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GROWTH ORDER OF SUM OF DIRICHLET SERIES:

DEPENDENCE ON COEFFICIENTS AND EXPONENTS

G.A. GAISINA

Abstract. We study the sharpness of the conditions under which the order of the sum of the
Dirichlet series converging in some half-plane can be calculated by means of certain formula
depending only on the coefficients and exponents. For unbounded functions analytic in the
unit circle, a formula of such kind was obtained by a series of scientist in different years,
in partucilar, by Govorov in 1959, by MacLane in 1966 and by Sheremeta in 1968. Later
an analogue of this notion was also introduced for a Dirichlet series converging in some
half-plane. But a corresponding formula for the growth order of the Dirichlet series was
established by many authors under strict restrictions. In all previous formulae there were
provided the conditions, which were only sufficient for the validity of this formula. In
the present work we find conditions being not only sufficient but also necessary for the
possibility to calculate the growth order for each Dirichlet series by means of this formula.
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1. Introduction

Entire functions are straightforward generalization of polynomials. If

𝑓(𝑧) =
∞∑︁
𝑛=0

𝑎𝑛𝑧
𝑛 (1)

is an entire function, by the maximum modulus principle we have

𝑀𝑓 (𝑟)
def
= max

|𝑧|=𝑟
|𝑓(𝑧)| = max

|𝑧|6𝑟
|𝑓(𝑧)|.

Then 𝑀𝑓 (𝑟) is a non-decreasing on [0,∞) function and if 𝑓(𝑧) ̸≡ 𝑐𝑜𝑛𝑠𝑡, then 𝑀𝑓 (𝑟), strictly
increasing, tends to +∞ as 𝑟 → ∞. For a polynomial 𝑓 of a degree 𝑛 we have

lim
𝑟→∞

ln𝑀𝑓 (𝑟)

ln 𝑟
= 𝑛,

while for entire transcendental functions the quotient
ln𝑀𝑓 (𝑟)

ln 𝑟
tends to infinity. This is why the

growth ln𝑀𝑓 (𝑟) is compared not with ln 𝑟, but with faster growing functions, for instance, with
power functions. Proceeding in this way, E. Borel arrived at to the notion of the order 𝜌 of an
entire function by letting

𝜌 = lim
𝑟→∞

ln ln𝑀𝑓 (𝑟)

ln 𝑟
.
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Comparison of results by J. Hadamard (1893) and E. Borel (1896) showed that the order of
entire function (1) is equal to

𝜌 = lim
𝑛→∞

𝑛 ln𝑛

ln |1/𝑎𝑛|
.

Let the function 𝑓 defined by series (1) be analytic only in the circle 𝐷(0, 1) = {𝑧 : |𝑧| < 1};
in this case the convergence radius of series (1) is equal to one. We assume that the function
𝑓 is unbounded in 𝐷(0, 1). Then 𝑀𝑓 (𝑟) ↑ ∞ as 𝑟 ↑ 1.

An order 𝜌 of an unbounded analytic in the circle 𝐷(0, 1) function 𝑓 is the quantity

𝜌 = lim
𝑟↑1

ln ln𝑀𝑓 (𝑟)

− ln (1 − 𝑟)
.

For such functions, the following formula was established independently by N.V. Govorov
(1959), G.R. MacLane (1966) and M.N. Sheremerta (1968), see [1]–[3]:

𝜌

𝜌 + 1
= lim

𝑛→∞

ln+ ln+|𝑎𝑛|
ln𝑛

.

If we let 𝑧 = 𝑒−𝑠(𝑠 = 𝜎 + 𝑖𝑡), then we get:

𝐹 (𝑠) = 𝑓(𝑒−𝑠) = 𝑎0 +
∞∑︁
𝑛=1

𝑎𝑛𝑒
−𝑛𝑠. (2)

Since under the mentioned change the half-plane Π+
0 is mapped onto the unit circle 𝐷(0, 1),

then

𝑀(𝜎)
def
= sup

|𝑡|<∞
|𝐹 (𝜎 + 𝑖𝑡)| = 𝑀𝑓 (𝑟),

where 𝜎 > 0, 𝑟 = 𝑒−𝜎 < 1. It can be confirmed that − ln(1 − 𝑟) ∼ − ln𝜎 as 𝑟 ↑ 1; it is also
obvious that 𝜎 ↓ 0. Taking this into consideration, we find:

𝜌 = 𝜌𝐹
def
= lim

𝜎↓0

ln ln𝑀(𝜎)

− ln𝜎
.

Thus, the order 𝜌 of the function 𝑓 in the circle 𝐷(0, 1) is equal to the corresponding growth
characteristics 𝜌𝐹 of Taylor-Dirichlet series (2). It is called a usual order or simply order of the
function 𝐹 being the sum of series (2). This observation leads us to the notion of a general
Dirichlet series

𝐹 (𝑠) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
−𝜆𝑛𝑠, 𝑠 = 𝜎 + 𝑖𝑡, (3)

with an arbitrary sequence of exponents Λ = {𝜆𝑛}, 0 < 𝜆𝑛 ↑ ∞, converging absolutely (or just
uniformly) in some half-plane:

Π𝑏 = {𝑠 = 𝜎 + 𝑖𝑡 : 𝜎 > 𝑏}, 𝑏 ∈ R.

Thus, there arises a problem on relation of the order of the function 𝐹 analytic in Π𝑏 with the
coefficients of the expansion of this function into Dirichlet series (3).

Following work [4] by H. Bohr, by 𝜎𝑐, 𝜎𝑎, 𝜎𝑢 we denote the abscissas of usual, absolute and
uniform convergence of series (3), respectively. As G. Valiron, see [5], [6],

lim
𝑛→∞

ln |𝑎𝑛|
𝜆𝑛

6 𝜎𝑐 6 𝜎𝑢 6 𝜎𝑎 6 lim
𝑛→∞

ln |𝑎𝑛|
𝜆𝑛

+ 𝐿, (4)

where

𝐿 = lim
𝑛→∞

ln𝑛

𝜆𝑛

. (5)
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Generally speaking, in contrast to power series, the quantities 𝜎𝑐, 𝜎𝑎, 𝜎𝑢 can be different.
As relations (4) show, for 𝐿 = 0 they coincide. It can turn out that 𝜎𝑢 ̸= 𝜎𝑎 and in this case
series (3) converges only uniformly and not absolutely. In this case the following formula by
M. Kuniyeda holds true [7]:

𝜎𝑢 = lim
𝑥→+∞

𝑇 (𝑥)

𝑥
, 𝑇 (𝑥) = sup

|𝑡|<∞

⃒⃒⃒⃒
⃒⃒ ∑︁
[𝑥]6𝜆𝑛<𝑥

𝑎𝑛𝑒
−𝑖𝜆𝑛𝑡

⃒⃒⃒⃒
⃒⃒ ,

where [𝑥] denotes the integer part of a number 𝑥.
If 𝜎𝑢 = −∞, then the sum of Dirichlet series (3) is the entire function 𝐹 . In this situation, a

most appropriate and convenient characteristics of the growth of the function 𝐹 is a so-called
notion of 𝑅–order 𝜌𝑅 introduced by J.F. Ritt (1928) [8].

By definition,

𝜌𝑅 = lim
𝜎→−∞

ln ln𝑀𝐹 (𝜎)

−𝜎
,

where the quantity 𝑀𝐹 (𝜎) is defined in the same way as above1. Under the assumption that
𝜎𝑎 = −∞, i.e., when Dirichlet series (3) converges absolutely in entire plane, J.F. Ritt proved
the following formula allowing one to find 𝜌𝑅 (Ritt order) via the coefficients of the expansion:

− 1

𝜌𝑅
= lim

𝑛→∞

ln |𝑎𝑛|
𝜆𝑛 ln𝜆𝑛

. (6)

In work [10] this result was extended for the case of the half-plane Π0, while in [11] the same
was done for a bounded convex domain 𝐺 ⊂ C. In the latter case one dealt with series with
complex exponents, exponential series, the domain of absolute convergence of which was known
to be always convex [9]. In both case there were provided sufficient conditions ensuring the
validity of analogues of Ritt formula (6) and depending also on the support function of the
convergence domain.

The above described results of works [1]–[3] were generalized for the class 𝐷0(Λ) of analytic
functions represented by Dirichlet series (3) converging absolutely only in the half-plane Π0.
In 1970–1980 this problem was mostly studied by the mathematicians from India, China and
Soviet Union. We shall provide a more detailed survey of numerous studies. Now we just say
that the matter of these works was to find conditions for the exponents of series (3) ensuring
the validity of the formula

𝜌𝐹
𝜌𝐹 + 1

= lim
𝑛→∞

ln+ ln+ |𝑎𝑛|
ln𝜆𝑛

(7)

for the order

𝜌𝐹 = lim
𝜎→0+

ln ln𝑀𝐹 (𝜎)

− ln𝜎
(𝜎 > 0);

it is assumed that 𝑀𝐹 (𝜎) → ∞ as 𝜎 ↓ 0. These conditions for exponents 𝜆𝑛 were very different
and sometimes too restrictive. At the same time, the sharpness of these conditions was studied
in almost in none of works. In paper [12], a weakest condition for 𝜆𝑛 was nevertheless indicated
and it is essentially nature was justified by an example of a particular nature. In a rather
recent work [13] made in the Institute of Mathematics of Czech Academy of Sciences in 2012,
the result of work [12] was re-proved but in other terms, as we shall see later. Thus, this simple
but surely important problem still attracts the attention of some specialists but still remains
open. In particular, in the present work we shall prove the necessary part of the theorem from
[12].

1The function ln𝑀𝐹 (𝜎) is convex in the variable 𝜎 ∈ R [9].



GROWTH ORDER OF SUM OF DIRICHLET SERIES. . . 33

In work [14], A.F. Leontiev introduced the notion of order 𝜌 of an analytic function 𝐹 in a
bounded convex domain 𝐺 ⊂ C. In the case, when 𝐺 is a convex polygonal, he proved that
each function 𝐹 analytic in 𝐺 and obeying in 𝐺 the estimate

|𝐹 (𝑧)| 6 𝑒(
1
𝑟 )

𝜌+𝜀

, 𝑟 = 𝑑(𝑧) = inf
𝜉∈𝜕𝐺

|𝑧 − 𝜉|, (8)

𝑟 < 𝑟0(𝜀), 𝜀 > 0 is arbitrary, can be represented in the domain 𝐺 by the exponential series

𝐹 (𝑧) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
𝜆𝑛𝑧,

and the series of absolute values satisfies same estimate (8). For 𝜌 > 1, this result was extended
to an arbitrary convex domain by R.S. Yulmukhametov in [15].

However, in works [14], [15], one can not pose the question on validity of some formula like
(7) since there is no uniqueness of the expansion into the exponential series and this is why the
coefficients of the series are not uniquely defined. This is exactly the main difference between
this case and the half-plane.

This problem was solved in work [16], but the estimates for the order 𝜌 obtained in [16] are
not sharp. Recently we have obtained sharp two-sided estimates for this order, which will be
the matter of another work.

One of the aims in the present paper is to find optimal conditions for the exponents in series
(3) ensuring the validity of the formula for the order in the case of the half-plane.

2. Theorems of Govorov-MacLane type

1. Case of arbitrary coefficients. We shall assume that 𝐿 = 0, this quantity has been
defined by formula (5), and 𝜎𝑐 = 0. Then Dirichlet series (3) converges absolutely and uniformly
in the half-plane Π0, while its sum 𝐹 is analytic Π0. We assume that 𝑀𝐹 (𝜎) → ∞ as 𝜎 ↓ 0,
where 𝑀𝐹 (𝜎) = sup|𝑡|<∞ |𝐹 (𝜎 + 𝑖𝑡)| (𝜎 > 0). As above, 𝐷0(Λ) is the class of analytic in the
half-plane Π0 functions represented by Dirichlet series (3). The quantity

𝜌𝐹 = lim
𝜎↓0

ln ln𝑀𝐹 (𝜎)

− ln𝜎

is called the order of Dirichlet series (3). Exactly in this way this order is defined, for instance,
in works [12], [17]–[20]. In [21], [22] the order of function 𝐹 ∈ 𝐷0(Λ) is defined by the formula

𝜌𝐹 = lim
𝜎↓0

ln ln𝑀𝐹 (𝜎)

− ln (1 − 𝑒−𝜎)
,

which obviously coincides with the above introduced order. In above cited papers [18]–[22], the
following formula was given with the proof:

𝜌𝐹
𝜌𝐹 + 1

= lim
𝑛→∞

ln+ ln+|𝑎𝑛|
ln𝜆𝑛

, (9)

and it was proved only under additional restrictions for the exponents 𝜆𝑛 and the coefficients 𝑎𝑛
of series (3). These conditions were very different and sometimes too restrictive. For instance,
it was assumed in [21], [22] that the sequence Λ has a finite upper density, that is,

lim
𝑛→∞

𝑛

𝜆𝑛

= 𝜏 < ∞.
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As we shall see, this condition is too strong. On the other hand, it was stated in [20] that
formula (9) holds under the conditions

lim
𝑛→∞

ln𝑛

𝜆𝑛

= lim
𝑛→∞

ln |𝑎𝑛|
𝜆𝑛

= 0.

Here we shall show that only under these conditions, formula (9) is not true, see also [12]. It
paper [17], formula (9) was proved but only if

lim
𝑛→∞

ln𝑛

ln𝜆𝑛

= 𝛾 < ∞. (10)

In the present paper this condition is essentially weakened.
We denote

𝛼 = lim
𝑛→∞

ln ln𝑛

ln𝜆𝑛

.

We also let

𝜇 = lim
𝑛→∞

ln+ ln+|𝑎𝑛|
ln𝜆𝑛

.

It is stated in paper [18] that if 𝛼 6 𝜇, then 𝜇 = 𝜌𝐹
𝜌𝐹+1

, i.e., formula (9) holds true. A

disadvantage of this result is that the condition 𝛼 6 𝜇 contains an additional restriction for
the coefficients 𝑎𝑛 in Dirichlet series (3). This is why, according [18], the formula for order 𝜌𝐹
holds not for each function 𝐹 in the class 𝐷0(Λ). We shall discuss this issue in Section 2.

The identity 𝜇 = 𝜌𝐹
𝜌𝐹+1

was proved in [12] for 𝛼 = 0. And this condition is weaker than

condition (10). Indeed, if 𝛾 < ∞, then we obviously have 𝐿 = 0 and 𝛼 = 0. But there exists a
sequence Λ, for which 𝛼 = 0, 𝐿 = 0, but 𝛾 = ∞; it is sufficient to let 𝜆𝑛 = 𝑒

√
𝑛, 𝑛 > 1.

In [12], one more fact was established: there exists a sequence Λ with 𝛼 > 0, there exists a
function 𝐹 ∈ 𝐷0(Λ), for which 𝜇 ̸= 𝜌𝐹

𝜌𝐹+1
.

Our aim is to show that condition 𝛼 = 0 is in fact necessary. Namely, the following theorem
holds true.

Theorem 2.1. For each function 𝐹 ∈ 𝐷0(Λ) the order 𝜌𝐹 is calculated by the formula

𝜌𝐹
𝜌𝐹 + 1

= lim
𝑛→∞

ln+ ln+|𝑎𝑛|
ln𝜆𝑛

(11)

if and only if 𝛼 = 0, that is,

lim
𝑛→∞

ln ln𝑛

ln𝜆𝑛

= 0.

As a corollary, Theorem 2.1 implies Govorov-MacLane-Sheremeta formula for the order 𝜌 of
the function 𝑓 defined in 𝐷(0, 1) by series (1).

We note that in work [13] published in 2012, the identity

𝜇 =
𝜌𝐹

𝜌𝐹 + 1

was proved under the assumption 𝛼0 = 0, where

𝛼0 = lim
𝑘→∞

ln+ ln(𝑝𝑘 + 1)

ln 𝑘
= 0,

where 𝑝𝑘 + 1 is the number of the points 𝜆𝑛 in the half-interval [𝑘, 𝑘 + 1). But this statement
is in fact the sufficient part of the theorem proved completely in [12] by A.M. Gaisin in 1981.
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Let us show that 𝛼0 = 0 if and only if 𝛼 = 0. Indeed, if 𝛼 = 0 then it is obvious that 𝛼0 = 0.
Let 𝜆𝑗 be a point closest from the left to (𝑘 + 1). Then

ln ln(𝑝𝑘 + 1)

ln 𝑘
6

ln ln 𝑗

ln 𝑘
6

ln(𝑘 + 1)

ln 𝑘

ln ln 𝑗

ln𝜆𝑗

→ 0

as 𝑗 → ∞. Hence, 𝛼0 = 0.
Let 𝛼0 = 0. Then for each 𝜀 > 0, as 𝑖 > 𝑖0(𝜀) we have:

𝑝𝑖 + 1 < 𝑒𝑖
𝜀

.

Let 𝜆𝑛 ∈ [𝑘, 𝑘 + 1). Then, as 𝑖 > 𝑖1(𝜀) > 𝑖0(𝜀),

𝑛 6 𝑛(𝑖0) +
𝑘∑︁

𝑖=𝑖0+1

𝑒𝑖
𝜀

6 𝑛(𝑖0) + 𝑒𝑘
𝜀

𝑘 < 2𝜆𝑛𝑒
𝜆𝜀
𝑛 .

This shows that 𝐿 = 0. Hence, 𝜎𝑐 = 𝜎𝑎 = 𝜎𝑢 = 0. Moreover, as 𝑛 > 𝑛0(𝜀),

ln𝑛 < 2𝜆𝜀
𝑛.

Therefore,

lim
𝑛→∞

ln ln𝑛

ln𝜆𝑛

6 𝜀.

Since 𝜀 > 0 is arbitrary, we conclude that 𝛼 = 0.

Proof of Theorem 2.1. . The sufficiency was established in [12]. At that, formula holds also for
the case 𝜌𝐹 = ∞. Then it remains to prove the necessity only.

Let, as above,

𝛼 = lim
𝑛→∞

ln ln𝑛

ln𝜆𝑛

.

This means that for each 𝛽, 0 < 𝛽 < 𝛼, there exists a sequence {𝑛𝑚} of natural numbers 𝑛𝑚,
𝑛𝑚 ↑ ∞, such that

ln ln𝑛𝑚

ln𝜆𝑛𝑚

> 𝛽 > 0. (12)

Since by assumptions, 𝐿 = 0, it is easy to confirm that 𝛼 6 1. Then 𝛽 < 1.
We consider the series

𝐹 (𝑠) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
−𝜆𝑛𝑠 (𝑠 = 𝜎 + 𝑖𝑡), (13)

where 𝑎𝑛 = 𝑒. As above, we assume that the condition holds: ln𝑛 = 𝑜(𝜆𝑛) as 𝑛 → ∞. Series
(13) converges and by the latter condition, it also converges absolutely in the right half-plane
Π0. Calculating the order by formula (11), we have: 𝜌𝐹 = 0. We are going to make sure
that the order satisfies the inequality 𝜌𝐹 > 0. This will imply that the sum of series (13) is
unbounded in Π0, that is, 𝐹 ∈ 𝐷0(Λ).

Indeed, since 𝑎𝑛 > 0, then

𝑀𝐹 (𝜎) = sup
|𝑡|<∞

|𝐹 (𝜎 + 𝑖𝑡)| > |𝐹 (𝜎)| = 𝑒
∞∑︁
𝑛=1

𝑒−𝜆𝑛𝜎 (𝜎 > 0).

On the other hand, it is obvious that

𝑀𝐹 (𝜎) 6 𝑒
∞∑︁
𝑛=1

𝑒−𝜆𝑛𝜎.
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Therefore, 𝑀𝐹 (𝜎) = |𝐹 (𝜎)|. Employing estimate 𝑀𝐹 (𝜎) > |𝐹 (𝜎)|, for each natural 𝑁 we have:

𝑀𝐹 (𝜎) > 𝑒
𝑁∑︁

𝑛=[𝑁
2
]

𝑒−𝜆𝑛𝜎 > 𝑒
𝑁

2
𝑒−𝜆𝑁𝜎 > 𝑁𝑒−𝜆𝑁𝜎,

where [𝑎] is the integer part of 𝑎. Taking into consideration (12), we let 𝑁 = 𝑛𝑚 (𝑚 = 1, 2, . . .).
Then we obtain:

𝑀𝐹 (𝜎) > 𝑛𝑚𝑒
−𝜆𝑛𝑚𝜎 = exp[ln𝑛𝑚 − 𝜆𝑛𝑚𝜎] (𝜎 > 0).

Now it follows from relation (12) that

𝜆𝑛𝑚 6 (ln𝑛𝑚)
1
𝛽 (𝑚 > 1).

Hence, we get:

𝑀𝐹 (𝜎) > exp[ln𝑛𝑚 − (ln𝑛𝑚)
1
𝛽 𝜎] (𝑚 > 1), (14)

where 0 < 𝛽 < 𝛼 6 1 and 𝜎 > 0 is arbitrary.
Since 𝛽 < 1, as 𝜎 we can take a solution 𝜎𝑚 to the equation

ln𝑛𝑚 = 2(ln𝑛𝑚)
1
𝛽 𝜎,

or, which is the same,

2(ln𝑛𝑚)
1
𝛽
−1 =

1

𝜎
(0 < 𝛽 < 1). (15)

Then, taking into consideration (15), by (14) we obtain:

ln𝑀𝐹 (𝜎𝑚) > (ln𝑛𝑚)
1
𝛽 [(ln𝑛𝑚)1−

1
𝛽 − 𝜎𝑚] = (ln𝑛𝑚)

1
𝛽 𝜎𝑚 =

(︂
1

2

)︂ 1
1−𝛽

(︂
1

𝜎𝑚

)︂ 𝛽
1−𝛽

(𝑚 > 1). (16)

Hence, we obtain that as 𝑚 → ∞

ln𝑀𝐹 (𝜎𝑚) >

(︂
1

2

)︂ 1
1−𝛽

(︂
1

𝜎𝑚

)︂ 𝛽
1−𝛽

.

This finally implies:

ln ln𝑀𝐹 (𝜎𝑚) > [1 + 𝑜(1)]
𝛽

1 − 𝛽
ln

1

𝜎𝑚

, 𝑚 → ∞.

Since 𝜎𝑚 → 0 as 𝑚 → ∞, then

𝜌𝐹 = lim
𝜎↓0

ln ln𝑀𝐹 (𝜎)

− ln𝜎
>

𝛽

1 − 𝛽
(0 < 𝛽 < 𝛼 6 1).

Since 𝛽 < 𝛼 is an arbitrary positive number, we see that if 𝛼 = 1, then 𝜌𝐹 = ∞. As 𝛼 < 1 we
have:

𝜌𝐹 >
𝛼

1 − 𝛼
> 0, 0 < 𝛼 < 1.

To provide a full arguing, let us show that the order 𝜌𝐹 is equal to 𝛼
1−𝛼

. Indeed, for each
𝜀 > 0

ln ln𝑛

ln𝜆𝑛

< 𝑞, 𝑞 = 𝛼 + 𝜀, (17)

as 𝑛 > 𝑛0(𝜀). Since 𝛼 < 1, by an appropriate choice 𝜀 > 0 we can suppose that 𝑞 < 1.
Thus,

𝑀𝐹 (𝜎) 6 𝑒

∞∑︁
𝑛=1

1

𝑛2
exp[(2 ln𝑛− 𝜆𝑛𝜎)] 6

𝜋2𝑒

6
exp[max

𝑛>1
(2 ln𝑛− 𝜆𝑛𝜎)] (𝜎 > 0). (18)
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Taking into consideration (17), (18), we obtain:

𝑀𝐹 (𝜎) 6
𝜋2𝑒

6
exp[max

𝑥>0
(2𝑥− 𝑥

1
𝑞𝜎)].

The maximum is attained at the point 𝑥0 not exceeding 𝑥1, where 𝑥1 is a root of the equation

2𝑥 = 𝑥
1
𝑞𝜎, that is, 2𝑥

𝑞−1
𝑞 = 𝜎. This yields

𝑥1 = 2
𝑞

1−𝑞

(︂
1

𝜎

)︂ 𝑞
1−𝑞

.

Hence,

𝑀𝐹 (𝜎) 6
𝜋2𝑒

6
𝑒2𝑥1 =

𝜋2𝑒

6
exp

[︃
2

𝑞
1−𝑞

(︂
1

𝜎

)︂ 𝑞
1−𝑞

]︃
.

Therefore, since ln(1 + 𝑥) ∼ 𝑥 as 𝑥 → 0, we find:

ln ln𝑀𝐹 (𝜎)

− ln𝜎
6 [1 + 𝑜(1)]

𝑞

1 − 𝑞
.

This means that 𝜌𝐹 6 𝑞
1−𝑞

, 𝑞 = 𝛼 + 𝜀. But 𝜀 > 0 is arbitrary and therefore, 𝜌𝐹 6 𝛼
1−𝛼

. Now

by the inverse inequality we conclude that 𝜌𝐹 = 𝛼
1−𝛼

. Since we obviously have 𝐹 ∈ 𝐷0(Λ), the
necessity of the theorem is completely proved.

2. Case of consistent exponents and coefficients. Here we are going to prove a similar
theorem under some consistency condition for 𝜆𝑛 and the coefficients 𝑎𝑛 of the Dirichlet series.

Let, as above,

𝛼 = lim
𝑛→∞

ln ln𝑛

ln𝜆𝑛

. (19)

It was shown that 0 6 𝛼 6 1. We denote

𝜇 = lim
𝑛→∞

ln+ ln+|𝑎𝑛|
ln𝜆𝑛

. (20)

It was stated in paper [18] that if 𝛼 is fixed and the parameter 𝜇 satisfies the inequality 𝜇 > 𝛼,
then 𝜇 = 𝜌𝐹

𝜌𝐹+1
, that is, formula (11) holds. A complete proof of this statement was provided

in [23]. A disadvantage of this results is that the condition 𝛼 6 𝜇 for a fixed Λ involves an
additional restrictions for the coefficients 𝑎𝑛 of Dirichlet series (3). This is why a formula for
the order 𝜌𝐹 can not hold for any function 𝐹 in the class 𝐷0(Λ). Therefore, it is natural to
pose a question how the condition 𝜇 > 𝛼 is essential for the validity of formula (11). Below we
shall provide an answer for this question.

Let 𝜇 (0 6 𝜇 6 1), 𝛼 (0 6 𝛼 6 1) be given numbers. By 𝐷0(𝜇, 𝛼) we denote a subclass of
the class 𝐷0(Λ) of Dirichlet series (3), the coefficients 𝑎𝑛 of which satisfy inequality (20), while
the exponents 𝜆𝑛 obey identity (19). As it has been said above (see [23]), as 𝛼 6 𝜇, the order
𝜌𝐹 of each function 𝐹 ∈ 𝐷0(𝜇, 𝛼) can be calculated by means of formula (11).

We note that the restrictions 0 6 𝛼 6 1 and 0 6 𝜇 6 1 are implied by identities (19), (20).
For 𝜇 = 1 formula (11) holds since in this case 𝛼 6 𝜇. At that, 𝜇 = 𝜌𝐹

𝜌𝐹+1
= 1, that is,

𝜌𝐹 = ∞. This is why in what follows we assume that 𝜇 < 1. We shall show that for arbitrary
numbers 𝛼 (0 6 𝛼 6 1), 𝜇 (0 6 𝜇 < 1) such that 𝜇 < 𝛼, there exists a function 𝐹 ∈ 𝐷0(𝜇, 𝛼),
for which the order 𝜌𝐹 can not be found by formula (11). This means that the following theorem
holds true.

Theorem 2.2. Assume that numbers 𝜇 (0 6 𝜇 < 1), 𝛼 (0 6 𝛼 6 1) are given. The order
𝜌𝐹 of each function 𝐹 ∈ 𝐷0(𝜇, 𝛼) is calculated by formula (11) if and only if 𝛼 6 𝜇.
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Proof. The sufficiency of this theorem was proved in [23]. Let us prove the necessity of the
condition 𝛼 6 𝜇. Let 𝜇 < 𝛼. This means for each 𝜀 > 0 there exists a sequence {𝑛𝑚} of natural
numbers 𝑛𝑚, 𝑛𝑚 ↑ ∞, such that

𝛽1 6
ln ln𝑛𝑚

ln𝜆𝑛𝑚

6 𝛽2 (𝑚 > 1), (21)

where 𝛽1 = 𝛼− 𝜀, 𝛽2 = 𝛼 + 𝜀 (0 < 𝜀 < 𝛼).
Fixing the sequence {𝑛𝑚}, we are going to construct an appropriate example of the function

𝐹 ∈ 𝐷0(𝜇, 𝛼). In order to do this, we choose the coefficients 𝑎𝑛 and exponents 𝜆𝑛 of Dirichlet
series (3) in a special way but satisfying respectively conditions (19) and (20).

We let

𝑎𝑛 = exp[(ln𝑛𝑚)
𝜇
𝛼 ] (0 6 𝜇 6 𝛼), 𝑛𝑚 6 𝑛 < 𝑛𝑚+1 (𝑚 > 1);

we shall choose the exponents 𝜆𝑛 of series (3) later. It is clear, for this series with such
coefficients the convergence domain and the domain of the absolute convergence is Π0 [24]. For
such coefficients 𝑎𝑛, we let

𝜈 = lim
𝑛→∞

ln+ ln+|𝑎𝑛|
ln𝜆𝑛

,

and we are going to confirm that 𝜈 = 𝜇. Indeed, let 𝑛𝑚 6 𝑛 < 𝑛𝑚+1. Then

ln ln |𝑎𝑛|
ln𝜆𝑛

=
𝜇

𝛼

ln ln𝑛𝑚

ln𝜆𝑛

6
𝜇

𝛼

ln ln𝑛𝑚

ln𝜆𝑛𝑚

.

Taking into consideration (21), we then get that 𝜈 6 𝜇
𝛼

(𝛼 + 𝜀). Since 𝜀 > 0 is arbitrary, then
𝜈 6 𝜇. On the other hand,

𝜈 > lim
𝑚→∞

ln+ ln+|𝑎𝑛|
ln𝜆𝑛𝑚

=
𝜇

𝛼
lim

𝑚→∞

ln ln𝑛𝑚

ln𝜆𝑛𝑚

.

Therefore, taking into consideration the left estimate in (21), we obtain that 𝜈 > 𝜇
𝛼

(𝛼− 𝜀), i.e.,
𝜈 > 𝜇. Thus, 𝜈 = 𝜇.

If the order 𝜌𝐹 of the Dirichlet series

𝐹 (𝑠) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
−𝜆𝑛𝑠 (𝑠 = 𝜎 + 𝑖𝑡, 𝜎 > 0) (22)

had been calculated by formula (11), we would have

𝜌𝐹 =
𝜇

1 − 𝜇
. (23)

Let us make sure that under an appropriate choice of the exponents of series (22) this is not
true. Indeed, since 𝑎𝑛 > 0, we have:

𝑀𝐹 (𝜎) = sup
|𝑡|<∞

|𝐹 (𝜎 + 𝑖𝑡)| > |𝐹 (𝜎)| =
∞∑︁
𝑛=1

𝑎𝑛𝑒
−𝜆𝑛𝜎 (𝜎 > 0).

Therefore,

𝑀𝐹 (𝜎) >
2𝑛𝑚∑︁
𝑛=𝑛𝑚

𝑎𝑛𝑒
−𝜆𝑛𝜎 > 𝑛𝑚𝑒𝑥𝑝[(ln𝑛𝑚)

𝜇
𝛼 − 𝜆2𝑛𝑚𝜎]. (24)

We let 𝜆𝑛 = (ln𝑛)
1
𝛼 (𝑛 > 2). Then the sequence Λ = {𝜆𝑛} satisfies condition (19), and

𝜆2𝑛𝑚 = (ln 2𝑛𝑚)
1
𝛼 . Thus, by (24) we get

ln𝑀𝐹 (𝜎) > ln𝑛𝑚 + (ln𝑛𝑚)
𝜇
𝛼 − (ln 2𝑛𝑚)

1
𝛼𝜎 (𝜎 > 0). (25)
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We choose 𝜎 = 𝜎𝑚 as a solution to the equation

(ln𝑛𝑚)
𝜇
𝛼 = (ln 2𝑛𝑚)

1
𝛼𝜎. (26)

Since (ln 2𝑛𝑚)
1
𝛼 = (1 + 𝑜(1))(ln𝑛𝑚)

1
𝛼 as 𝑚 → ∞, it follows from (26) that as 𝑚 → ∞, the

identity holds:
1

𝜎
= (1 + 𝑜(1))(ln𝑛𝑚)

1−𝜇
𝛼 . (27)

Hence, taking into consideration (26), (27), by (25) we obtain that, as 𝑚 → ∞,

ln𝑀𝐹 (𝜎𝑚) > ln𝑛𝑚 = (1 + 𝑜(1))

(︂
1

𝜎

)︂ 𝛼
1−𝜇

.

This means that 𝜌𝐹 > 𝛼
1−𝜇

. But, according (23), 𝜌𝐹 = 𝜇
1−𝜇

. Hence, in view of the previous
estimate,

𝜇

1 − 𝜇
>

𝛼

1 − 𝜇
(0 6 𝜇 < 1),

which contradicts the assumption 𝜇 < 𝛼. The proof is complete.

Let 𝐷(0, 1) be the convergence circle of power series (1). For the Taylor-Dirichlet series

∞∑︁
𝑛=1

𝑎𝑛𝑒
−𝑛𝑠

the usual order 𝜌𝐹 coincides with the order 𝜌 of the function 𝑓 of form (1). Since in this case
𝜆𝑛 = 𝑛, then

𝛼 = lim
𝑛→∞

ln ln𝑛

ln𝜆𝑛

= 0,

and Theorem 2.1 implies the aforementioned Govorov-MacLane-Sheremeta formula for calcu-
lating the order 𝜌 of the function 𝑓 defined in the circle 𝐷(0, 1) by series (1).
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