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GEOMETRY OF RADIAL HILBERT SPACES WITH

UNCONDITIONAL BASES OF REPRODUCING KERNELS

K.P. ISAEV, R.S. YULMUKHAMETOV

Abstract. We study the geometry of abstract radial functional Hilbert spaces stable with
respect to dividing and possessing an unconditional basis of reproducing kernels. We obtain
a simple necessary condition ensuring the existence of such bases in terms of the sequence
‖𝑧𝑛‖, 𝑛 ∈ N ∪ {0}. We also obtain a sufficient condition for the norm and the Bergman
function of the space to be recovered by a sequence of the norms of monomials. Two main
statements we prove are as follows. Let 𝐻 be a radial functional Hilbert space of entire
functions stable with respect to dividing and let the system of monomials {𝑧𝑛}, 𝑛 ∈ N∪{0},
be complete in this space.

1. If the space 𝐻 possesses an unconditional basis of reproducing kernels, then

‖𝑧𝑛‖ ≍ 𝑒𝑢(𝑛), 𝑛 ∈ N ∪ {0},

where the sequence 𝑢(𝑛) is convex, that is

𝑢(𝑛+ 1) + 𝑢(𝑛− 1)− 2𝑢(𝑛) > 0, 𝑛 ∈ N.

2. Let 𝑢𝑛,𝑘 = 𝑢(𝑛) − 𝑢(𝑘) − (𝑢(𝑛) − 𝑢(𝑛 − 1))(𝑛 − 𝑘). If 𝒰 is the matrix with entries
𝑒2𝑢𝑛,𝑘 , 𝑛, 𝑘 ∈ N ∪ {0}, and

‖𝒰‖ := sup
𝑛

(︃∑︁
𝑘

𝑒2𝑢𝑛,𝑘

)︃ 1
2

< ∞,

then
2.1. the space 𝐻 as a Banach space is isomorphic to the space of entire functions with

the norm

‖𝐹‖2 = 1

2𝜋

∞∫︁
0

2𝜋∫︁
0

|𝐹 (𝑟𝑒𝑖𝜙)|2𝑒−2̃︀𝑢(ln 𝑟)𝑑𝜙𝑑̃︀𝑢′+(ln 𝑟),
where ̃︀𝑢 is the Young conjugate of the piecewise-linear function 𝑢(𝑡);

2.2. the Bergman function of the space 𝐻 satisfies the condition

𝐾(𝑧) ≍ 𝑒2̃︀𝑢(ln |𝑧|), 𝑧 ∈ C.
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1. Introduction

Throughout the paper the symbol stands 𝐻 for a functional Hilbert space of entire functions
stable with respect to dividing in the following sense:

1) all evaluation functionals 𝛿𝑧 : 𝑓 → 𝑓(𝑧) are continuous;
2) if 𝐹 ∈ 𝐻, 𝐹 (𝑧0) = 0, then 𝐹 (𝑧)(𝑧 − 𝑧0)

−1 ∈ 𝐻.
The functional property of the space implies that it admits a reproducing kernel 𝑘(𝜆, 𝑧):

𝑓(𝑧) = (𝑓(𝜆), 𝑘(𝜆, 𝑧)), ∀𝑧 ∈ C, ∀𝑓 ∈ 𝐻.

By 𝐾(𝑧) we denote 𝑘(𝑧, 𝑧). Then the Bergman function of the space 𝐻 is ‖𝛿𝑧‖𝐻 = (𝐾(𝑧))
1
2 ,

see [1].
A basis {𝑒𝑘, 𝑘 = 1, 2, . . .} in a Hilbert space is an unconditional basis, see [2], if there exist

numbers 𝑐, 𝐶 > 0 such that for each element 𝑥 =
∞∑︀
𝑘=1

𝑥𝑘𝑒𝑘 ∈ 𝐻, the identity holds:

𝑐
∞∑︁
𝑗=1

|𝑐𝑘|2‖𝑒𝑘‖2 6

⃦⃦⃦⃦
⃦

∞∑︁
𝑗=1

𝑐𝑘𝑒𝑘

⃦⃦⃦⃦
⃦
2

6 𝐶

∞∑︁
𝑗=1

|𝑐𝑘|2‖𝑒𝑘‖2.

The issue on existence and construction of unconditional bases from the values of reproducing
kernels in the Hilbert spaces of analytic functions is actively studied during last years.

This problems goes back to closely related classical problems: representation of the functions
by exponential series and interpolation by entire functions. The representation by exponential
series was actively developed by A.F. Leontiev and by its pupils, the main results and analytic
methods were exposed in monograph [3]. Yu.F. Korobeinik and its pupils studied functional
analytic methods, he created the theory of absolutely representing systems in locally convex
spaces of holomorphic functions; the main results were presented in work [4]. In the theory of
absolutely representing systems, the fineness of the topology in the space naturally plays an
important role. In works [5], [6] there proved theorems on existence of representing exponen-
tial systems in projective and inductive limits of weighted spaces, in which the differentiation
operator acts continuously.

The further advantage in this space in the sense of the topology fineness suggests the studying
of normed spaces, that is, the construction of unconditional basis. As it turned out, the bases
of exponentials is a rare event. To the best of the authors’ knowledge, these are bases in
the classical space 𝐿2 and the Sobolev spaces 𝐿𝑠

2, see [7], the bases in Smirnov spaces [8] and
Bergman spaces [9] on convex polygons. There is a series of works on the absence of the
bases of exponentials. For instance, there are no bases of exponentials in the Smirnov and
Bergman spaces on domains with a smooth boundary, see [10], [11]. There are also no bases of
exponentials in the weighted spaces, when the weight grows faster than a power function [12]
or is comparable with a power function [13].

In works [14]–[16], in terms of the interpolation by entire functions there was shown the
absence of unconditional bases formed by the values of reproducing kernel in the classical
Bargmann space and Fock spaces

ℱ𝜙 =

⎧⎨⎩𝑓 ∈ 𝐻(C) : ||𝑓 ||2 :=

∫︁
C

|𝑓(𝜆)|2𝑒−2𝜙(𝜆)𝑑𝑚(𝜆) < ∞

⎫⎬⎭ ,

with radial weights 𝜙 growing faster than |𝜆|2. In work [17] there was proved the absence of
unconditional bases formed by values of reproducing kernel in spaces with weights obeying the
conditions (ln+ 𝑟)2 = 𝑜(𝜙(𝑟)), 𝑟 → ∞ and possessing some regularity of the growth. In the
same work, an unexpected result was obtained, which stated the existence of unconditional
bases formed by the values of a reproducing kernel in the Fock spaces ℱ𝜙𝛼 with the weights
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𝜙𝛼(𝜆) = (ln+ |𝜆|)𝛼 as 𝛼 ∈ (1; 2]. Later, in paper [18], there was proved the existence of
unconditional bases formed by values of a reproducing kernel in the Fock spaces with radial
weights of essentially more general form.

In what follows we shall make use of the following notations. For positive functions 𝐴, 𝐵,
the writing 𝐴(𝑥) ≍ 𝐵(𝑥), 𝑥 ∈ 𝑋, means that for some constants 𝐶, 𝑐 > 0 and for all 𝑥 ∈ 𝑋
the estimates 𝑐𝐵(𝑥) 6 𝐴(𝑥) 6 𝐶𝐵(𝑥) hold. The symbol 𝐴(𝑥) ≺ 𝐵(𝑥), 𝑥 ∈ 𝑋, (𝐴(𝑥) ≻ 𝐵(𝑥),
𝑥 ∈ 𝑋), means the existence of a constant 𝐶 > 0 such that 𝐴(𝑥) 6 𝐶𝐵(𝑥) (𝐵(𝑥) 6 𝐶𝐴(𝑥)).

A functional Hilbert space 𝐻 is called radial if for some 𝐹 ∈ 𝐻 and 𝜙 ∈ R, the function
𝐹 (𝑧𝑒𝑖𝜙) belongs to 𝐻, and

‖𝐹 (𝑧𝑒𝑖𝜙)‖ = ‖𝐹‖.
It is obvious that in a radial Hilbert space the identity holds: 𝐾(𝑧𝑒𝑖𝜙) ≡ 𝐾(𝑧), 𝑧 ∈ C, 𝜙 ∈ R.

In the present work we consider abstract radial functional Hilbert spaces stable with respect
to dividing and we prove the following statements.

1. If 𝐻 is a radial functional Hilbert space stable with respect to dividing and admitting
an unconditional bases formed by values of the reproducing kernel, then there exists a convex
sequence 𝑢(𝑛), 𝑛 ∈ N ∪ {0}, such that ‖𝑧‖𝑛 ≍ 𝑒𝑢(𝑛), 𝑛 ∈ N ∪ {0}. The convexity of {𝑢(𝑛)}
means

𝑢(𝑛 + 1) + 𝑢(𝑛− 1) − 2𝑢(𝑛) > 0, 𝑛 ∈ N,

see Theorem 1.
2. Let 𝑢𝑛,𝑘 = 𝑢(𝑛) − 𝑢(𝑘) − (𝑢(𝑛) − 𝑢(𝑛 − 1))(𝑛 − 𝑘). If 𝒰 is a matrix with entries 𝑒2𝑢𝑛,𝑘 ,

𝑛, 𝑘 ∈ N ∪ {0}, and

‖𝒰‖ := sup
𝑛

(︃∑︁
𝑘

𝑒2𝑢𝑛,𝑘

)︃ 1
2

< ∞,

then
2.1. the space 𝐻 as a Banach space is isomorphic to the space of entire functions with the

norm

‖𝐹‖2 =
1

2𝜋

∞∫︁
0

2𝜋∫︁
0

|𝐹 (𝑟𝑒𝑖𝜙)|2𝑒−2̃︀𝑢(ln 𝑟)𝑑𝜙𝑑̃︀𝑢′
+(ln 𝑟),

where ̃︀𝑢 is the Young conjugate of a piecewise linear function 𝑢(𝑡);
2.2. the Bergman function of the space 𝐻 satisfies the condition

𝐾(𝑧) ≍ 𝑒2̃︀𝑢(ln |𝑧|), 𝑧 ∈ C.

2. Description of norm and Bergman function

The following theorem was proved in work [19], see Theorem 1.

Theorem 1. If in a radial functional Hilbert space 𝐻 stable with respect to dividing and
containing all monomials 𝑧𝑛, 𝑛 = 0, 1, 2, . . ., then there exists an unconditional basis formed by
the values of reproducing kernel, then there exists a convex sequence 𝑢(𝑛), 𝑛 ∈ N ∪ {0}, such
that ‖𝑧‖𝑛 ≍ 𝑒𝑢(𝑛), 𝑛 ∈ N ∪ {0}. At that,

lim
𝑛→+∞

(𝑢(𝑛 + 1) − 𝑢(𝑛)) = lim
𝑛→+∞

𝑢(𝑛)

𝑛
= +∞.

If in a radial Hilbert space, the system of monomials 𝑧𝑛, 𝑛 ∈ N ∪ {0}, is complete, then the
space is completely determined by the sequence 𝑢(𝑛) = ln ‖𝑧𝑛‖, 𝑛 = 0, 1, 2, . . . This is implied
by the following statement.

Lemma 1. Let 𝐻 be a radial Hilbert space of entire functions and 𝑧𝑛, 𝑧𝑚 ∈ 𝐻, 𝑛 ̸= 𝑚. Then

(𝑧𝑛, 𝑧𝑚) = 0.
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Proof. The radial property of the space implies that for each 𝜙 ∈ R
‖𝑧𝑛 + 𝑧𝑚‖2 = ‖(𝑧𝑒𝑖𝜙)𝑛 + (𝑧𝑒𝑖𝜙)𝑚‖2 = ‖𝑧𝑛‖2 + 2 Re 𝑒𝑖(𝑛−𝑚)𝜙(𝑧𝑛, 𝑧𝑚) + ‖𝑧𝑚‖2,

that is,

Re 𝑒𝑖(𝑛−𝑚)𝜙(𝑧𝑛, 𝑧𝑚) ≡ Const,

which is possible only under the orthogonality of 𝑧𝑛 and 𝑧𝑚. The proof is complete.

The space of entire functions with the norm

‖𝐹‖2 =
∞∑︁
𝑛=0

⃒⃒⃒⃒
𝐹 (𝑛)(0)

𝑛!

⃒⃒⃒⃒2
𝑒2𝑢(𝑛)

is a radial Hilbert space, in which system of monomials 𝑧𝑛, 𝑛 = 0, 1, . . ., is orthogonal and
complete. Hence, in the both spaces this system forms an orthogonal basis and these spaces
coincide as Banach ones.

Theorem 2. If in a radial functional Hilbert space 𝐻 stable with respect to dividing, the
polynomials are complete and for some convex on R function 𝑢(𝑥) we have

‖𝑧𝑛‖ ≍ 𝑒𝑢(𝑛), 𝑛 = 0, 1, . . . ,

𝑈(𝑥) =

∞∫︁
0

𝑒2𝑥𝑡−2𝑢(𝑡)𝑑𝑡, 𝑥 ∈ R,

̃︀𝑢(𝑥) = sup
𝑡∈R

(𝑥𝑡− 𝑢(𝑡)), 𝑥 ∈ R,

then the space 𝐻 is a Banach space is isomorphic to space⎧⎨⎩𝐹 ∈ 𝐻(C) :
1

2𝜋

∞∫︁
0

2𝜋∫︁
0

|𝐹 (𝑟𝑒𝑖𝜙)|2𝑑𝜙𝑑̃︀𝑢′
+(ln 𝑟)

𝑈(ln 𝑟)
< ∞

⎫⎬⎭ .

Proof. In work [20], there was introduced a characteristics of convex functions

𝜌̃︀𝑢(𝑥) = sup

⎧⎨⎩𝑡 > 0 :

𝑥+𝑡∫︁
𝑥−𝑡

|̃︀𝑢′
+(𝜏) − ̃︀𝑢′

+(𝑡)|𝑑𝜏 6 1

⎫⎬⎭ ,

and it was proved (in Lemma 2) that

𝑒−2𝑒2𝑢(𝑡) 6

∞∫︁
−∞

𝑒2𝑥𝑡−2̃︀𝑢(𝑥)𝜌̃︀𝑢(𝑥)𝑑̃︀𝑢′
+(𝑥) 6

𝜋

2
𝑒2𝑒2𝑢(𝑡), 𝑡 ∈ R.

By [21, Thm. 2]

𝑈(𝑥) ≍ 1

𝜌̃︀𝑢(𝑥)
𝑒2̃︀𝑢(𝑥), 𝑥 ∈ R,

thus,
∞∫︁

−∞

𝑒2𝑥𝑡

𝑈(𝑥)
𝑑̃︀𝑢′

+(𝑥) ≍
∞∫︁

−∞

𝑒2𝑥𝑡−2̃︀𝑢(𝑥)𝜌̃︀𝑢(𝑥)𝑑̃︀𝑢′
+(𝑥) ≍ 𝑒2𝑢(𝑡), 𝑡 ∈ R. (1)

For 𝐹 ∈ 𝐻, we let

‖𝐹‖20 :=
1

2𝜋

∞∫︁
0

2𝜋∫︁
0

|𝐹 (𝑟𝑒𝑖𝜙)|2𝑑𝜙𝑑̃︀𝑢′
+(ln 𝑟)

𝑈(ln 𝑟)
.
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Then by (1)

‖𝑧𝑛‖20 =

∞∫︁
0

|𝑟|2𝑛𝑑̃︀𝑢′
+(ln 𝑟)

𝑈(ln 𝑟)
=

∞∫︁
−∞

𝑒2𝑛𝑥𝑑̃︀𝑢′
+(𝑥)

𝑈(𝑥)
≍ 𝑒2𝑢(𝑛) ≍ ‖𝑧𝑛‖2, 𝑛 ∈ N ∪ {0}.

Since the system of monomials forms an orthogonal basis, these norms are equivalent. The
proof is complete.

Without loss of generality we can suppose that the sequence ln ‖𝑧𝑛‖, 𝑛 = 0, 1, . . ., is increasing
and convex and ln ‖𝑧0‖ = 0.

Lemma 2. Let 𝑢(𝑡), 𝑢(𝑛) = ln ‖𝑧𝑛‖, 𝑛 = 0, 1, 2, . . ., be a piece-wise linear non-decreasing
functions with jumps at integer non-negative points, that is,

𝑢(𝑡) = 𝑢(𝑛) + (𝑢(𝑛 + 1) − 𝑢(𝑛))(𝑡− 𝑛), 𝑡 ∈ [𝑛;𝑛 + 1], 𝑛 ∈ N ∪ {0},
and

𝑢′
+(𝑛) = 𝑢′

−(𝑛 + 1) = 𝑢(𝑛 + 1) − 𝑢(𝑛), 𝑛 ∈ N ∪ {0}.
Then the Young conjugate ̃︀𝑢(𝑥) is also piece-wise linear with jumps at the points 𝑥𝑛 = 𝑢(𝑛) −
𝑢(𝑛− 1) = 𝑢′

+(𝑛− 1), 𝑛 ∈ N.
The derivative ̃︀𝑢′

+(𝑥) is the function with unite jumps at the points 𝑥𝑛, 𝑛 ∈ N, in particular,̃︀𝑢(𝑥𝑛) = 𝑥𝑛𝑛− 𝑢(𝑛), ̃︀𝑢′
+(𝑥𝑛) = 𝑛, 𝑛 ∈ N.

Proof. Sincẽ︀𝑢(𝑥) = sup
𝑡>0

(𝑥𝑡− 𝑢(𝑡)) = sup
𝑛∈N∪{0}

sup
𝜏∈[0;1]

(𝑥(𝑛 + 𝜏) − (𝑢(𝑛) + (𝑢(𝑛 + 1) − 𝑢(𝑛))𝜏)

= sup
𝑛∈N∪{0}

(︁
𝑥𝑛− 𝑢(𝑛) + sup

𝜏∈[0;1]
(𝑥− (𝑢(𝑛 + 1) − 𝑢(𝑛))𝜏)

)︁
and the internal supremum is attained at the end-points of the interval [0; 1], theñ︀𝑢(𝑥) = sup

𝑛∈N∪{0}
(𝑥𝑛− 𝑢(𝑛)), 𝑥 ∈ R. (2)

Thus, the Young conjugate ̃︀𝑢(𝑥), as an upper envelope of a sequence of linear functions, is also
linear with jumps at the points 𝑥𝑛 = 𝑢(𝑛) − 𝑢(𝑛− 1) = 𝑢′

+(𝑛− 1), 𝑛 ∈ N, or, in more details,

̃︀𝑢(𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, 𝑥 6 𝑥1 = 𝑢(1) − 𝑢(0),

1 · 𝑥− 𝑢(1), 𝑥1 6 𝑥 6 𝑥2 = 𝑢(2) − 𝑢(1),

. . .

𝑛𝑥− 𝑢(𝑛), 𝑥𝑛 6 𝑥 6 𝑥𝑛+1 = 𝑢(𝑛 + 1) − 𝑢(𝑛),

. . .

(3)

The proof is complete.

By Lemma 2, the function ̃︀𝑢′
+(ln 𝑟) has unit jumps at the points 𝑅𝑛 = 𝑒𝑥𝑛 and the norm

‖𝐹‖0 becomes the sum of a series:

‖𝐹‖20 =
∞∑︁
𝑛=1

1

𝑈(ln𝑅𝑛)

⎛⎝ 1

2𝜋

2𝜋∫︁
0

|𝐹 (𝑅𝑛𝑒
𝑖𝜙)|2𝑑𝜙

⎞⎠ . (4)

Theorem 3. Let 𝐾(𝜆) be the Bergman function of a radial functional Hilbert space 𝐻 stable
with respect to dividing, in which the system of monomials is complete. If the numbers

𝑢𝑛,𝑘 = 𝑢(𝑛) − 𝑢(𝑘) − 𝑢′
+(𝑛− 1)(𝑛− 𝑘), 𝑛, 𝑘 ∈ N ∪ {0},
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satisfy the condition

sup
𝑛

∑︁
𝑘

𝑒2𝑢𝑛,𝑘 := 𝐴 < ∞, (5)

then

𝐾(𝜆) ≍ 𝑒2̃︀𝑢(ln |𝜆|), 𝜆 ∈ C.

Proof. Under the assumptions of the theorem, the functions
{︁

𝑧𝑛

‖𝑧𝑛‖ , 𝑛 = 0, 1, . . .
}︁

form an or-

thonormalized basis. Therefore,

𝑘(𝜆, 𝑧) =
∞∑︁
𝑘=0

𝜆𝑘𝑧𝑘

‖𝑧𝑘‖2
, 𝐾(𝑧) =

∞∑︁
𝑘=0

|𝑧𝑘|2

‖𝑧𝑘‖2
, 𝑧 ∈ C.

Let us prove the needed relation on critical circumferences |𝜆| = 𝑅𝑛,

1 6 𝐾(𝑅𝑛)𝑅−2𝑛
𝑛 ‖𝑧𝑛‖2 ≍

∞∑︁
𝑘=0

𝑅2(𝑘−𝑛)
𝑛 exp (−2𝑢(𝑘) + 2𝑢(𝑛)) , 𝑛 ∈ N.

Since ln𝑅𝑛 = 𝑥𝑛 = 𝑢′
+(𝑛− 1), we have

𝑅2(𝑘−𝑛)
𝑛 exp (−2𝑢(𝑘) + 2𝑢(𝑛)) = exp

(︀
2(𝑢(𝑛) − 𝑢(𝑘) − 𝑢′

+(𝑛− 1)(𝑛− 𝑘))
)︀

= 𝑒2𝑢𝑛,𝑘 ,

and by the assumptions of the theorem,

𝐾(𝑅𝑛) ≍ 𝑅2𝑛
𝑛

‖𝑧𝑛‖2
, 𝑛 ∈ N.

By formula (3) we get

𝐾(𝑅𝑛) ≍ exp (2̃︀𝑢(ln𝑅𝑛)) .

The function ln𝐾(𝑒𝑥) is convex and by the above proved facts,

ln𝐾(𝑒𝑥𝑛) 6 Const + 2̃︀𝑢(𝑥𝑛), 𝑛 ∈ N.

Since the function ̃︀𝑢(𝑡) is linear between the points 𝑥𝑛, this relation holds for all 𝑥:

𝐾(𝜆) ≺ exp (2̃︀𝑢(ln |𝜆|)) , 𝜆 ∈ C. (6)

On the other hand, by the definition of the Bergman function and by formula (2), we find that

𝐾(𝜆) = sup
𝐹∈𝐻

|𝐹 (𝜆)|2

‖𝐹‖2
> sup

𝑛∈N∪{0}

|𝜆𝑛|2

‖𝜆𝑛‖2

= exp

(︃
2 sup
𝑛∈N∪{0}

(𝑛 ln |𝜆| − 𝑢(𝑛))

)︃
= exp (2̃︀𝑢(ln |𝜆|)) .

Together with (6) this implies the statement of the theorem. The proof is complete.

Corollary 1. Let a sequence 𝑢(𝑛) satisfy a condition:

inf
𝑛

(𝑢′
+(𝑛 + 𝑝) − 𝑢′

+(𝑛)) := 𝜎 > 0 (7)

for some 𝑝 ∈ N. Then

𝐾(𝜆) ≍ 𝑒2̃︀𝑢(ln |𝜆|), 𝜆 ∈ C.

By Theorem 3, to prove this corollary, it is sufficient to prove the following lemma.

Lemma 3. Condition (7) implies condition (5).
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Proof. We take 𝑛 ∈ N ∪ {0} and let 𝑘 > 𝑛. For a piece-wise linear function

𝑢′
+(𝑛) = 𝑢(𝑛 + 1) − 𝑢(𝑛),

we have

𝑢(𝑘) − 𝑢(𝑛) =
𝑘−𝑛−1∑︁
𝑗=0

(𝑢(𝑛 + 𝑗 + 1) − 𝑢(𝑛 + 𝑗)) =
𝑘−𝑛−1∑︁
𝑗=0

𝑢′
+(𝑛 + 𝑗).

By condition (𝑢′),

𝑢′
+(𝑛 + 𝑗) > 𝑢′

+(𝑛− 1) +

[︂
𝑗

𝑝

]︂
𝜎, 𝑛 = 1, 2, . . . , 𝑗 = 0, 1, . . . ,

where [𝑥] denotes the integer part of 𝑥. Hence,

𝑢(𝑘) − 𝑢(𝑛) > (𝑘 − 𝑛)𝑢′
+(𝑛− 1) + 𝜎

𝑘−𝑛−1∑︁
𝑗=0

[︂
𝑗

𝑝

]︂
> (𝑘 − 𝑛)𝑢′

+(𝑛− 1) +
𝜎𝑝

2

(︂[︂
𝑘 − 𝑛− 1

𝑝

]︂
− 1

)︂[︂
𝑘 − 𝑛− 1

𝑝

]︂
,

and therefore,

𝑢(𝑛) − 𝑢(𝑘) − 𝑢′
+(𝑛− 1)(𝑛− 𝑘) 6 −𝜎𝑝

2

(︂[︂
𝑘 − 𝑛− 1

𝑝

]︂
− 1

)︂[︂
𝑘 − 𝑛− 1

𝑝

]︂
, 𝑘 > 𝑛.

Thus,
∞∑︁
𝑘=𝑛

𝑒2𝑢𝑛,𝑘 6
∞∑︁
𝑗=0

exp

(︂
−𝜎𝑝

(︂[︂
𝑗

𝑝

]︂
− 1

)︂[︂
𝑗

𝑝

]︂)︂
:= 𝐶(𝜎, 𝑝), 𝑛 ∈ N. (8)

Let 𝑘 < 𝑛, then

𝑢(𝑛) − 𝑢(𝑘) − 𝑢′
+(𝑛− 1)(𝑛− 𝑘) =

𝑛−𝑘∑︁
𝑗=1

(𝑢(𝑛− 𝑗 + 1) − 𝑢(𝑛− 𝑗) − 𝑢′
+(𝑛− 1))

=
𝑛−𝑘∑︁
𝑗=1

(𝑢′
+(𝑛− 𝑗) − 𝑢′

+(𝑛− 1)).

Since 𝑗 = 𝑠𝑝 + 1, . . . , (𝑠 + 1)𝑝, 𝑠 = 0, 1, 2, . . ., the inequality holds

𝑢′
+(𝑛− 𝑗) − 𝑢′

+(𝑛− 1) 6 −𝑠𝜎,

then

𝑢(𝑛) − 𝑢(𝑘) − 𝑢′
+(𝑛− 1)(𝑛− 𝑘) 6 −𝑝𝜎

2

[︂
𝑛− 𝑘

𝑝

]︂(︂[︂
𝑛− 𝑘

𝑝

]︂
− 1

)︂
, 𝑘 < 𝑛.

Hence,
𝑛−1∑︁
𝑘=0

𝑒2𝑢𝑛,𝑘 6
∞∑︁
𝑗=0

exp

(︂
−𝑝𝜎

[︂
𝑗

𝑝

]︂(︂[︂
𝑗

𝑝

]︂
− 1

)︂)︂
= 𝐶(𝜎, 𝑝), 𝑛 ∈ N.

By (8) this implies condition (5). The proof is complete.

Theorem 4. Let 𝐻 be a radial functional Hilbert space stable with respect to dividing, in
which the system of monomials is complete. If condition (5) holds, then the norm of the space
𝐻 is equivalent to the norm

‖𝐹‖20 :=
1

2𝜋

∞∑︁
𝑛=1

𝑒−2̃︀𝑢(ln𝑅𝑛)

2𝜋∫︁
0

|𝐹 (𝑅𝑛𝑒
𝑖𝜙)|2𝑑𝜙.
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Proof. By Theorem 1 and formula (4), it is sufficient to show that under condition (5) we have

𝑈(𝑥𝑛) ≍ 𝑒2̃︀𝑢(𝑥𝑛), 𝑛 ∈ N.

The lower bound is always satisfied. Indeed, by the linear property of the function 𝑢(𝑡) in the
intervals [𝑘, 𝑘 + 1], 𝑘 ∈ N ∪ {0}, the identities

𝑈(𝑥𝑛) =

∞∫︁
0

𝑒2(𝑥𝑛𝑡−𝑢(𝑡))𝑑𝑡 >

𝑛∫︁
𝑛−1

𝑒2(𝑥𝑛𝑡−(𝑢(𝑛−1)+𝑢′
+(𝑛−1)(𝑡−𝑛+1)))𝑑𝑡, 𝑛 ∈ N,

hold and since by Proposition 2,
𝑥𝑛 = 𝑢′

+(𝑛− 1),

then in view of formula (3) we have

𝑈(𝑥𝑛) > 𝑒2(𝑥𝑛(𝑛−1)−𝑢(𝑛−1)) = 𝑒2̃︀𝑢(𝑥𝑛). (9)

We are going to prove the upper bound on the base of Theorem 3. The function 𝑥𝑛𝑡− 𝑢(𝑡) is
concave with respect to the variable 𝑡, attains its maximum at a point 𝑡 = 𝑛. Hence, in the
interval (𝑛;∞) the function does not increases and this is why

∞∫︁
𝑛

𝑒2(𝑥𝑛𝑡−𝑢(𝑡))𝑑𝑡 =
∞∑︁
𝑘=𝑛

𝑘+1∫︁
𝑘

𝑒2(𝑥𝑛𝑡−𝑢(𝑡))𝑑𝑡 6
∞∑︁
𝑘=𝑛

𝑒2(𝑥𝑛𝑘−𝑢(𝑘)) = 𝑒2̃︀𝑢(𝑥𝑛)

∞∑︁
𝑘=𝑛

𝑒2𝑢𝑛,𝑘 .

In the interval (0;𝑛) this function does not decrease and this is why

𝑛∫︁
0

𝑒2(𝑥𝑛𝑡−𝑢(𝑡))𝑑𝑡 =
𝑛−1∑︁
𝑘=0

𝑘+1∫︁
𝑘

𝑒2(𝑥𝑛𝑡−𝑢(𝑡))𝑑𝑡 6
𝑛∑︁

𝑘=1

𝑒2(𝑥𝑛𝑘−𝑢(𝑘)) = 𝑒2̃︀𝑢(𝑥𝑛)

𝑛∑︁
𝑘=1

𝑒2𝑢𝑛,𝑘 .

Two latter estimates and condition (5) yield

𝑈(𝑥𝑛) ≺ 𝑒2̃︀𝑢(𝑥𝑛).

By estimate (9) we arrive at the statement of the theorem. The proof is complete.

Corollary 2. Let 𝐻 be a radial functional Hilbert space stable with respect to dividing, in
which the system of monomials is complete. If condition (7) holds, then the norm of the space
𝐻 is equivalent to the norm

‖𝐹‖20 :=
1

2𝜋

∞∑︁
𝑛=1

𝑒−2̃︀𝑢(ln𝑅𝑛)

2𝜋∫︁
0

|𝐹 (𝑅𝑛𝑒
𝑖𝜙)|2𝑑𝜙.

This statement is implied by Theorem 4 and Lemma 3.
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