛.
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In order to formulate an additional condition, we introduce extra notations. Let

𝑐 > 0, 𝜆 ∈ Π𝑐 = {𝑧 ∈ Π : Im 𝑧 < −𝑐}, 𝜉𝑗(𝑧) =

𝑧∫︁
𝑎

√︁
𝑖(𝜆− 𝑞𝑗(𝑡))𝑑𝑡, 𝑧 ∈ Ω𝑗 𝑗 = 1, 2,

𝛽1(𝜆) and 𝛽2(𝜆) be curves, into which the functions 𝜉1 and 𝜉2 map the segments [𝑎, 0] and [𝑎, 1],
respectively. We denote by 𝐷𝑗, 𝑗 = 1, 2, the domain enveloped by the curve 𝛽𝑗(𝜆) and the
segment connecting its end-points1. The additional condition on 𝑞 reads as follows:

4) for a sufficiently large 𝑐 > 0, for each 𝜆 ∈ Π𝑐, there exist neighbourhoods 𝜔1(𝜆) and 𝜔2(𝜆)
of intervals (𝑎, 0) and (𝑎, 1) such that the mappings 𝜉𝑗 : 𝜔𝑗 −→ 𝐷𝑗, 𝑗 = 1, 2, are bijections.

We introduce functions

𝑄1(𝜆) =

𝑎∫︁
0

√︀
𝑖(𝜆− 𝑞(𝑡))𝑑𝑡, 𝑄2(𝜆) =

1∫︁
𝑎

√︀
𝑖(𝜆− 𝑞(𝑡))𝑑𝑡, 𝜆 ∈ Π,

and curves
𝛾𝑖(𝑐) = {𝜆 ∈ Π𝑐 : Im(𝑄𝑖(𝜆)) = 0}, 𝑖 = 1, 2.

Proceeding as in the proof of Lemma 2.2 in [2], it is easy to confirm that for all 𝑐 > 0, the
curves 𝛾1(𝑐) and 𝛾2(𝑐) are graphs of some functions with respect to the imaginary axis.

Theorem 3.1. Under Conditions 1)–4), for sufficiently large 𝑐 > 0, the identity Γ(𝑐) =
𝛾1(𝑐) ∪ 𝛾2(𝑐) holds.

Proof. Under the main assumptions, it is convenient to pass from problem

𝑖𝜀2𝑦′′ + 𝑞𝑦 = 𝜆𝑦, 𝑥 ∈ [0, 1], (3.2)

𝑦(0) = 𝑦(1) = 0, (3.3)

to the Sturm-Liouville problem on the curve 𝛽(𝜆) redistributing the roles of the parameters 𝜆
and 𝜀. We fix 𝜆 ∈ Π𝑐 (𝑐 > 0) and we let

𝜉 = 𝜉(𝜆, 𝑥) =

𝑥∫︁
0

√︀
𝑖(𝜆− 𝑞)𝑑𝑡/𝑄(𝜆), 𝑥 ∈ [0, 1], (3.4)

𝑉 = 𝑉 (𝜆, 𝜉) =
𝑖𝑄2

4(𝜆− 𝑞)

[︃
𝑞′′

𝜆− 𝑞
+

5

4

(︂
𝑞′

𝜆− 𝑞

)︂2
]︃⃒⃒⃒⃒
⃒
𝑥=𝑥(𝜆,𝜉)

, (3.5)

𝑠 = 𝑠(𝜆, 𝜀) = 𝜀−1𝑄(𝜆), (3.6)

where the function 𝑄 is defined by (1.2), 𝛽(𝜆) is the image of the segment [0, 1] under mapping
(3.4), 𝑥(𝜆, 𝜉) is the function inverse to the function 𝜉(𝜆, 𝑥). It follows from (3.4) that for all 𝜆
in Π𝑐 the curve 𝛽(𝜆) is the graph of a function convex on the segment [0, 1] and vanishing at
its end-points. We denote by 𝐸(𝜆) the domain enveloped by the curve 𝛽(𝜆) and a broken line
𝑃 (𝜆) = [0, 𝐴𝜆] ∪ [𝐴𝜆, 1], where 𝐴𝜆 = 𝑄1(𝜆)/𝑄(𝜆).

The substitution
𝑦 = (𝜆− 𝑞)−1/4𝑣(𝜉) (3.7)

transforms problem (3.2)–(3.3) into

−𝑣′′ + 𝑉 (𝜆, 𝜉)𝑣 = 𝑠2𝑣, 𝜉 ∈ 𝛽(𝜆), (3.8)

𝑣(0) = 𝑣(1) = 0, (3.9)

where the prime denotes the derivative of the function 𝑣 with respect to 𝜉 along the curve 𝛽(𝜆).

1It is easy to confirm that for each 𝜆 ∈ Π𝑐, 𝑐 > 0, the domains 𝐷1 and 𝐷2 are convex.
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Let 𝑐 > 0. We denote by 𝐷𝑐 the image of Π𝑐 under the mapping 𝜆 ↦−→ 𝑄(𝜆). As it was shown
in [2, Lm. 2.3], for each 𝑐 > 0 the mapping 𝑄 : Π𝑐 −→ 𝐷𝑐 is conformal and is one-to-one.

According relations (3.2)–(3.9), a number 𝜆 ∈ Π𝑐, 𝑐 > 0, is an eigenvalue of problem (3.2)–
(3.3) if and only if 𝑠2 is an eigenvalue of problem (3.8)–(3.9) satisfying the condition 𝑠𝜀 ∈ 𝐷𝑐.

We introduce a function
Φ(𝜆, 𝑠) = 𝜙(1, 𝜆, 𝑠), (3.10)

where 𝜙(𝜉, 𝜆, 𝑠) is the solution to equation (3.8) satisfying the conditions

𝜙(0, 𝜆, 𝑠) = 1, 𝜙′(0, 𝜆, 𝑠) = 1.

Then the spectrum of problem (3.8)–(3.9) coincides with the squares of the zeroes of the function
Φ(𝜆, ·).

In order to understand the structure of the spectrum of problem (3.8)–(3.9), we observe the
following: by Conditions 2) and 4) and by identity (3.4), the image of the domain Ω1∪Ω2 under
the mapping by the function 𝜉(𝜆, ·), 𝜆 ∈ Π𝑐, 𝑐 ≫ 1, contains the closure of the domain 𝐸(𝜆) and

the function 𝜉(𝜆, ·) is invertible in the domain 𝐸(𝜆), the inverse function 𝑧(𝜆, ·) is holomorphic
in 𝐸(𝜆) and is continuous on its closure. In view of (3.5), the function 𝑉 possesses the same
properties, and hence, by the monodromy theorem, the spectrum of problem (3.8)–(3.9) does
not change under the deforming of the curve 𝛽(𝜆) into the broken line 𝑃 (𝜆). Then, employing
Condition 3) and formula (3.5), it is easy to make sure that 𝑉 ∈ 𝐶(𝑛−1)(𝑃𝜆) and the function
𝑉 (𝑛) has a jump at a point 𝐴𝜆. Then the function 𝑉 satisfies all assumptions of Theorem 3
in [5] and according this theorem, the spectrum of problem (3.8)–(3.9) splits into two series
with asymptotics

𝑠
(𝑗)
𝑘 ∼

(︂
𝜋𝑘𝑄(𝜆)

𝑄𝑗(𝜆)
+ 𝑂(ln 𝑘)

)︂2

, 𝑗 = 1, 2, 𝑘 → +∞. (3.11)

Hence, employing formula (3.6), we confirm that the spectrum of the operator 𝐿(𝜀) splits into

two series {𝜆(𝑗)
𝑘 }, 𝑗 = 1, 2, satisfying the estimates

𝑄𝑗

(︁
𝜆
(𝑗)
𝑘

)︁
= 𝜋𝑘𝜀(1 + 𝑜(1)), 𝜀 → +0,

and in accordance with the definition of the curves 𝛾𝑗(𝑐), we arrive at the statement of the
theorem. The proof is complete.

4. Infinitely differentiable potentials. Solution to direct problem

According Lemma 2.1 in work [6], if function (3.1) satisfies Conditions 1)–4), then for each
𝜆 ∈ Π𝑐 (𝑐 > 0) function (3.10) can be represented as

Φ(𝜆, 𝑠) =
sin 𝑠

𝑠
+

1

𝑠

∫︁
𝑃 (𝜆)

𝑒2𝑖𝑠𝑡𝐻(𝜆, 𝑡)𝑑𝑡, (4.1)

where 𝑃 (𝜆) is a parallelogram with vertices at the points ±𝑖, ±(2𝐴− 1)𝑖, the function 𝐻(𝜆, ·)
on 𝑃 (𝜆) ∖ {±𝑖} has the same smoothness as the primitive of 𝑞

𝑄(𝜆, 𝑧) =

∫︁
𝑃 (𝜆,𝑖,𝑧)

𝑞(𝑡)𝑑𝑡,

where 𝑃 (𝜆, 𝑖, 𝑧) is the shortest part of 𝑃 (𝜆) connecting the points 𝑖 and 𝑧. By Condition 3)
this implies that (𝑛 + 1)th derivative of 𝐻 at the points ±(2𝐴 − 1)𝑖 has a jump and owing
to this fact, it is possible to find the asymptotics for Φ(𝜆, 𝑠) as 𝑠 goes to infinity along each
ray. In the case, when the function 𝑞 is infinitely differentiable at the point 𝑎, formula (4.1)
does not allow us to say something certain about the behavior of Φ(𝜆, 𝑠) for large 𝑠 except for
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one case, namely, once we assume that 𝑞 is holomorphic so that Condition 4) holds for entire
interval (0, 1). Indeed, in this case the spectrum of problem (3.8)–(3.9) does not change if the
curve 𝛽(𝜆) is deformed into the segment [0, 1]. Then the parallelogram 𝑃 (𝜆) in formula (4.1)
transforms into a segment and under reasonable conditions for 𝑉 (sufficient summability), the
behavior of Φ(𝜆, 𝑠) for large 𝑠 is determined by the leading term in the right hand side in (4.1).
This means that the spectrum of problem (3.8)–(3.9) satisfies asymptotics 𝑠𝑛 ∼ 𝜋𝑛, 𝑛 → ∞,
that is, at infinity it localizes along a single ray and this is why it is natural to expect that for
sufficiently large 𝑐 > 0, the set Γ(𝑐) consists in a single curve.

At the same time, there exists a piece-wise holomorphic infinitely differentiable function 𝑉 on
some smooth curve 𝛽 [7, Ex. 1] such that the spectrum of corresponding problem (3.8)–(3.9)
is localized along two rays. This hints that the infinite differentiability is insufficient to ensure
that Γ(𝑐) consists in a single curve.

In view of this, two questions arise:
1) What are reasonable conditions on 𝑉 , or, equivalently, on 𝑞?
2) How much the holomorphy of the function 𝑞 is needed to ensure that Γ(𝑐) consists of a

single curve?
The second question is in fact an inverse problem: by some spectral data of the operator

𝐿(𝜀) (for small 𝜀), find out the holomorphy of 𝑞 near (0, 1). In order to understand what
spectral data are to be chosen, it is natural to begin with the direct problem, and as reasonable
conditions, we choose the holomorphy of 𝑞 near (0, 1). Hence, the following problem arises.

Problem 4.1. Assume that the following condition holds:
(i′) the function 𝑞 is real, increases on [0, 1] and holomorphic in some neighbourhood 𝐺 of

the segment [0, 1].
Describe the behavior of the spectrum of the operator 𝐿(𝜀) as 𝜀 → 0 in the sector | arg 𝜀| 6

𝜋/4.

We mention that the need to go the complex 𝜀-plane is justified not only by the aim to find
maximal information on LSG from condition (i′) but also by the identity

𝐿(𝜀) = −𝑖𝜀2𝐻(𝑖/𝜀2),

where

𝐻(𝛽) = 𝐻0 + 𝛽𝑄, 𝐻0 = −𝑑2/𝑑𝑥2, 𝐷(𝐻0) = {𝑦 ∈ 𝑊 2
2 [0, 1] : 𝑦(0) = 𝑦(1) = 0},

𝑄 is the operator of multiplication by the function 𝑞. The boundedness of the function 𝑞 implies
that 𝐻0-bound of the operator 𝑄 is equal to 0 and this is why 𝐻0 +𝛽𝑄 is a holomorphic family
of type (A) [9, Ch. VII, Sec. 2].

We also note that the restriction | arg 𝜀| 6 𝜋/4 is inessential since for 𝜋/4 < | arg 𝜀| 6 𝜋/2,
instead of 𝐿(𝜀), we can consider the operator −𝐿(𝜀), which is of the same nature.

Since the function 𝑞 is continuous, then

(𝐿(𝜀)𝑦, 𝑦) = −𝑖𝜀2‖𝑦′‖2 + (𝑞𝑦, 𝑦),

and by the real-valuedness of 𝑞 this implies that the spectrum of the operator 𝐿(𝜀) is completely
located in the lower half-plane 𝑃− = {Im 𝑧 < 0}.

To solve problem 4.1, we first prove two lemmata on two bijections. The first lemma concerns
𝑃− and function (1.2).

Lemma 4.1. Let the function 𝑞 be continuously differentiable and increases on [0, 1]. Then
the function 𝑄 is holomorphic in 𝑃−, continuous on 𝑃− and is a one-to-one correspondence
between 𝑃− and the domain 𝐷, the boundary of which consists of the rays

𝜎1 = {𝑧 = 𝑒
𝑖𝜋
4 𝑠, 𝑠 > |𝑄(𝑀)|} and 𝜎2 = {𝑧 = 𝑒−

𝑖𝜋
4 𝑠, 𝑠 > |𝑄(𝑚)|}
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connected by the curve 𝜎3 such that 𝐷 is convex and is separated from zero.

Proof. The fact that 𝑄 is holomorphic in 𝑃− and is continuous up to the intervals (−∞,𝑚) and
(𝑀,+∞) is implied immediately by (1.2). Then by direct calculations we check easily that the
limit of the function 𝑄 at each point 𝑡 in the segment [𝑚,𝑀 ] along each non-tangential path
exists and is equal to

𝑧 = 𝑧(𝑡) := 𝑒
𝑖𝜋
4

𝑞−1(𝑡)∫︁
0

√︀
𝑡− 𝑞(𝑥)𝑑𝑥 + 𝑒−

𝑖𝜋
4

1∫︁
𝑞−1(𝑡)

√︀
𝑞(𝑥) − 𝑡𝑑𝑥, 𝑡 ∈ [𝑚,𝑀 ]. (4.2)

Hence, by relations

𝑄(𝜆) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑒
𝑖𝜋
4

1∫︁
0

√︀
𝜆− 𝑞𝑑𝑥 for 𝜆 > 𝑀,

𝑒−
𝑖𝜋
4

1∫︁
0

√︀
𝑞 − 𝜆𝑑𝑥 for 𝜆 6 𝑚,

we conclude that the mapping 𝑄 : 𝜕𝑃− −→ 𝜕𝐷 is a bijection.
We denote by 𝐷* the image of 𝐷 under the mapping 𝑧 ↦−→ 1/𝑧. Then the function 𝑓(𝜆) =

1/𝑄(𝜆) is holomorphic in 𝑃−, is continuous on 𝑃− and maps the boundary 𝑃− onto and one-
to-one to the boundary of 𝐷*, which is the axis 𝑂𝑥. According to the Carathéodory theorem
[8, Sect. 13, Sect. 41], the mapping 𝑓 : 𝑃− −→ 𝐷* is a bijection, and hence, the same is true
for 𝑄 : 𝑃− −→ 𝐷.

By (4.2) we see that argument of 𝑧(𝑡) decreases continuously on [𝑚,𝑀 ] from 3𝜋/4 to 𝜋/4,
and hence, 𝐷 is convex. We are going to prove that

𝑑 := inf
𝑧∈𝐷

|𝑧| > 0. (4.3)

By (4.2)

|𝑧(𝑡)|2 =

⃒⃒⃒⃒
⃒⃒⃒ 𝑞−1(𝑡)∫︁

0

√︀
𝑡− 𝑞(𝑥)𝑑𝑥

⃒⃒⃒⃒
⃒⃒⃒
2

+

⃒⃒⃒⃒
⃒⃒⃒ 1∫︁
𝑞−1(𝑡)

√︀
𝑞(𝑥) − 𝑡𝑑𝑥

⃒⃒⃒⃒
⃒⃒⃒
2

> 0, 𝑡 ∈ [𝑚,𝑀 ],

and since 𝑧 is continuous, then min
𝑡∈[𝑚,𝑀 ]

|𝑧(𝑡)| > 0. This implies (4.3). The proof is complete.

By Condition (i′), the function 𝑞 increases on [0, 1]. In the proof Theorem 3.1 it was observed
that for each 𝜆 ∈ 𝑃−, the set 𝛽(𝜆), being the image of the segment [0, 1] under mapping (3.4),
is the graph of a strictly convex function. We introduce the notations:

𝑃−(𝑐) = {𝑟𝑒𝑖𝜙 : 𝑟 > 𝑐,−𝜋 6 𝜙 6 0}, (4.4)

and 𝐸(𝜆) is the domain enveloped by the curve 𝛽(𝜆) and [0, 1].

Lemma 4.2. Let condition (i′) hold. Then there exist 𝑐1 > 0 such that for all 𝜆 in 𝑃−(𝑐1)
there exists a curve 𝛼(𝜆) with the parametrization 𝑧 = 𝑡 + 𝑖𝛼(𝜆, 𝑡), 𝑡 ∈ [0, 1], where a function
𝛼(𝜆, ·) is infinitely differentiable on [0, 1], negative on (0, 1), vanishes at the points 0 and 1 and
such that the compact set 𝐾(𝜆) enveloped by the curve 𝛼(𝜆) and the segment [0, 1] is mapped
by the function (3.4) conformally, one-to-one and onto the closure of the domain 𝐸(𝜆).
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Proof. Let 𝐺1 be a domain such that [0, 1] ⊂ 𝐺1 ⊂ 𝐺. By (3.4), there exists 𝑐1 > 0 such that
the function 𝜉(𝜆, 𝑧) is holomorphic in the domain 𝑃−(𝑐) ×𝐺1 and

𝜕𝑘

𝜕𝑧𝑘
𝜉(𝜆, 𝑧) = 𝑧1−𝑘 + 𝑅𝑘(𝜆, 𝑧), 𝑘 = 0, 1, (4.5)

sup
(𝑡,𝜆,𝑧)∈𝑋

⃒⃒⃒⃒
𝑅0(𝜆, 𝑧)

𝑧 − 𝑡

⃒⃒⃒⃒
< 1, sup

(𝜆,𝑧)∈𝑌

⃒⃒⃒⃒
𝜕

𝜕𝑧
𝑅1(𝜆, 𝑧)

⃒⃒⃒⃒
< 1, (4.6)

where 𝑋 = [0, 1] × 𝑌 , 𝑌 = 𝑃−(𝑐) ×𝐺1. We apply the Rouché theorem to the equation

𝜉(𝜆, 𝑧) − 𝑡 = 0, (𝑡, 𝜆) ∈ [0, 1] × 𝑃−(𝑐),

employing (4.5)–(4.6) with 𝑘 = 0. As a result, we find a unique point 𝑧(𝜆, 𝑡) ∈ 𝐺1 such that
𝜉(𝜆, 𝑧(𝜆, 𝑡)) = 𝑡. We denote by 𝛼(𝜆) a curve with the parametrization 𝑧 = 𝑧(𝜆, 𝑡), 𝑡 ∈ [0, 1]. It
was mentioned above that all internal points of the curve 𝛽(𝜆) are located outside [0, 1]. Taking
this into consideration, it is easy to confirm that the curve 𝛼(𝜆) possesses the same property.
Then the curves 𝜔(𝜆) = 𝛼(𝜆) ∪ [0, 1] and 𝜔*(𝜆) = 𝛽(𝜆) ∪ [0, 1] are closed and Jordan. We
denote by 𝐾(𝜆) the compact set enveloped by the curve 𝜔(𝜆). By construction, the mapping
𝜉(𝜆, ·) : 𝜔(𝜆) −→ 𝜔*(𝜆) is a bijection. Since the function 𝜉(𝜆, ·) is holomorphic on 𝐾(𝜆), by

the Carathéodory theore, [8, Sect. 13, Subsect. 41], the mapping 𝜉(𝜆, ·) : 𝐾(𝜆) −→ 𝐸(𝜆) is
a bijection. The conformal property is implied by estimate (4.5), (4.6) with 𝑘 = 1. The fact
that 𝛼(𝜆, 𝑥) is negative for 𝑥 ∈ (0, 1) follows from the conformal property, while the infinite
differentiability of 𝛼(𝜆, ·)) is yielded by the holomorphy of the function 𝑧(𝜆, ·) on [0, 1]. The
proof is complete.

It follows from the proven lemma that for all 𝜆 ∈ 𝑃−(𝑐1), where 𝑐1 > 0 is a constant obeying
the assumptions of the lemma, the spectrum of problem (3.8)–(3.9) does not change under the
replacement of the curve 𝛽(𝜆) by the segment [0, 1]. We denote by 𝑇 (𝜆) the operator generated
in 𝐿2(0, 1) by the differential expression −𝑑2/𝑑𝜉2 + 𝑉 (𝜆, ·) and boundary conditions (3.9).

Lemma 4.3. There exist numbers 𝐵 > 0 and 𝑐2 > 𝑐1 such that for each 𝜆 in 𝑃−(𝑐2), the

spectrum of the operator 𝑇 (𝜆) consists of simple eigenvalues
{︀

(𝑠𝑛(𝜆))2
}︀∞
𝑛=1

, which satisfy the
estimate

𝑠𝑛 = 𝜋𝑛 +
𝑎𝑛(𝜆)

𝑛𝜆
, |𝑎𝑛(𝜆)| < 𝐵 for all 𝑛 > 1 and 𝜆 ∈ 𝑃−(𝑐2). (4.7)

Proof. According formula (3.5) and Lemma 4.2, the potential in the operator 𝑇 (𝜆) reads as

𝑉 (𝜆, 𝜉) =
𝑄2

𝜆− 𝑝

[︃
𝑝1

𝜆− 𝑝
+

(︂
𝑝2

𝜆− 𝑝

)︂2
]︃
,

where 𝑝, 𝑝1, 𝑝2 are holomorphic on the segment [0, 1] functions. Therefore, there exist 𝑐′ > 𝑐1
and 𝐵′ > 0 such that

|𝑉 (𝜆, 𝜉)| 6 𝐵′

𝜆
for all 𝜆 ∈ 𝑃−(𝑐′) and 𝜉 ∈ [0, 1]. (4.8)

The eigenvalues of the operator 𝑇 (𝜆) are the roots of the equation 𝜙(1, 𝑠, 𝜆) = 0, where
𝜙(𝜉, 𝑠, 𝜆) is a solution of the equation −𝑣′′+𝑉 (𝜆, ·)𝑣 = 𝑠2𝑣 satisfying the conditions 𝜙(𝜆, 𝑠, 0) =
0, 𝜙′(𝜆, 𝑠, 0) = 1. The function 𝜙1 = 𝑠𝜙 satisfies the integral equation

𝜙1(𝜉, 𝑠, 𝜆) = sin 𝑠𝜉 +
1

𝑠

𝜉∫︁
0

sin 𝑠(𝜉 − 𝜂)𝑉 (𝜆, 𝜂)𝜙1(𝜂, 𝑠, 𝜆)𝑑𝜂.
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Applying the standard method of successive approximations, see, for instance, [10, Sect. 22.25],
in view of estimate (4.8) we arrive at an equation for the spectrum:

sin 𝑠 +
𝑓(𝜆)

𝑠𝜆
= 0, where 𝑓 is bounded on 𝑃−(𝑐′).

This shows that there exist 𝑐2 > 𝑐′ and 𝐵 > 0 such that for all 𝜆 ∈ 𝑃−(𝑐2) and 𝑛 ∈ N we can
apply the Rouché theorem to the circles |𝑠− 𝜋𝑛| = 𝐵(𝑛|𝜆|)−1 that implies (4.7). The proof is
complete.

We introduce some notations. According Lemma 4.1, for each 𝜀 in the sector

ℰ =
{︁
𝑟𝑒𝑖𝜙 : 𝑟 > 0, | arg 𝜀| 6 𝜋

4

}︁
(4.9)

and for each 𝑐 > 0 there exists a unique natural number 𝑚(𝑐, 𝜀) such that for all natural
𝑛 > 𝑚(𝑐, 𝜀) the equation

𝑄(𝜇) = 𝜋𝑛𝜀, |𝜇| > 𝑐, (4.10)

has a unique root. We denote these roots by {𝜇𝑛(𝜀)}∞𝑛=𝑚(𝑐,𝜀).

Let 𝜎(𝑐, 𝜀) (𝜀 ∈ ℰ) be a part of the spectrum of the operator 𝐿(𝜀) located in the domain
𝑃−(𝑐).

Theorem 4.1. Let condition (i′) hold. Then there exist positive numbers 𝑐, 𝜏 and 𝐴 such
that

𝜎(𝑐, 𝜀) = {𝜆𝑛(𝜀)}∞𝑛=𝑙(𝑐,𝜀), 𝑚(𝑐, 𝜀) − 2 6 𝑙(𝑐, 𝜀) 6 𝑚(𝑐, 𝜀) + 1, (4.11)

𝜆𝑛(𝜀) = 𝜇𝑛(𝜀) + 𝛿𝑛(𝜀), |𝛿𝑛(𝜀)| 6 𝐴|𝜀|2, (4.12)

for all 𝜀 in the sector ℰ(𝜏) = {𝜀 ∈ ℰ : |𝜀| < 𝜏}.

Proof. Let 𝑐2 be a constant defined in Lemma 4.3. We choose 𝑐 > 𝑐2 so that
1∫︁

0

√︀
𝑖(𝜆− 𝑞)𝑑𝑥 =

√
𝑖𝜆 [1 + 𝑟(𝜆)] , |𝑟(𝜆)| < 1/2 for all 𝜆 ∈ 𝑃−(𝑐), (4.13)

⃒⃒⃒⃒
⃒⃒

1∫︁
0

𝑑𝑥√
𝜆1 − 𝑞 +

√
𝜆2 − 𝑞

⃒⃒⃒⃒
⃒⃒ > 1

3 max
{︁√︀

|𝜆1|,
√︀
|𝜆2|

}︁ for all 𝜆1, 𝜆2 ∈ 𝑃−(𝑐). (4.14)

We choose an arbitrary 𝜀 in the sector ℰ(𝜏), where 𝜏 is a positive number, which will be
specified later. We choose an arbitrary 𝜆 ∈ 𝜎(𝑐, 𝜀) and we are going to show that there exists a
unique index 𝑛 such that 𝜆 coincides with 𝜆𝑛(𝜀), for which relations (4.12) are satisfied. We let
𝑠 = 𝑄(𝜆)/𝜀. According formulae (3.2) – (3.9), the number 𝑠2 is an eigenvalue of problem (3.8),
(3.9) obeying the condition:

𝑠𝜀 ∈ 𝐷(𝑐), (4.15)

where 𝐷(𝑐) is the image of 𝑃−(𝑐) under the mapping 𝜆 ↦−→ 𝑄(𝜆). Since 𝑐 > 𝑐1, by Lemma 4.2,
the number 𝑠2 is an eigenvalue of the operator 𝑇 (𝜆). Since 𝑐 > 𝑐2, then by Lemma 4.3 there
exists an index 𝑛 > 𝑙(𝑐, 𝜀) such that 𝑠 = 𝑠𝑛 and for 𝑠𝑛, estimate (4.7) is valid. Here 𝑙(𝑐, 𝜀)
stands for the smallest 𝑛, for which 𝑠𝑛 satisfies (4.15). Hence,

𝑄(𝜆)

𝜀
= 𝜋𝑛 +

𝑎𝑛(𝜆)

𝑛𝜆
. (4.16)

Taking into consideration estimates (4.7), (4.13) and that 𝜀 ∈ ℰ(𝜏), 𝜆 ∈ 𝑃−(𝑐), we therefore
have: √

𝑐

2𝜏
<

|𝑄(𝜆)|
|𝜀|

=

⃒⃒⃒⃒
𝜋𝑛 +

𝑎𝑛(𝜆)

𝑛𝜆

⃒⃒⃒⃒
< 𝜋𝑛 +

𝐵

𝑐
.
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Now we postulate 𝜏 < 𝑐3/2

4𝐵
. Then

√
𝑐

4𝜏
> 𝐵

𝑐
, and this is why

𝜋𝑛 >
|𝑄(𝜆)|
|𝜀|

− 𝐵

𝑐
>

|𝑄(𝜆)|
2|𝜀|

.

Taking into consideration (4.13) once again, we hence obtain: 𝑛 >

√
|𝜆|

4𝜋|𝜀| . Then relation (4.16)

can be written as

𝑄(𝜆) = 𝜋𝑛𝜀 +
𝑏𝑛(𝜆)

𝜆
3
2

𝜀2, where |𝑏𝑛(𝜆)| 6 4𝜋𝐵

for all 𝑛 > 𝑙(𝑐, 𝜀) and 𝜆 ∈ 𝑃−(𝑐). By (4.10) and estimate (4.14) this implies that

𝜆 = 𝜇𝑛(𝜀) + 𝛿𝑛(𝜀), where |𝛿𝑛(𝜀)| 6 𝐴|𝜀|2, 𝑛 > 𝑙(𝑐, 𝜀),

where 𝐴 is a constant independent of 𝜀 and 𝑛. Therefore, the statement on existence of 𝑛 with
a desired property is proved. It remains to prove inequalities

𝑚(𝑐, 𝜀) − 2 6 𝑙(𝑐, 𝜀) 6 𝑚(𝑐, 𝜀) + 1. (4.17)

In what follows, to simplify the writing, instead of 𝑚(𝑐, 𝜀) and 𝑙(𝑐, 𝜀) we write 𝑚 and 𝑙. Ac-
cording the definition, 𝑙 is the smallest of all 𝑛, for which 𝜆𝑛(𝜀) ∈ 𝑃−(𝑐). We first prove that
there exists 𝑑 > 0 such that

|𝜇𝑚+1(𝜀)| > 𝑐 + 𝑑|𝜀| for all 𝑐 ≫ 1 and 𝜀 ∈ ℰ . (4.18)

It follows from identity (4.10) that for an arbitrary 𝛿 > 0 there exists a constant 𝑐1 = 𝑐1(𝛿) > 0
such that

𝜇𝑛(𝜀) =
(𝜋𝑛𝜀)2

𝑖
(1 + 𝜎1(𝑛, 𝜀)) , where |𝜎1(𝑛, 𝜀)| < 𝛿 and 𝑛 > 𝑚(𝑐1, 𝜀). (4.19)

Employing (4.10) once again and taking into consideration (4.19), we find 𝑐2 = 𝑐2(𝛿) > 0 such
that

𝜇𝑚+1(𝜀) − 𝜇𝑚(𝜀) =
𝜋2𝜀2𝑚

𝑖
(1 + 𝜎2(𝜀)) , where |𝜎2(𝜀)| < 𝛿 and 𝑚 = 𝑚(𝑐2, 𝜀). (4.20)

We let 𝑐(𝛿) = max{𝑐1(𝛿), 𝑐2(𝛿)} and 𝑚 = 𝑚(𝑐(𝛿), 𝜀). Employing relations (4.19) and (4.20), it
is easy to confirm that for small 𝛿 > 0 the arguments of the numbers 𝜇𝑚(𝜀) and 𝜇𝑚+1(𝜀)−𝜇𝑚(𝜀)
differ a little. On the other hand, since |𝜇𝑚(𝜀)| > 𝑐, then 𝑚|𝜀| > 𝑐/𝜋, and by (4.20) we find
that |𝜇𝑚+1(𝜀)−𝜇𝑚(𝜀)| > 𝑑′|𝜀|, where 𝑑′ > 0 is independent of 𝜀. The said implies easily (4.18).

Let 𝑐 > 0 and 𝜏 be such that both estimates (4.18) and (4.12) are satisfied. We choose 𝜏
small enough such that for all 𝜀 ∈ ℰ(𝜏) the inequality 𝐴|𝜀|2 < 𝑑‖𝜀| holds, where 𝐴 and 𝑑 are
constants in estimates (4.12) and (4.18). Then |𝜆𝑚+1| > 𝑐, and therefore, 𝑙(𝑐, 𝜀) 6 𝑚(𝑐, 𝜀) + 1.
The first inequality in (4.17) can be proved in the same way. The proof is complete.

5. Main results

In this section we solve the inverse problem. As the spectral data, we choose the localization
property of the spectrum of the operator 𝐿(𝜀) for small 𝜀 ∈ ℰ at the roots of the equation (4.10)
in a sense weaker than the estimate in (4.12).

Theorem 5.1. Let the function 𝑞 be real, increases on [0, 1], is differentiable and 𝑞′ ∈
𝐴𝐶[0, 1]. Suppose that there exists 𝑐 > 0 such that as 𝜀 tends to 0 along the sector (4.9),
the spectrum 𝜎(𝑐, 𝜀) of the operator 𝐿(𝜀) in the domain 𝑃−(𝑐) is localized as follows:

𝜎(𝑐, 𝜀) = {𝜆𝑛(𝜀)}∞𝑛1(𝑐,𝜀)
, (5.1)

𝜆𝑛(𝜀) = 𝜇𝑛(𝜀) + 𝑜(1), (5.2)



76 KH.K. ISHKIN, R.I. MARVANOV

where 𝜇𝑛(𝜀) are the roots of equation (4.10) and the estimate 𝑜(1) is uniform in 𝑛. Then the
function 𝑞 admits a holomorphic continuation into some neighbourhood of the interval (0, 1).

Proof. Let 𝑐 > 0 be a constant involved in the formulation of the theorem. We choose an
arbitrary point 𝜆0 in 𝑃−(𝑐) lying on the curve Im𝑄(𝜆) = 0. Substitution (3.4) and (3.7)
transforms problem (3.2), (3.3) into problem (3.8), (3.9) on the curve 𝛽(𝜆0). We denote by
𝛼0 and 𝛼1 the angles between the curve 𝛽(𝜆0) and the abscissa axis at the points 0 and 1,
respectively. It was noted in the proof of Theorem 3.1 that the curve 𝛽(𝜆0) is the graph of a
convex function and this is why 0 < 𝛼0 < 𝜋/2 and −𝜋/2 < 𝛼1 < 0. It is known [7] that in
this case the spectrum of problem (3.8), (3.9), except for finitely many points, is located in
the angle −2𝛼0 < arg 𝑧 < −2𝛼1. Let us show that under the assumptions of the theorem, the
eigenvalues {𝑠2𝑘} of this problem for large 𝑘 are located along the ray arg 𝑠 = 0 in the following
sense:

arg 𝑠𝑘 → 0, 𝑘 → +∞. (5.3)

Assume the opposite, namely, let there exists a subsequence of indices {𝑘𝑗}, 𝑗 = 1, 2, . . . , such
that arg 𝑠𝑘𝑗 → 𝛼, 𝑗 → +∞, for some 𝛼 ∈ (−𝛼0, 0) ∪ (0,−𝛼1). We let 𝜀𝑗 = 𝑄(𝜆0)/𝑠𝑘𝑗 ,
𝑛𝑗 = [|𝑠𝑘𝑗 |/𝜋], where [𝑥] denotes the integer part of a number 𝑥.

By relations (3.4)–(3.9), if 𝑠2 is an eigenvalue of problem (3.8), (3.9) and the point 𝜀 in
ℰ satisfies condition (4.15), the 𝜆 ∈ 𝜎(𝑐, 𝜀). We have 𝑠𝑘𝑗𝜀𝑗 = 𝑄(𝜆0) ∈ 𝐷(𝑐), and hence,
𝜆0 ∈ 𝜎(𝑐, 𝜀𝑗). By conditions (5.1)–(5.2) we get 𝜆0 = 𝜇𝑛𝑗

(𝜀𝑗) + 𝛿𝑗, where 𝛿𝑗 → 0, 𝑗 → ∞. Then

𝑄(𝜇𝑛𝑗
(𝜀𝑗)) ∼ 𝑄(𝜆0) + 𝛿𝑗

1∫︁
0

√︃
𝑖

2(𝜆0 − 𝑞)
𝑑𝑥, 𝑗 → ∞,

and therefore, arg 𝑄(𝜇𝑛𝑗
(𝜀𝑗)) → 0, 𝑗 → ∞. On the other hand, according (4.10), we have

arg 𝑄(𝜇𝑛𝑗
(𝜀𝑗)) → −𝛽 as 𝑗 → ∞. The obtained contradiction proves (5.3).

According the criterion of the localization of the spectrum of the Sturm-Liouville operator
on the curve [11, Thm. 3], by (5.3) we conclude that the function 𝑉 , see (3.5), possesses

a meromorphic continuation ̃︀𝑉 into the domain 𝐸(𝜆0) bounded by the curve 𝛽(𝜆0) and the

segment [0, 1]. The poles of ̃︀𝑉 can have accumulation points only in the segment [0, 1], and

the function ̃︀𝑉 is holomorphic in some domain 𝐺(𝜆0) bounded by the segment [0, 1] and the
curve 𝛽(𝜆0) homotopic to [0, 1] in 𝐸(𝜆0), is continuous up to each arc of the curve 𝛽(𝜆0) with
the end-points not coinciding with 0 and 1 and coinciding there with 𝑉 . We are going to prove
that this implies the holomorphy of the function 𝑞 in some neighbourhood of the interval (0, 1).
We let:

𝑝 = 𝑝(𝜉) = (𝜆0 − 𝑞(𝑥))1/4)
⃒⃒
𝑥=𝑥(𝜆0,𝜉)

, 𝜉 ∈ 𝛽(𝜆0),

By formulae (3.4) and (3.4) we see that the function 𝑝 solves the Cauchy problem

−𝑑2𝑣

𝑑𝜉2
+ 𝑉 (𝜆0, 𝜉)𝑣 = 0, 𝑣(0) = (𝜆0 −𝑚)

1
4 ,

𝑑𝑣

𝑑𝜉
(0) =

𝑄(𝜆0)𝑞
′(0)

4𝑖(𝜆0 −𝑚)
1
4

.

Since the function 𝑉 is holomorphic in the domain 𝐺(𝜆0), then the function 𝑝 is also holomorphic

in the same domain. Therefore, the function (𝜆0 − 𝑞(𝑧))
1
4 = 𝑝(𝜆0, 𝜉(𝑧)) is holomorphic in the

domain 𝑊 , which is the pre-image of 𝐺(𝜆0) under mapping (3.4). The domain 𝑊 is contained
in the lower or upper half-plane 𝑧 and its boundary contains entire interval (0, 1). Applying
Schwartz principle, we find a neighbourhood of the interval (0, 1), in which the function 𝑞 is
holomorphic. The proof is complete.
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