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ON RECOVERING OF UNKNOWN CONSTANT

PARAMETER BY SEVERAL TEST CONTROLS

V.N. USHAKOV, A.A. ERSHOV

Abstract. We consider a control system involving a constant vector parameter, which is
unknown to a controlling person; only a set of possible values of this unknown parameter
is supposed to be known. We study the problem on approaching a targeted set at a
prescribed time. To resolve the control problem at the beginning of the motion, we recover
the unknown parameter by a successive short-time application of several test controlling
vectors to the control system and observing then the reaction of the system. The choice
of test vectors is proposed to make by minimizing the error of recovering of the unknown
parameter. In contrast to previous works, we consider a more general case, when one test
controlling vector is not enough for the unique recovering of the unknown parameter and
moreover, for approximating the velocity of the motion, we employ a central difference
derivative instead of the right difference one. As an example, we consider the problem on
controlling a pendulum with unknown dissipation coefficient and elasticity coefficient of the
spring.
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1. Introduction

The work is devoted to studying an approach problem for a nonlinear control system with
a compact target set in a finite-dimensional phase space, see, for instance, [1], [2]. A feature
of the considered problem is the presence in the system of a constant parameter unknown to a
person controlling the system. As a close work, in which a system with an unknown constant
parameter was considered or, as an independent version, with an unknown function, we can
mention a work by V.M. Veliov [3]. However, in that work, the constant vector was in fact
a controlling vector of a single player. We note that our problem can be treated as a game
approach problem, in which the first player forming control program except for a small initial
time interval aims to approach a target set by the system, while the other player controlling
the choice of the values of constant parameters, aims to counteract the first player. A much
closer to our is a work by M.S. Nikolskii [4], in which instead of an unknown parameter, an
unknown initial condition of a control system is recovered at the initial time. Apart of this,
problems in the theory of dynamical inverting are close to ours; the foundations of this theory
were developed in works [5], [6], [7].

Earlier, in work [8], a scheme for constructing of a control was presented and this scheme
solved such problem on approaching from initial positions belonging to some approximation
of the solvability set. However, there was supposed that we were able to measure absolutely
exactly the phase variable of the control system at an initial time interval. In work [9] this
assumption was replaced by the condition that the measurements of the phase variable have
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a bounded error. In both cases the scheme of solving consisted in two steps: approximate
recovering of the unknown parameter by a short-time application of a test control followed and
solving then the approach problem by a standard pixel method with employing the found value
of a constant parameter. In [8], [9], there were obtained estimates for an additional error of
approaching the target set by the control system arising because of a non-exact recovering of
the constant parameter.

The present work is devoted to a generalization of the algorithm for recovering the parameter
for the case, when the a short test control as a one constant vector is not enough. Moreover,
in the present work, we obtain sharper estimates in comparison with earlier estimates, when
one vector of a test control was applied. The improving of the estimates is achieved by using
a central difference derivative for approximating the velocity of the system instead of the right
difference derivative. We however note that in order to improve essentially the error up to the
second order, we need stricter restrictions for the smoothness of the vector function in the right
hand of the control system of differential equations.

2. Formulation of approach problem

Suppose that at the time interval [t0, ϑ], t0 < ϑ < ∞, we are given a control system






dx

dt
= f(t, x(t), u(t), α),

x(t0) = x(0),
(2.1)

where t is a time, x(t) ∈ Rn is a phase vector of the system, (t0, x
(0)) is an initial condition

of the system, u(t) is an admissible control, α is a constant parameter obeying α ∈ L , and
L ∈ comp(Rq). The symbol Rk denotes an Euclidean space of dimension k, comp(Rk) is the
space of compact sets in Rk with the Hausdorff metrics.

As an admissible control u(t), t ∈ [t0, ϑ], we mean a Lebesgue measurable on [t0, ϑ] vector
function with values in P , where P ∈ comp(Rp). To each admissible control u(t), a motion x(t)
corresponds and this motion solves system (2.1) in the class of absolutely continuous functions
[10, Sect. 2.1].

We assume that the following conditions hold.
A1. A vector function f(t, x, u, α) is defined, continuous on [t0, ϑ] × Rn × P × L and for

each bounded and closed domain Ω ⊂ [t0, ϑ] × Rn there exists a constant L = L(Ω) ∈ (0,∞)
such that

‖f(t, x(1), u, α)− f(t, x(2), u, α)|| 6 L||x(1) − x(2)‖,
(t, x(i), u, α) ∈ Ω× P × L , i = 1, 2;

here ‖ · ‖ is the Euclidean norm of a vector in Rn.
A2. There exists γ ∈ (0,∞) such that

‖f(t, x, u, α)‖ 6 γ(1 + ‖x‖), (t, x, u, α) ∈ [t0,∞)×Rn × P × L .

A3. Let N be some natural number, ∆ > 0. A vector function f(t, x, u, α) is twice continu-
ously differentiable in the variables t and x on [t0, t0 +N∆]×Rn for all u ∈ P and α ∈ L .

A4. Assume that we are given a set {u(1), . . . , u(N)} of vectors in P . For some α ∈ L , a
piece-wise constant control u(t) = u(k) for t ∈ [t0 + (k − 1)∆, t0 + k∆), k = 1, N , produces the
motion x(t) on the segment [t0, t0 + N∆]. We introduce a multi-valued function F (t, x, u) =
{f(t, x, u, α) : α ∈ L }. Then there exists a family of single-valued mappings

α̂[x(1)
∗
, . . . , x(N)

∗
](·, . . . , ·) : F

(

t0 +
∆

2
, x(1)

∗
, u(1)

)

×. . .×F

(

t0 +

(

N − 1

2

)

∆, x(N)
∗

, u(N)

)

7−→ L
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such that

f

(

t0 +

(

k − 1

2

)

∆, x(1)
∗
, u(1), α̂[x(1)

∗
, . . . , x(N)

∗
](f (1)

∗
, . . . , f (N)

∗
)

)

= f (k)
∗

for all f
(k)
∗ ∈ F

(

t0 +
(

k − 1
2

)

∆, x(k), u(k)
)

and points x
(k)
∗ in sufficiently large neighbourhoods

of the points x
(

t0 +
(

k − 1
2

)

∆
)

, k = 1, N .
At that, there exists a function κ(λ) ↓ 0 as λ ↓ 0 such that

∥

∥α̂[x(1)
∗
, . . . , x(N)

∗
](f (1)

∗
, . . . , f (N)

∗
)− α

∥

∥

∥

∥

6 κ

( N
∑

k=1

bk

∥

∥

∥

∥

x(k)
∗

− x

(

t0 +

(

k − 1

2

)

∆

)∥

∥

∥

∥

+
N
∑

k=1

βk

∥

∥

∥

∥

f (k)
∗

− f

(

t0 +

(

k − 1

2

)

∆, x

(

t0 +

(

k − 1

2

)

∆, u(k), α

))∥

∥

∥

∥

)

,

where bk > 0 and βk > 0 for all k = 1, N .

Definition 2.1. Constant vectors in the set {u(1), . . . , u(N)} defined on Condition A4 are
called test controls.

Remark 2.1. We observe that the mapping α̂ is defined not only by the points
{x(1), . . . , x(N)} in the phase space but also by the set of test controls {u(1), . . . , u(N)}. How-
ever, we do not reflect this dependence in notations.

Let some compact set M ⊂ Rn be a target set for system (2.1).
Before we proceed to formulation and discussion of problems on approaching M by sys-

tem (2.1), we first describe information conditions, in the framework of which system (2.1) is
controlled.

At the initial time t0 of the segment [t0, ϑ], some value α ∈ L is realized in system (2.1)
and exactly this value is present in system (2.1) during entire time interval [t0, ϑ]. However, at
the initial time t0, this value α is unknown to a person controlling system (2.1) and choosing
the control u. We suppose that the person choosing u knows only restriction L . This version
under a possibility of exact measuring the phase variable x(t) was considered in work [8].

In contrast to work [8], here we assume that one can measure the phase variable x(t) only
up to an error not exceeding δ, that is,

‖x∗(t)− x(t)‖ 6 δ, (2.2)

where x∗(t) is the result of measuring x(t).
The problem on approaching the set M by system (2.1) can be solved step-by-step, via

solving the following two problems.

Problem 1. Find approximately the value α ∈ L involved in system (2.1).

Problem 2. Construct a controlling program moving the motion x(t) of system (2.1) into a
small neighbourhood of the target set M at a time ϑ.

Problem 2 can be solved by applying standard methods, namely, pixel methods [12] for con-
structing and representing the solvability sets for approach problems, the Krasovskii extremal
aiming method [13], [14], and by using the recovered approximate value of the parameter. The
estimate for an arising additional error was established in work [8]. This is why the present
work is devoted to solving Problem 1.

3. Problem 1. Recovering of unknown parameter

Let us formulate an algorithm on approximate recovering of the unknown parameter α ∈ L .
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Algorithm 1.

1) We choose a set of test controls {u(1), . . . , u(N)} and apply them successively on segments
[t0+(k− 1)∆, t0+ k∆), k = 1, N . As a result, on the time segment [t0, t0+N∆], some motion
of system (2.1) is realized, which we denote by x(t).

2) At the time moments t0 +
j

2
∆, j = 0, 2N , we measure the phase variable of system (2.1).

As a result, we obtain the values x∗

(

t0 +
j

2
∆
)

satisfying inequalities

∥

∥

∥

∥

x∗

(

t0 +
j

2
∆
)

− x
(

t0 +
j

2
∆
)

∥

∥

∥

∥

6 δ, j = 0, 2N.

3) For each k = 1, N we calculate the vector

f (k) =
x∗(t0 + k∆)− x∗(t0 + (k − 1)∆)

∆

and its projection f
(k)
∗ on the set F

(

t0 +
(

k − 1
2

)

∆, x∗
(

t0 +
(

k − 1
2

)

∆
)

, u(k)
)

. Depending on
the form of this set, we choose either analytic or numerical way of constructing the projections
[8, Sect. 5] up to an error

‖f (k)
∗

− f (k)
pr ‖ < p, (3.1)

where f
(k)
pr is the exact projection and f

(k)
∗ is the approximate one.

4) We find an approximate value α∗ ∈ L of the parameter α ∈ L by the system of equations:

f

(

t0 +

(

k − 1

2

)

∆, x∗

(

t0 +

(

k − 1

2

)

∆

)

, u(k), α∗

)

= f (k)
∗

, k = 1, N. (3.2)

Remark 3.1. By Condition A4, a solution to system (3.2) exists and is stable with respect

to perturbations of the right hand side and the measurement results of the phase variable x∗

(

t0+

j

2
∆
)

, j = 1, 2N .

We proceed to estimating the sharpness of algorithm 1. By means of Grönwall’s lemma [15,
Ch. 1, Sect. 2], it is easy to obtain the following statement.

Lemma 3.1. Each motion x(T ) of control system (2.1) satisfies the inequality

‖x(T )− x(0)‖ 6 (T − t0)K(T ),

where t0 6 T 6 ϑ,

K(T ) = max
{

‖f(t, x, u, α)‖ : t ∈ [t0, T ], x ∈ B(x(0), (‖x(0)‖+ 1)(eγ(T−t0) − 1)), u ∈ P, α ∈ L
}

.

By Lemma 3.1 and the inclusion

B(x(0), (‖x(0)‖+ 1)(eγ(T−t0) − 1)) ⊂ B(x∗(t0), (‖x∗(t0)‖+ δ + 1)(eγ(T−t0) − 1) + δ)

we obviously arrive at the following corollary.

Corollary 3.1. Each motion x(T ) of control system (2.1) satisfies inequality

‖x(T )− x(0)‖ 6 (T − t0)K
∗(T ),

where t0 6 T 6 ϑ,

K∗(T ) =max
{

f(t, x, u, α) :

t ∈ [t0, T ], x ∈ B(x∗(t0), (‖x∗(t0)‖+ δ + 1)(eγ(T−t0) − 1) + δ), u ∈ P, α ∈ L
}

.
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To formulate the main result, we introduce the following notations:

K∗(N∆) = max{‖f(t, x, u, α)‖ : t ∈ [t0, t0 +N∆],

x ∈ B(x∗(t0), (‖x∗(t0)‖+ δ + 1)(eγ∆N − 1) + δ), u ∈ P, α ∈ L },

K1 = max

{

∥

∥

∥

∂f

∂t
(t, x, u, α) +

∂f

∂x
(t, x, u, α)f(t, x, u, α)

∥

∥

∥
:

t ∈ [t0, t0 +N∆], x ∈ B(x∗(0), N∆ ·K∗(N∆)), u ∈ P, α ∈ L

}

,

K2 = max

{

∥

∥

∥

∂2f

∂t2
(t, x, u, α) +

∂2f

∂t∂x
(t, x, u, α) +

∂ϕ

∂t
(t, x, u, α) +

∂ϕ

∂x
(t, x, u, α)f(t, x, u, α)

∥

∥

∥ :

t ∈ [t0, t0 +N∆], x ∈ B(x∗(0), N∆ ·K∗(N∆)), u ∈ P, α ∈ L

}

,

where

ϕ(t, x, u, α) =
∂f

∂x
(t, x, u, α) · f(t, x, u, α).

Theorem 3.1. Let α∗ be the value of the parameter α in system (2.1) recovered by algorithm
1. Then

‖α∗ − α‖ 6 κ

(

δ

N
∑

k=1

bk +
(

p+ Lδ + r(∆)
)

N
∑

k=1

βk

)

, (3.3)

where

r(∆) =
4δ

∆
+

∆3

12
K2. (3.4)

Proof. By Condition A4,

‖α∗ − α‖ 6κ

(

N
∑

k=1

bk

∥

∥

∥

∥

x∗

(

t0 +

(

k − 1

2

)

∆

)

− x

(

t0 +

(

k − 1

2

)

∆

)∥

∥

∥

∥

+
N
∑

k=1

βk

∥

∥

∥

∥

f (k)
∗

− f

(

t0 +

(

k − 1

2

)

∆, x

(

t0 +

(

k − 1

2

)

∆, u(k), α

))∥

∥

∥

∥

)

.

(3.5)

It follows from (2.2) that the error of measuring the phase variable does not exceed δ, that is,

N
∑

k=1

bk

∥

∥

∥

∥

x∗

(

t0 +

(

k − 1

2

)

∆

)

− x

(

t0 +

(

k − 1

2

)

∆

)∥

∥

∥

∥

6 δ

N
∑

k=1

bk. (3.6)

Let us estimate the quantities

∥

∥

∥

∥

f (k)
∗

− f

(

t0 +

(

k − 1

2

)

∆, x

(

t0 +

(

k − 1

2

)

∆, u(k), α

))∥

∥

∥

∥

, k = 1, N.
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We choose an arbitrary index k. The triangle inequality for a norm, (3.1) and Condition A1

imply that
∥

∥

∥

∥

f (k)
∗

− f

(

t0 +

(

k − 1

2

)

∆, x

(

t0 +

(

k − 1

2

)

∆, u(k), α

))∥

∥

∥

∥

6
∥

∥f (k)
∗

− f (k)
pr

∥

∥+

∥

∥

∥

∥

f (k)
pr − f

(

t0 +

(

k − 1

2

)

∆, x

(

t0 +

(

k − 1

2

)

∆, u(k), α

))∥

∥

∥

∥

6 p+

∥

∥

∥

∥

f (k)
pr − f

(

t0 +
(

k − 1

2

)

∆, x∗

(

t0 +

(

k − 1

2

)

∆, u(k), α

)∥

∥

∥

∥

+ Lδ

6 p+
∥

∥f (k)
pr − f (k)

∥

∥+

∥

∥

∥

∥

f (k) − f

(

t0 +

(

k − 1

2

)

∆, x

(

t0 +

(

k − 1

2

)

∆, u(k), α

))∥

∥

∥

∥

+ Lδ

6 p+ 2

∥

∥

∥

∥

f (k) − f

(

t0 +

(

k − 1

2

)

∆, x

(

t0 +

(

k − 1

2

)

∆, u(k), α

))∥

∥

∥

∥

+ Lδ

6 p+ Lδ + 2

∥

∥

∥

∥

x∗(t0 + k∆)− x∗(t0 + (k − 1)∆)

∆
− x(t0 + k∆)− x(t0 + (k − 1)∆)

∆

∥

∥

∥

∥

+ 2

∥

∥

∥

∥

x(t0 + k∆)− x(t0 + (k − 1)∆)

∆
− f

(

t0 +

(

k − 1

2

)

∆, x

(

t0 +

(

k − 1

2

)

∆, u(k), α

))∥

∥

∥

∥

6 p+ Lδ +
4δ

∆
+

2

∆

∥

∥

∥

∥

∥

t0+k∆
∫

t0+(k−1)∆

ẋ(τ)− f

(

t0 +

(

k − 1

2

)

∆, x

(

t0 +

(

k − 1

2

)

∆, u(k), α

))

dτ

∥

∥

∥

∥

∥

= p+ Lδ +
4δ

∆
+

2

∆

∥

∥

∥

∥

∥

t0+k∆
∫

t0+(k−1)∆

(

f(τ, x(τ), u(k), α)

− f

(

t0 +

(

k − 1

2

)

∆, x

(

t0 +

(

k − 1

2

)

∆, u(k), α

)))

dτ

∥

∥

∥

∥

∥

= p+ Lδ +
4δ

∆
+

2

∆

∥

∥

∥

∥

∥

t0+k∆
∫

t0+(k−1)∆

((

τ − t0 −
(

k − 1

2

)

∆

)

· d

dt
f(t, x(t), u(k), α)

∣

∣

∣

∣

t=t0+
(

k− 1

2

)

∆

+
1

2

(

τ − t0 −
(

k − 1

2

)

∆

)2

· d2

dt2
f(t, x(t), u(k), α)

∣

∣

∣

∣

t=ξ

)

dτ

∥

∥

∥

∥

∥

= p+ Lδ +
4δ

∆
+

∆2

12

∥

∥

∥

∥

∥

t0+k∆
∫

t0+(k−1)∆

d2

dt2
f(t, x(t), u(k), α)

∣

∣

∣

∣

t=ξ

dτ

∥

∥

∥

∥

∥

6 p+ Lδ +
4δ

∆
+

∆2

12

t0+k∆
∫

t0+(k−1)∆

∥

∥

∥

∥

∥

d2

dt2
f(t, x(t), u(k), α)

∣

∣

∣

∣

t=ξ

∥

∥

∥

∥

∥

dτ

= p+ Lδ +
4δ

∆
+

∆2

12

t0+k∆
∫

t0+(k−1)∆

∥

∥

∥

∥

∂2f

∂t2
(ξ, x(ξ), u(k), α) +

∂2f

∂t∂x
(ξ, x(ξ), u(k), α)

+
∂ϕ

∂t
(ξ, x(ξ), u(k), α) +

∂ϕ

∂x
(ξ, x(ξ), u(k), α)f(ξ, x(ξ), u(k), α)

∥

∥

∥

∥

dτ

6 p+ Lδ +
4δ

∆
+

∆3

12
K2,
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where ξ ∈ (t0 + (k − 1)∆, t0 + k∆),
∂f

∂t
and

∂ϕ

∂t
denote the partial derivative of the functions

f(·, ·, ·, ·) and ϕ(·, ·, ·, ·) with respect to the first variable, and
∂f

∂x
is the derivative with respect

to the second variable. We also observe that x(ξ) ∈ B(x∗(0), N∆ ·K∗(N∆)) by Corollary 3.1
and this ensures the latter inequality. Hence,

N
∑

k=1

βk

∥

∥f (k)
∗

− f
(

t0 + (k − 1)∆, x(t0 + (k − 1)∆, u(k), α
)∥

∥ 6
(

p+ Lδ + r(∆)
)

∞
∑

k=1

βk. (3.7)

Substituting (3.6) and (3.7) into (3.5), we arrive at the statement of the theorem. The proof is
complete.

Remark 3.2. For a practical application of Theorem 3.1, the exact values K∗(N∆) and K2

can be replaced by their estimates K̂∗(N∆) > K∗(N∆) and K̂2 > K2. Moreover, to get a
sharpest estimate (3.3), we can choose the quantity ∆, at which the minimum of r(∆) (or the

minimum of the estimating function r̂(∆) = 4δ/∆+∆3K̂2/12) is attained. As it is easy to see,

this value is ∆0 = 2 4

√

δ

K2

.

In our Algorithm 1, the number of required measuring of the phase variable increases ap-
proximately twice in comparison with the algorithms using the right difference derivative for
approximating the velocity of system (2.1); such algorithm was formulated in [9] for the case,
when the number of test controls consists in a single vector. This is why we are going to
consider an improved Algorithm 2 differing from Algorithm 1 only by a single step.

2. At the times t0 + j∆, j = 0, N , we measure the phase variable of system (2.1). As a

result, we obtain the values x∗

(

t0 + j∆
)

satisfying the inequalities

‖x∗(t0 + j∆)− x(t0 + j∆)‖ 6 δ, j = 0, N.

Moreover, we define

x∗(t0 + (k − 1

2
)∆) =

x∗(t0 + k∆)− x∗(t0 + (k − 1)∆)

∆
, k = 1, N.

Let us estimate how in this case the error of recovering the unknown parameter increases.

Theorem 3.2. Let α∗ be the value of the parameter α in system (2.1) recovered by Algo-
rithm 2. Then

‖α∗ − α‖ 6 κ

(

δ
N
∑

k=1

bk +
(

p+ Lδ + ρ(∆)
)

N
∑

k=1

βk

)

, (3.8)

where

ρ(∆) =
4δ

∆
+

∆2

8
LK1 +

∆3

12
K2.

Proof. To obtain modified estimate (3.8) for Algorithm 2, it is sufficient to estimate over again
the norm

∥

∥

∥

∥

f

(

t0+

(

k − 1

2

)

∆, x∗

(

t0 +

(

k − 1

2

)

∆

)

, u(k), α

)

− f

(

t0 +

(

k − 1

2

)

∆, x

(

t0 +

(

k − 1

2

)

∆

)

, u(k), α

)∥

∥

∥

∥

for k = 1, N ; in the proof of Theorem 3.1 this norm was estimate by Lδ.
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We choose an arbitrary natural number k between 1 and N . We have:
∥

∥

∥

∥

x∗

(

t0+

(

k − 1

2

)

∆

)

− x

(

t0 +

(

k − 1

2

)

∆

)∥

∥

∥

∥

6

∥

∥

∥

∥

x∗(t0 + (k − 1)∆) + x∗(t0 + k∆)

2
− x(t0 + (k − 1)∆) + x(t0 + k∆)

2

∥

∥

∥

∥

+

∥

∥

∥

∥

x(t0 + (k − 1)∆) + x(t0 + k∆)

2
− x

(

t0 +

(

k − 1

2

)

∆

)∥

∥

∥

∥

6 δ +

∥

∥

∥

∥

∥

1

2

t0+k∆
∫

t0+
(

k− 1

2

)

∆

ẋ(τ)dτ − 1

2

t0+
(

k− 1

2

)

∆
∫

t0+(k−1)∆

ẋ(τ)dτ

∥

∥

∥

∥

∥

= δ +

∥

∥

∥

∥

∥

1

2

t0+k∆
∫

t0+
(

k− 1

2

)

∆

f(τ, x(τ), u(k), α)dτ − 1

2

t0+
(

k− 1

2

)

∆
∫

t0+(k−1)∆

f(τ, x(τ), u(k), α)dτ

∥

∥

∥

∥

∥

= δ +

∥

∥

∥

∥

∥

1

2

t0+k∆
∫

t0+(k− 1

2
)∆

(

f

(

t0 +

(

k − 1

2

)

∆, x

(

t0 +

(

k − 1

2

)

∆

)

, u(k), α

)

+
d

dt
f(t, x(t), u(k), α)

∣

∣

∣

∣

t=ξ

·
(

τ − t0 −
(

k − 1

2

)

∆

)

)

dτ

− 1

2

t0+
(

k− 1

2

)

∆
∫

t0+(k−1)∆

(

f

(

t0 +

(

k − 1

2

)

∆, x

(

t0 +

(

k − 1

2

)

∆

)

, u(k), α

)

+
d

dt
f(t, x(t), u(k), α)

∣

∣

∣

∣

t=η

·
(

τ − t0 −
(

k − 1

2

)

∆

))

dτ

∥

∥

∥

∥

∥

6 δ +
1

8
K1∆

2,

where the numbers ξ ∈
(

t0 +

(

k − 1

2

)

∆, t0 + k∆

)

and η ∈
(

t0 + (k − 1)∆, t0 +

(

k − 1

2

)

∆

)

arise in expanding the function f(τ, x(τ), u(k), α) into the Taylor series with the remainder in
the Lagrange form.

Respectively, in view of Condition A1, we obtain that
∥

∥

∥

∥

f
(

t0 +
(

k − 1

2

)

∆, x∗

(

t0 +

(

k − 1

2

)

∆

)

, u(k), α
)

− f
(

t0 +
(

k − 1

2

)

∆, x

(

t0 +

(

k − 1

2

)

∆

)

, u(k), α
)

∥

∥

∥

∥

6 Lδ +
1

8
LK1∆

2.

The rest of the proof reproduces literally the proof of Theorem 3.1.

Remark 3.3. In the case of using Algorithm 2, it is reasonable to choose the quantity ∆ by

minimizing the function ρ(∆) =
4δ

∆
+

1

8
LK1∆

2 +
1

12
K2∆

3 or some of its estimate ρ̂(∆).

4. Example

We consider a spring pendulum on the time interval [t0, ϑ] = [0,∞), see Figure 1.
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mg

u1

u2
u

x1

0

Figure 1. Spring pendulum

Its behavior is described by a system of differential equations:

ẋ1 = x2,

ẋ2 =







u1

m
− x1

m
k1 −

(mg − u2)sign(x2)

m
k2, if x2 > 0 or |u1 − x1k1| > (mg − u2)k2,

0, if x2 = 0 and |u1 − x1k1| 6 (mg − u2)k2,

x∗(0) = (1,−1),

(4.1)

where x1(t) is the deviation of the body from the equilibrium in the horizontal direction, x2(t)
is the velocity of the body, u = (u1, u2) ∈ P is a controlling force, m = 0.11 is the mass of
the body, g = 9.807 is the free fall acceleration, k1 is an unknown elasticity coefficient of the
spring, k2 is an unknown coefficient of sliding friction, x∗(0) is the result of measuring of the
initial position x(0).

We note that as a rule, the static friction force exceeds a little the sliding friction force: in
order to move the body of the pendulum from its place, one has to apply a slightly larger force
than for keeping the motion. However, in system (4.1) this physical phenomenon is not taken
into consideration as well as other possible improving of the mathematical model.

Let the restriction for the control vector u = (u1, u2) be the ball P = {u : ‖u‖ 6 1}.
Moreover, before the beginning of the motion we know that (k1, k2) ∈ L = [0.1, 0.8]× [0.1, 0.5].
We assume that we can measure the phase variable x = (x1, x2) up to an error not exceeding
δ = 0.0001.

The problem is to determine an unknown vector parameter α = (k1, k2) at a short initial
time interval as exact as possible.

We choose optimal values of the parameters in Algorithm 1 and estimate the corresponding
error of recovering the unknown parameter by Theorem 3.1.

First of all we observe that owing to the condition x2 6= 0, in some neighbourhood of the
initial moment t0 = 0, system (4.1) casts into a simpler form:















ẋ1 = x2,

ẋ2 =
u1

m
− x1

m
k1 −

mg − u2

m
k2,

x∗(0) = (1, 1),

(4.2)

and it satisfies the assumptions of Theorem 3.1.
Let us determine the required number of test controls. In the matrix form system (4.2) reads

as
(

ẋ1

ẋ2

)

=

(

x2

u1

m

)

+





0 0

−x1

m
−mg − u2

m





(

k1

k2

)

.
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Since the determinant of the matrix





0 0

−x1

m
−mg − u2

m



 vanishes, the vector of the parameters

(

k1

k2

)

can not be recovered by a single observation of the vector

(

ẋ1

ẋ2

)

. Thus, N = 2, and the

minimal set of test controls consists of two vectors u(1) and u(2). Before proceeding with further
estimates for the constants, we prove an auxiliary statement.

Lemma 4.1. All numbers a 6= 0, b, x, y satisfy the inequality

√

(ax+ b)2 + y2 6
4
√
1 + a4

(

√

x2 + y2 +
∣

∣

∣

b

a

∣

∣

∣

)

.

Proof. Employing the Cauchy-Schwartz inequality for the pair of vectors (a2, 1),
((

x+
b

a

)2

, y2
)

and inequality 4
√
a4 + b4 6

√
a2 + b2, we obtain that

√

(ax+ b)2 + y2 =

√

a2
(

x+
b

a

)2

+ y2 6
4

√

(

x+
b

a

)4

+ y4 · 4
√
a4 + 1

6

√

(

x+
b

a

)2

+ y2 · 4
√
a4 + 1 6

4
√
1 + a4

(

√

x2 + y2 +
∣

∣

∣

b

a

∣

∣

∣

)

.

Here the latter inequality is implies by the triangle inequality |AD| < |AB| + |BD| for the
triangle ∆ABD shown on Figure 2.

A

BC D|x|

|y|

∣

∣

∣

b

a

∣

∣

∣

Figure 2. Trianlge ∆ABD

The proof is complete.

Applying Lemma 4.1, we estimate the norm of the function f(t, x, u, α) in the right hand
side in system (4.2):

‖f(t, x, u, α)‖ =

√

x2
2 +

(u1

m
− gk2 +

u2

m
k2 −

k1
m
x1

)2

6
4

√

1 +
(k1
m

)4
(

‖x‖+
∣

∣

∣

u1 − gk2m+ u2k2
k1

∣

∣

∣

)

6
4

√

1 +
( 1

m

)4(

k1‖x‖+
∣

∣−‖u‖
√

1 + k2
2 − gk2m

∣

∣

)

6
4

√

1 +
( 1

0.11

)4(

0.5‖x‖+
√
1 + 0.82 + 9.81 · 0.8 · 0.11

)

= 4.55‖x‖+ 19.49 6 19.5(‖x‖+ 1).
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Therefore, γ = 19.5. Then

K∗(2∆) = max{‖f(t, x, u, α)‖ : t ∈ [0, 2∆],

x ∈ B(x∗(t0), (‖x∗(t0)‖+ δ + 1)(eγ∆N − 1) + δ), u ∈ P, α ∈ L }
6 max{4.55‖x‖+ 19.49 : ‖x‖ 6 2.0001e39∆ − 1}
6 9.105e39∆ + 14.94.

Hence, K̂∗(2∆) = 9.105e39∆ + 14.94.
Since in our case the sets

F
(

t0 +
(

k − 1

2

)

∆, x∗

(

t0 +
(

k − 1

2

)

∆
)

, u(k)
)

, k = 1, 2,

are segments on the plane, we assume that we can analytically construct the exact projection
of each point in the phase plane on these segments, in other words, p = 0.

Now we are going to determine the Lipschitz constant L. Using the Cauchy-Schwartz in-
equality, we estimate the norm of the difference

‖f(t, x(1), u, α)− f(t, x(2), u, α)‖ =
∥

∥

∥

(

x
(1)
2 − x

(2)
2 ,−k1

m
(x

(1)
1 − x

(2)
1 )
∥

∥

∥ 6

∥

∥

∥

(

1,−k1
m

)∥

∥

∥ · ‖x(1) − x(2)‖

6

∥

∥

∥

(

1,
0.8

0.11

)∥

∥

∥ · ‖x(1) − x(2)‖ 6 7.342 · ‖x(1) − x(2)‖,

that is, L = 7.342.
We calculate the function

ϕ(t, x, u, α) =
∂f

∂x
(t, x, u, α) · f(t, x, u, a) =









∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2









·
(

f1

f2

)

=





0 1

−k1
m

0



 ·





x2

u1 − k1x1 + k2u2

m
− gk2



 =







u1 − k1x1 + k2u2

m
− gk2

−k1x2

m







and its derivative

∂ϕ

∂x
=









∂ϕ1

∂x1

∂ϕ1

∂x2

∂ϕ2

∂x1

∂ϕ2

∂x2









=







−k1
m

0

0 −k1
m






,

and by means of Lemma 4.1 we estimate the constant:

K2 = max

{

k1
m

√

x2
2 +

(u1 − k1x1 + k2u2

m
− gk2

)2

:

(x, u, α) ∈ B(x∗(0), δ +N∆ ·K∗(N∆))× P × L

}

6 max

{

k1
m

4

√

1 +
(k1
m

)4
(

‖x‖+
∣

∣

∣

u1 + k2u2 − gk2m

k1m

)

:

‖x‖ 6 ‖x∗(0)‖+ δ +N∆ ·K∗(N∆), u = (−1, 0), (k1, k2) = (0.5, 0.8)

}

.
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We postulate the upper bound ∆ 6 0.058, where the number 0.058 is a solution to the equation

2 4

√

δ

K̂2(∆)
= max

{

k1
m

4

√

1 +
(k1
m

)4
(

‖x‖+
∣

∣

∣

u1 + k2u2 − gk2m

k1m

)

:

‖x‖ 6 ‖x∗(0)‖+ δ +N∆ ·K∗(N∆), u = (−1, 0), (k1, k2) = (0.5, 0.8)

}

for ∆. Then we obtain the estimate K2 6 K̂2 = 142 and in accordance with Remark 3.2, the
optimal value is

∆0 = 2 4

√

δ

K̂2

= 0.058.

At that, the estimating function satisfies the identity

r̂(∆0) =
4δ

∆0

+
∆3

0K̂2

12
= 0.0092.

We are going to construct the function κ. After applying Algorithm 1 we obtain the system
of equations of the form



























u
(1)
1 + k∗

2u
(1)
2

m
− gk∗

2 −
k∗

1 · x∗

1

(1

2
∆
)

m
= f

(1)
∗,2 ,

u
(2)
1 + k∗

2u
(2)
2

m
− gk∗

2 −
k∗

1 · x∗

1

(3

2
∆
)

m
= f

(2)
∗,2 ,

where α∗ = (k∗

1, k
∗

2) is the recovered value of the parameter α = (k1, k2), while f
(1)
∗,2 and f

(2)
∗,2 are

the second components of the projections of the vectors

f (k) =
x∗(t0 + k∆)− x∗(t0 + (k − 1)∆)

∆
, k = 1, 2,

on the sets F
(

t0 +
(

k − 1
2

)

∆, x∗
(

t0 +
(

k − 1
2

)

∆
)

, u(k)
)

, k = 1, 2, respectively.
Since the maximal sharpness of the recovering of the unknown parameter α = (k1, k2) is

attained at the maximal determinant of this system, we define test controls as

u(1) = (0, 1), u(2) = (0,−1).

Then

α∗ =

(

k∗

1

k∗

2

)

=





















m
(

(mg − 1)f
(2)
∗,2 − (mg + 1)f

(1)
∗,2

)

(1 +mg)x∗

1

(1

2
∆
)

+ (1−mg)x∗

1

(3

2
∆
)

m
(

x∗

1

(3

2
∆
)

f
(1)
∗,2 − x∗

1

(1

2
∆
)

f
(2)
∗,2

)

(1 +mg)x∗

1

(1

2
∆
)

+ (1−mg)x∗

1

(3

2
∆
)





















,

while the exact value of the parameter is

α =

(

k1
k2

)

=





















m
(

(mg − 1)f
(2)

2 − (mg + 1)f
(1)

2

)

(1 +mg)x1

(1

2
∆
)

+ (1−mg)x1

(3

2
∆
)

m
(

x1

(3

2
∆
)

f
(1)

2 − x1

(1

2
∆
)

f
(2)

2

)

(1 +mg)x1

(1

2
∆
)

+ (1−mg)x1

(3

2
∆
)





















,
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where we have denoted

f
(1)

2 = f2

(1

2
∆, x

(1

2
∆
)

, u(1), α
)

, f
(2)

2 = f2

(3

2
∆, x

(3

2
∆
)

, u(2), α
)

.

Employing these expressions for α and α∗, we estimate

|k∗

1 − k1| 6
m ·
(

(mg − 1)
∣

∣f
(2)
∗,2 − f

(2)

2

∣

∣+ (mg + 1)
∣

∣f
(1)
∗,2 − f

(1)

2

∣

∣

)

(1 +mg)x1

(1

2
∆
)

+ (1−mg)x1

(3

2
∆
)

+
m
∣

∣(mg − 1)f
(2)

2 − (mg + 1)f
(2)
∗,2

∣

∣

∣

∣

∣
(1 +mg)x∗

1

(1

2
∆
)

+ (1−mg)x∗

1

(3

2
∆
)∣

∣

∣

·

(

∣

∣

∣x∗

1

(1

2
∆
)

− x1

(1

2
∆
)∣

∣

∣+
∣

∣

∣x∗

1

(3

2
∆
)

− x1

(3

2
∆
)∣

∣

∣

)

∣

∣

∣
(1 +mg)x1

(1

2
∆
)

+ (1−mg)x1

(3

2
∆
)∣

∣

∣

,

|k∗

2 − k2| 6
m

∣

∣

∣(1 +mg)x1

(1

2
∆
)

+ (1−mg)x1

(3

2
∆
)∣

∣

∣

·
(

∣

∣

∣
x∗

1

(3

2
∆
)

− x1

(3

2
∆
)∣

∣

∣
·
∣

∣f
(1)
∗,2

∣

∣+
∣

∣

∣
x1

(3

2
∆
)∣

∣

∣
·
∣

∣f
(1)
∗,2 − f

(1)
2

∣

∣

+
∣

∣

∣
x∗

1

(1

2
∆
)

− x1

(1

2
∆
)∣

∣

∣
·
∣

∣f
(2)
∗,2

∣

∣+
∣

∣

∣
x1

(1

2
∆
)∣

∣

∣
·
∣

∣f
(2)
∗,2 − f

(2)
2

∣

∣

)

+
m
∣

∣

∣
x∗

1

(3

2
∆
)

f
(1)
∗,2 − x∗

1

(1

2
∆
)

f
(2)
∗,2

∣

∣

∣

∣

∣

∣(1 +mg)x∗

1

(1

2
∆
)

− (1−mg)x∗

1

(3

2
∆
)∣

∣

∣

·

(

(1 +mg)
∣

∣

∣
x∗

1

(1

2
∆
)

− x1

(1

2
∆
)∣

∣

∣
+ (mg − 1)

∣

∣

∣
x∗

1

(3

2
∆
)

− x1

(3

2
∆
)∣

∣

∣

)

∣

∣

∣(1 +mg)x1

(1

2
∆
)

− (1−mg)x1

(3

2
∆
)∣

∣

∣

.

Since δ and ∆ are relatively small, then

x∗

(3

2
∆
)

≈ x∗

(1

2
∆
)

≈ x
(3

2
∆
)

≈ x
(1

2
∆
)

≈ x∗(0) ≈ x(0),

f (1)
∗

≈ f (1) ≈ f
(1) ≈ f(t0, x

(0), u(1), α), f (2)
∗

≈ f (2) ≈ f
(2) ≈ f(t0, x

(0), u(2), α).

In view of these approximated identities, we obtain the following approximate estimates:

|k∗

1 − k1| 6
m

2|x(0)
1 |
(

(mg − 1)
∥

∥f (2)
∗

− f
(2)∥
∥+ (mg + 1)

∥

∥f (1)
∗

− f
(1)∥
∥

)

+
m ·max

α∈L

∣

∣(mg − 1)f2(t0, x
(0), u(2), α)− (mg + 1)f2(t0, x

(0), u(1), α)
∣

∣

4
(

x∗

1(0)
)2

·
(∥

∥

∥x∗

1

(1

2
∆
)

− x1

(1

2
∆
)∥

∥

∥+
∥

∥

∥x∗

(3

2
∆
)

− x
(3

2
∆
)∥

∥

∥

)

≈ 0.4
∥

∥

∥x∗

(1

2
∆
)

− x
(1

2
∆
)∥

∥

∥+ 0.4
∥

∥

∥x∗

(3

2
∆
)

− x
(3

2
∆
)∥

∥

∥

+ 0.114
∥

∥f (1)
∗

− f
(1)∥
∥+ 0.004

∥

∥f (2)
∗

− f
(2)∥
∥,
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|k∗

2 − k2| 6
m

2
∣

∣x∗

1(0)
∣

∣

(

max
α∈L

∣

∣f2(t0, x
∗(0), u(1), α)

∣

∣ ·
∥

∥

∥
x∗

(3

2
∆
)

− x
(3

2
∆
)∥

∥

∥

+max
α∈L

∣

∣f2(t0, x
∗(0), u(2), α)

∣

∣ ·
∥

∥

∥x∗

(1

2
∆
)

− x1

(1

2
∆
)∥

∥

∥

+ |x∗

1(0)| ·
∥

∥f (1)
∗

− f
(1)∥
∥+ |x∗

1(0)| ·
∥

∥f (2)
∗

− f
(2)∥
∥

)

+
max
α∈L

∣

∣f
(1)
2 (t0, x

∗(0), u(1), α)− f
(1)
2 (t0, x

∗(0), u(2), α)
∣

∣

4mg2
∣

∣x∗

1(0)|

·
(

(1 +mg)
∥

∥

∥x∗

(1

2
∆
)

− x
(1

2
∆
)∥

∥

∥+ (mg − 1)
∥

∥

∥x∗

(3

2
∆
)

− x
(3

2
∆
)∥

∥

∥

)

≈ 1.634
∥

∥

∥
x∗

(1

2
∆
)

− x
(1

2
∆
)∥

∥

∥
+ 0.447

∥

∥

∥
x∗

(3

2
∆
)

− x
(3

2
∆
)∥

∥

∥

+ 0.055
∥

∥f (1)
∗

− f
(1)∥
∥+ 0.055

∥

∥f (2)
∗

− f
(2)∥
∥,

‖α∗ − α‖ 6
√

|k∗

1 − k1|2 + |k∗

2 − k2| 6 |k∗

1 − k1|+ |k∗

2 − k2|

6 2.034
∥

∥

∥x∗

(1

2
∆
)

− x
(1

2
∆
)∥

∥

∥+ 0.847
∥

∥

∥x∗

(3

2
∆
)

− x
(3

2
∆
)∥

∥

∥

+ 0.169
∥

∥f (1)
∗

− f
(1)∥
∥+ 0.059

∥

∥f (2)
∗

− f
(2)∥
∥.

Thus,

κ

(

b1

∥

∥

∥x∗

1

(1

2
∆
)

− x1

(1

2
∆
)∥

∥

∥+ b2

∥

∥

∥x∗

1

(3

2
∆
)

− x1

(3

2
∆
)∥

∥

∥+ β1

∥

∥f (1)
∗

− f
(1)∥
∥+ β2

∥

∥f (2)
∗

− f
(2)∥
∥

)

= 2.034
∥

∥

∥x∗

(1

2
∆
)

− x
(1

2
∆
)∥

∥

∥+ 0.847
∥

∥

∥x∗

(3

2
∆
)

− x
(3

2
∆
)∥

∥

∥

+ 0.169
∥

∥f (1)
∗

− f
(1)∥
∥+ 0.059

∥

∥f (2)
∗

− f
(2)∥
∥.

This implies the following rather rough estimate for the error of recovering the unknown pa-
rameter:

‖α∗ − α‖ 6 κ

(

δ · (b1 + b2) + r̂(∆0) · (β1 + β2)
)

= 2.881δ + 0.228r̂(∆0) = 0.00239.

5. Conclusion

The estimate for error of recovering the unknown parameter α obtained in Theorem 3.1
is sharper than similar estimates in [8], [9], which is achieved by replacing the right difference
derivative by the central difference derivative. But a disadvantage of this scheme for solving the
approach problem is that after the recovering the unknown parameter there remain relatively
little time for constructing the resolving controlling program. In view of this, further studies are
to be focused on effective storing prepared in advance resolving controlling programs for various
specially chosen values of the parameter in the control system and of the approximations of the
resolving control for remaining values of the parameter.
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