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ON INFINITE SYSTEM OF RESONANCE AND

EIGENVALUES WITH EXPONENTIAL ASYMPTOTICS

GENERATED BY DISTANT PERTURBATIONS

D.I. BORISOV, M.N. KONYRKULZHAEVA

Abstract. We consider an one-dimensional Schrödinger operator with four distant poten-
tials separated by large distance. All distances are proportional to a sam large parameter.
The initial potentials are of kink shapes, which are glued mutually so that the final po-
tential vanishes at infinity and between the second and third initial potentials and it is
equal to one between the first and the second potentials as well as between the third and
fourth potentials. The potentials are not supposed to be real and can be complex-valued.
We show that under certain, rather natural and easily realizable conditions on the four
initial potentials, the considered operator with distant potentials possesses infinitely many
resonances and/or eigenvalues of form 𝜆 = 𝑘2𝑛, 𝑛 ∈ Z, which accumulate along a given
segment in the essential spectrum. The distance between neighbouring numbers 𝑘𝑛 is of
order the reciprocal of the distance between the potentials, while the imaginary parts of
these quantities are exponentially small. For the numbers 𝑘𝑛 we obtain the representations
via the limits of some explicitly calculated sequences and the sum of infinite series. We
also prove explicit effective estimates for the convergence rates of the sequences and for the
remainders of the series.
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1. Introduction

Problems with distant perturbations have a rich history and are studied rather intensively.
A classical example of an operator with distant perturbations is the Schrödinger operator on
the axis with a pair of distant potentials. A more general formulation involves elliptic differ-
ential operators in unbounded periodic domains with coefficients containing several localized
profiles. These profiles are connected by some periodic background; on different connections
the structure of such background can be different. By nowadays, the behavior of the resolvents
and isolated eigenvalues was studied quite well and results of general nature were obtained in
[2], [3], [10], [11], [17], [18]; earlier results for particular models can be found in classical works
[5], [15], [16], [19], [20], [22], [23].

The behavior of the resonances of the operators with distant perturbations is studied much
less. For a classical case of the Schrödinger operator in the three-dimensional space with several
distant perturbations the behavior of the resonances was studied in [21]. A one-dimensional case
with a pair of general distant localized perturbations, not necessarily described by symmetric
operators, was considered in recent works [12], [13]. We mention a similar one-dimensional
model with a truncated periodic potential [6], as well as its discrete analogue [24]. It was found
in the cited works that as the distance between the supports of the distant perturbations grows,
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in the vicinity of the bottom of the essential spectrum of the considered operator, infinitely
many resonances could arise and these resonances accumulated along some curves. The distance
from these resonances to the essential spectrum was of order of the reciprocal of the distance
between the distant perturbations.

In paper [9], there was studied a problem for the Laplacian in the strip, where the distant
perturbations were replaced by the Dirichlet and Neumann boundary conditions. A similar
problem but in a multi-dimensional cylinder was studied in [1]. In was shown in these two
works that the eigenvalues embedded into the essential spectrum, bifurcated into finitely many
resonances with exponentially small asymptotics. In a very recent work [14] this phenomenon
was found in the general case for an arbitrary elliptic operator with finitely many distant
perturbations in a multi-dimensional cylinder.

In all studied models, in the case, when the resonances and/or eigenvalues emerged and accu-
mulated along some segment in the essential spectrum, their asymptotics were also power with
respect to the distance between the distant potentials [6], [12], [13], [21], [24]. In the case of
perturbing the eigenvalues embedded into the essential spectrum, only finitely many resonances
with exponential asymptotics arose [1], [9], [14]. This poses a natural question: whether this
is true that the emergence of infinitely many resonances means that they always have power
in the distance asymptotics, while in the case of emergence of finitely many resonances the
corresponding asymptotics are always exponential? In the present work we disprove this con-
jecture providing an appropriate example. Namely, we consider a one-dimensional Schrödinger
operator with four distant potentials. The shapes of the potentials are of kink type, which
are glued so that the final potential vanishes at infinity and between the second and third
potentials and it is equal to one between the first and second potentials as well as between
the third and the fourth potentials, see Figures 1 and 2. The potentials are not assumed to
be necessarily real-valued, and can be also complex-valued. This is why, in the vicinity of the
essential spectrum, not only resonances can emerge, but also eigenvalues.

Our main result is as follows. Under certain, rather natural and easily realizable conditions
for the four initial potentials, the operator with distant perturbations can have infinitely many
resonances and/or eigenvalues of form 𝜆 = 𝑘2𝑛, 𝑛 ∈ Z, which accumulate along some segment
in the essential spectrum. The distance between the neighbouring numbers 𝑘𝑛 is a quantity
of order a power of the distance between the potentials, while the imaginary parts of these
quantities are exponentially small. On the base of the techniques of work [13], we obtain
representations for the numbers 𝑘𝑛 via the limits of some explicitly calculated sequences and
the sums of some infinite series. We also prove explicit effective estimates for the convergence
rate of the sequence and for the remainders of the series.

2. Model and results

Let 𝑥 ∈ R be a real variable, 𝑉𝑖 = 𝑉𝑖(𝑥), 𝑖 = 1, . . . , 4, be piece-wise complex-valued potentials
defined on the real axis and satisfying the conditions

𝑉𝑖(𝑥) = 0 as 𝑥 < −𝑥0, 𝑉𝑖(𝑥) = 1 as 𝑥 > 𝑥0, 𝑖 = 1, 3,

𝑉𝑖(𝑥) = 1 as 𝑥 < −𝑥0, 𝑉𝑖(𝑥) = 0 as 𝑥 > 𝑥0, 𝑖 = 2, 4,

where 𝑥0 is some fixed positive number. By ℓ we denote a large positive parameter, while 𝛼±
are some fixed positive numbers. We define one more potential:

𝑉ℓ(𝑥) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑉1
(︀
𝑥+ (2𝛼− + 1)ℓ

)︀
as 𝑥 < −(𝛼− + 1)ℓ,

𝑉2(𝑥+ ℓ) as − (𝛼− + 1)ℓ < 𝑥 < 0,

𝑉3(𝑥− ℓ) as 0 < 𝑥 < (𝛼+ + 1)ℓ,

𝑉4
(︀
𝑥− (2𝛼+ + 1)ℓ

)︀
as 𝑥 > (𝛼+ + 1)ℓ.

(2.1)
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Figure 1. Sketched graphs of the potentials 𝑉1, 𝑉3 (left figure) and of the po-
tentials 𝑉2, 𝑉4 (right figure).

A sketched graph of the potentials 𝑉𝑖 and 𝑉ℓ is shown on Figures 1, 2. A main feature of the
potential 𝑉ℓ is that as the parameter ℓ grows, the intervals, on which the function 𝑉ℓ move away
one from another, while the lengths of the segments, on which the potential 𝑉ℓ is equal to zero
or one, increase.

In this work we consider a Schrödinger operator on the axis with the complex-valued potential
𝑉ℓ:

ℋℓ := − 𝑑2

𝑑𝑥2
+ 𝑉ℓ.

This operator is considered as unbounded in the space 𝐿2(R) on the domain 𝑊 2
2 (R). It is

obviously closed and in the case of a real-valued potential 𝑉ℓ it is also self-adjoint. The main
aim of the work was the behavior of the resonances and eigenvalues of this operator as ℓ→ +∞.

We define the resonances and the eigenvalues of the operator ℋℓ as values 𝜆 = 𝑘2, 𝑘 ∈ C, for
which the equation (︂

− 𝑑2

𝑑𝑥2
+ 𝑉ℓ

)︂
𝜓 = 𝜆𝜓 in R (2.2)

possesses a non-trivial solution with the following behavior at infinity:

𝜓(𝑥) = 𝑐±𝑒
±i𝑘𝑥, 𝑥→ ±∞, (2.3)

where 𝑐± are some constants. The latter identities obviously fit the definition of the potential
𝑉ℓ since the latter, by definition, vanishes as 𝑥 < −𝛼−ℓ− 𝑥0 and 𝑥 > 𝛼+ℓ + 𝑥0. For Im 𝑘 > 0,
relations (2.3) describe an exponentially decaying at infinity solution to equation (2.2). This
solution is an eigenfunction associated with an eigenvalue 𝜆 = 𝑘2. If Im 𝑘 6 0, relations (2.3)
describe either an exponentially growing or a non-decaying oscillating at infinity solution and
in this case the quantity 𝜆 = 𝑘2 is a resonance. We also mention that the above definition of
the resonance is equivalent to defining it as a pole of an appropriate meromoprhic continuation
of the resolvent through the essential spectrum [25].

To formulate the main results, we shall need some auxiliary notations. We begin with defining
of Jost-like functions for the potentials 𝑉𝑖, 𝑖 = 1, . . . , 4. Namely, by 𝑋𝑖 = 𝑋𝑖(𝑥, 𝑘), 𝑖 = 1, . . . , 4,
we denote the solutions of the equations(︂

− 𝑑2

𝑑𝑥2
+ 𝑉𝑗(𝑥) − 𝑘2

)︂
𝑋𝑗 = 0 in R (2.4)
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Figure 2. Sketched graphs of the potentials 𝑉ℓ.

with the following behavior at infinity:

𝑋𝑗(𝑥, 𝑘) = 𝑒−i𝑘𝑥 as 𝑥 < −𝑥0,

𝑋𝑗(𝑥, 𝑘) = 𝑎𝑗(𝑘)𝑒−
√
1−𝑘2𝑥 + 𝑏𝑗(𝑘)𝑒

√
1−𝑘2𝑥 as 𝑥 > 𝑥0,

(2.5)

for 𝑗 = 1, 3, and

𝑋𝑗(𝑥, 𝑘) = 𝑒i𝑘𝑥 as 𝑥 > 𝑥0,

𝑋𝑗(𝑥, 𝑘) = 𝑎𝑗(𝑘)𝑒−
√
1−𝑘2𝑥 + 𝑏𝑗(𝑘)𝑒

√
1−𝑘2𝑥 as 𝑥 < −𝑥0,

(2.6)

for 𝑗 = 2, 4. Here 𝑎𝑗 = 𝑎𝑗(𝑘), 𝑏𝑗 = 𝑏𝑗(𝑘) are some functions and the branch of the root is fixed

by the condition
√

1 = 1. A complex parameter 𝑘 is supposed to range in the complex plane
with two cuts along the real semi-axes, namely,

𝑘 ∈ Ξ := C ∖ {𝑘 : ±𝑘 ∈ [1,+∞)}.

We denote:

𝑓(𝑘) :=
𝑎2(𝑘)𝑏3(𝑘)

𝑎2(−𝑘)𝑏3(−𝑘)
.

Throughout the work we assume the following condition: there exists a segment [𝛽−, 𝛽+] ∈
(−1, 1) such that the inequalities hold:

𝑎2(−𝑘) ̸= 0, 𝑏1(𝑘) ̸= 0, 𝑏3(−𝑘) ̸= 0, 𝑎4(𝑘) ̸= 0 as 𝑘 ∈ [𝛽−, 𝛽+] (2.7)

and the identity

|𝑓(𝑘)| = 1 as 𝑘 ∈ [𝛽−, 𝛽+]. (2.8)

We let:

κ𝑛(ℓ) :=
𝜋𝑛

2ℓ
, 𝑛 ∈ Z.

By ℎ[𝑚] we denote an 𝑚-multiple superposition of the function ℎ, that is, ℎ[𝑚] := ℎ ∘ ℎ ∘ · · · ∘ ℎ⏟  ⏞  
𝑚 times

,

where the symbol ∘ denotes the superposition of the functions, namely, ℎ ∘ 𝑔 = ℎ(𝑔).
We define an essential spectrum of the operator ℋℓ in terms of the characteristic sequences,

that is, a complex number 𝜆 is in the essential spectrum 𝜎ess(ℋℓ) of the operator ℋℓ if there
exists a sequence 𝑢𝑛 in the domain of this operator, bounded and non-compact in 𝐿2(R) such
that (ℋℓ − 𝜆)𝑢𝑛 → 0 as 𝑛 → +∞. It is obvious that under such definition, the essential
spectrum of the operator ℋℓ coincides with the negative semi-axis:

𝜎ess(ℋℓ) = [0,+∞). (2.9)

In the fourth section we shall prove the following auxiliary lemma.
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Lemma 2.1. Assume that conditions (2.7), (2.8) hold. There exists a simply-connected
neighbourhood Ω of the segment [𝛽−, 𝛽+] in the complex plane such that the function

ℎ(𝑘) := − i

4
ln 𝑓(𝑘) (2.10)

is univalent and holomorphic in 𝑘 ∈ Ω and is real as 𝑘 ∈ [𝛽−, 𝛽+]. For sufficiently large ℓ the
equation

𝑒4i𝑘ℓ = 𝑓(𝑘) (2.11)

possesses a series of roots 𝑘 = 𝐾𝑛(ℓ), where an integer parameter 𝑛 ranges over the set 𝑀ℓ,

𝑀ℓ := {𝑛 ∈ Z : κ𝑛(ℓ) ∈ 𝐼ℓ} , 𝐼ℓ := [𝛽− − ℓ−1ℎ(𝛽−), 𝛽+ − ℓ−1ℎ(𝛽+)]. (2.12)

These roots are represented by the limits

𝐾𝑛(ℓ) = κ𝑛(ℓ) + lim
𝑚→+∞

ℎ[𝑚]
𝑛 (0, ℓ), ℎ𝑛(𝑘, ℓ) := ℓ−1ℎ

(︀
𝑘 + κ𝑛(ℓ)

)︀
, (2.13)

and by the sums of the series

𝐾𝑛(ℓ) = κ𝑛(ℓ) +
∞∑︁

𝑚=1

1

𝑚!ℓ𝑚
𝑑𝑚−1ℎ𝑚

𝑑𝑘𝑚−1
(κ𝑛(ℓ)) =

∞∑︁
𝑚=1

1

𝑚!ℓ𝑚
𝑑𝑚−1

(︀
κ𝑛(ℓ) + ℎ

)︀𝑚
𝑑𝑘𝑚−1

(0). (2.14)

The estimates hold:⃒⃒
𝐾𝑛(ℓ) − κ𝑛(ℓ) − ℎ[𝑚]

𝑛 (0, ℓ)
⃒⃒
6𝑀(𝑀 ′)𝑚ℓ−𝑚−1, (2.15)⃒⃒⃒⃒

⃒𝐾𝑛(ℓ) − κ𝑛(ℓ) −
𝑝∑︁

𝑚=1

1

𝑚!ℓ𝑚
𝑑𝑚−1ℎ𝑚

𝑑𝑘𝑚−1
(κ𝑛(ℓ))

⃒⃒⃒⃒
⃒ 6 1

(𝑝+ 1)!ℓ𝑝+1
max
𝑘∈Ωℓ

⃒⃒⃒⃒
𝑑𝑝ℎ𝑝+1

𝑑𝑘𝑝
(𝑘)

⃒⃒⃒⃒

6
|𝜕Ω|

2𝜋(𝑝+ 1)

(︂
𝑀

𝜌ℓ

)︂𝑝+1

,

(2.16)

⃒⃒⃒⃒
𝐾𝑛(ℓ) −

𝑝∑︁
𝑚=1

1

(𝑝+ 1)!ℓ𝑝+1

𝑑𝑚−1
(︀
κ𝑛(ℓ) + ℎ

)︀𝑚
𝑑𝑘𝑚−1

(0)

⃒⃒⃒⃒
6

1

(𝑝+ 1)!ℓ𝑝+1
max
Ωℓ

⃒⃒⃒⃒
𝑑𝑝

𝑑𝑘𝑝
(︀
κ𝑛(ℓ) + ℎ(𝑘)

)︀𝑝+1

⃒⃒⃒⃒
6

|𝜕Ω|
2𝜋(𝑝+ 1)

(︂
𝑀 + 𝛽 + 1

𝜌ℓ

)︂𝑝+1

,

(2.17)

where we have denoted

𝑀 := max
𝑘∈Ω

|ℎ(𝑘)|, 𝑀 ′ := max
𝑘∈Ω

|ℎ′(𝑘)|,

𝜌 := dist(𝜕Ω, [𝛽−, 𝛽+]) −𝑀ℓ−1, 𝛽 := max{|𝛽−|, |𝛽+|}, 𝛼 := min{𝛼−, 𝛼+}.

Let 𝑁(ℓ) be the number of the elements in the set 𝑀ℓ and

κ𝑚𝑖𝑛(ℓ) := min
𝑛∈𝑀ℓ

κ𝑛(ℓ), κ𝑚𝑎𝑥(ℓ) := max
𝑛∈𝑀ℓ

κ𝑛(ℓ),

Πℓ :=

{︂
𝑘 ∈ Ω : κ𝑚𝑖𝑛(ℓ) − 𝜋

4ℓ
6 Re 𝑘 6 κ𝑚𝑎𝑥(ℓ) +

𝜋

4ℓ

}︂
.
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We define the functions:

𝑔(𝑘, ℓ) := 𝑔−(𝑘, ℓ)𝑒−4𝛼−
√
1−𝑘2ℓ + 𝑔+(𝑘, ℓ)𝑒−4𝛼+

√
1−𝑘2ℓ

+ 𝑔−(𝑘, ℓ)𝑔+(𝑘, ℓ)𝑒−4(𝛼−+𝛼+)
√
1−𝑘2ℓ,

(2.18)

𝑔−(𝑘, ℓ) := − i𝑘√
1 − 𝑘2

· 𝑎1(𝑘)

𝑎2(𝑘)
(︀
𝑎2(−𝑘)𝑏1(𝑘) − 𝑏2(−𝑘)𝑎1(𝑘)𝑒−4𝛼−

√
1−𝑘2ℓ

)︀ ,
𝑔+(𝑘, ℓ) := − i𝑘√

1 − 𝑘2
· 𝑏4(𝑘)

𝑏3(𝑘)
(︀
𝑏3(−𝑘)𝑎4(𝑘) − 𝑎3(−𝑘)𝑏4(𝑘)𝑒−4𝛼+

√
1−𝑘2ℓ

)︀ ,
𝐺(𝑘, 𝑙) := − i

4ℓ
ln
(︀
1 + 𝑔(𝑘, ℓ)

)︀
, (2.19)

𝐿(𝑘, ℓ) := ℓ−1ℎ(𝑘) +𝐺(𝑘, ℓ), 𝐿𝑛(𝑧, ℓ) := 𝐿
(︀
𝑧 + κ𝑛(ℓ), ℓ

)︀
, (2.20)

where the branch of the logarithm is fixed by the condition ln 1 = 0.
Our main results are as follows.

Theorem 2.1. Assume that conditions (2.7), (2.8) are satisfied. Then for sufficiently large
ℓ the operator ℋℓ possesses exactly 𝑁(ℓ) eigenvalues/resonances 𝜆 = 𝑘2𝑛(ℓ), 𝑛 ∈ 𝑀ℓ, in the
domain Πℓ. Each quantity 𝑘𝑛(ℓ) is represented by the limit

𝑘𝑛(ℓ) = κ𝑛(ℓ) + lim
𝑚→+∞

𝐿[𝑚]
𝑛 (0, ℓ) (2.21)

and the sums of the series

𝑘𝑛(ℓ) = κ𝑛(ℓ) +
∞∑︁

𝑚=1

1

𝑚!

𝑑𝑚−1𝐿𝑚

𝑑𝑘𝑚−1
(κ𝑛(ℓ), ℓ) =

∞∑︁
𝑚=1

1

𝑚!

𝑑𝑚−1
(︀
κ𝑛 + 𝐿

)︀𝑚
𝑑𝑘𝑚−1

(0, ℓ). (2.22)

Both series converges absolutely and uniformly in ℓ−1. The estimates hold:

⃒⃒
𝑘𝑛(ℓ) − κ𝑛(ℓ) − 𝐿[𝑚]

𝑛 (0, ℓ)
⃒⃒
6 𝐶0

(︂
𝑀 + 1

𝜌ℓ

)︂𝑚+1

, (2.23)⃒⃒⃒⃒
⃒𝑘𝑛(ℓ) − κ𝑛(ℓ) −

𝑝∑︁
𝑚=1

1

𝑚!

𝑑𝑚−1𝐿𝑚

𝑑𝑘𝑚−1
(κ𝑛(ℓ), ℓ)

⃒⃒⃒⃒
⃒ 6 1

(𝑝+ 1)!
max
𝑘∈Ωℓ

⃒⃒⃒⃒
𝑑𝑝𝐿𝑝+1

𝑑𝑘𝑝
(𝑘, ℓ)

⃒⃒⃒⃒

6
|𝜕Ω|

2𝜋(𝑝+ 1)

(︂
𝑀 + 1

𝜌ℓ

)︂𝑝+1

,

(2.24)

⃒⃒⃒⃒
⃒𝑘𝑛(ℓ) −

𝑝∑︁
𝑚=1

1

𝑚!

𝑑𝑚−1(κ𝑛(ℓ) + 𝐿
)︀𝑚

𝑑𝑘𝑚−1
(0, ℓ)

⃒⃒⃒⃒
⃒ 6 1

(𝑝+ 1)!
max
𝑘∈Ωℓ

⃒⃒⃒⃒
⃒𝑑𝑝
(︀
κ𝑛 + 𝐿

)︀𝑚
𝑑𝑘𝑝

(𝑘, ℓ)

⃒⃒⃒⃒
⃒

6
|𝜕Ω|

2𝜋(𝑝+ 1)

(︂
𝑀 + 𝛽 + 1

𝜌ℓ

)︂𝑝+1

,

(2.25)

where 𝐶0 is some constant independent of ℓ, 𝑚 and 𝑛.

We denote:

𝑃𝑛(𝑧, ℓ) :=

(︃
1 − ℓ−1ℎ

(︀
𝑧 +𝐾𝑛(ℓ)

)︀
− ℎ
(︀
𝐾𝑛(ℓ)

)︀
𝑧

)︃−1

𝐺
(︀
𝑧 +𝐾𝑛(ℓ), ℓ

)︀
. (2.26)
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Theorem 2.2. Assume that conditions (2.7), (2.8) are satisfied. Then the eigenval-
ues/resonances 𝜆 = 𝑘2𝑛(ℓ), 𝑛 ∈ 𝑀ℓ, of the operator ℋℓ in the domain Πℓ described in The-
orem 2.1, satisfy the representations:

𝑘𝑛(ℓ) = 𝐾𝑛(ℓ) + lim
𝑚→+∞

𝑃 [𝑚]
𝑛 (0, ℓ), (2.27)

𝑘𝑛(ℓ) = 𝐾𝑛(ℓ) +
∞∑︁

𝑚=1

1

𝑚!

𝑑𝑚−1𝑃𝑚
𝑛

𝑑𝑧𝑚−1
(0, ℓ). (2.28)

The latter series converges absolutely and uniformly in ℓ−1. The estimates hold:⃒⃒
𝑘𝑛(ℓ) −𝐾𝑛(ℓ) − 𝑃 [𝑚]

𝑛 (0, ℓ)
⃒⃒
6 𝐶1𝐶

𝑚+1
2 𝑒−4(𝑚+1)𝛼𝜅ℓ, (2.29)⃒⃒⃒⃒

⃒𝑘𝑛(ℓ) −𝐾𝑛(ℓ) −
𝑝∑︁

𝑚=1

1

𝑚!

𝑑𝑚−1𝑃𝑚
𝑛

𝑑𝑧𝑚−1
(0, ℓ)

⃒⃒⃒⃒
⃒ 6 |𝜕Ω|

2𝜋(𝑝+ 1)
𝐶𝑝+1

2 𝑒−4(𝑝+1)𝛼𝜅ℓ, (2.30)

where 𝐶1, 𝐶2 are some constants independent of ℓ, 𝑝, 𝑚 and 𝑛, while the constant 𝜅 is deter-
mined by the identity:

𝜅 := min
𝑘∈Ω

Re
√

1 − 𝑘2 > 0. (2.31)

3. Discussion of the results

Let us discuss the model and the main results. The potential 𝑉ℓ is formed by four distant
perturbations each being described by one of the potentials 𝑉𝑖, 𝑖 = 1, . . . , 4. The potentials
are separated by the distances of order ℓ, see Figure 2. The final potential 𝑉ℓ vanishes as
𝑥 < −(𝛼− + 1)ℓ − 𝑥0 and 𝑥 > (𝛼+ + 1)ℓ + 𝑥0. This ensures identity (2.9). The main feature
of the potential is that it vanishes also as −ℓ + 𝑥0 < 𝑥 < ℓ − 𝑥0. Exactly the latter generates
the series of the resonances/eigenvalues 𝜆 = 𝑘2𝑛(ℓ), 𝑛 ∈ 𝑀ℓ; a number 𝜆 is a resonance if
Im 𝑘𝑛(ℓ) 6 0 and is an eigenvalue if Im 𝑘𝑛(ℓ) > 0. We stress that the eigenvalues can emerge
since the potential 𝑉ℓ can be non-real and this makes the operator ℋℓ non-self-adjoint. If
the potential 𝑉ℓ and the operator ℋℓ is self-adjoint, the numbers 𝑘𝑛(ℓ) can correspond to the
resonances only.

The mechanism of emergence of such resonances/eigenvalues is in general the same as in
works [6], [12], [13]; from a physical point of view, there is a pronounced analogy with the
Fabry-Perót interferometer. Namely, non-trivial solutions of equation (2.2) oscillate in the
zone −ℓ + 𝑥0 < 𝑥 < ℓ − 𝑥0, where the potential 𝑉ℓ vanishes and are exponentially small in
neighbouring zones, −(2𝛼− + 1)ℓ+ 𝑥0 < 𝑥 < −ℓ− 𝑥0 and ℓ+ 𝑥0 < 𝑥 < (2𝛼+ + 1)ℓ− 𝑥0, where
the potential is equal to one. This is why, for large ℓ, in the middle zone −ℓ+ 𝑥0 < 𝑥 < ℓ− 𝑥0,
these non-trivial solutions are approximated by the eigenfunctions of the Dirichlet problem for
the operator − 𝑑2

𝑑𝑥2 on the segment [−ℓ, ℓ]. The eigenvalues of the latter operator are exactly the
number κ2

𝑛(ℓ) and this explains the presence of these numbers as the leading terms in identities
(2.21), (2.22).

In works [6], [12], [13], the resonances/eigenvalues emerged along some segment in the es-
sential spectrum; for the most of them, the distances to this segment were of order ℓ−1. The
distances between the emerging resonances/eigenvalues were also of order ℓ−1 and as the param-
eter ℓ increased, their total number increased as well and they accumulated along the reference
segment. It should be noted that a rigorous analysis of the location of the emerging eigenval-
ues/resonances was made only in [13], [12]; it was proved that there existed some segment in
the essential spectrum, along which the emergence going.

In our case the situation is similar but there is a pair of principal differences. The first of them
that the segment in the essential spectrum, along which the resonances emerge and accumulate,
can be chose apriori and rather arbitrary: this is the segment [𝛽−, 𝛽+] defined in terms of the
variable 𝑘; in terms of the variable 𝜆 it reads as Λ := {𝜆 : 𝜆 = 𝑘2, 𝑘 ∈ [𝛽−, 𝛽+]}. At that,
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conditions (2.7), (2.8) do not influence the emergence of the resonances/eigenvalues in the sense
that if these conditions fail, the spectral picture is similar to that in works [12], [13] and the
emergence occurs along the segment Λ. Conditions (2.7), (2.8) ensure the second important
difference: the imaginary parts of all quantities 𝑘𝑛(ℓ) are exponentially small in ℓ. Let us dwell
on the second difference in more details.

Theorem 2.1 states the emergence and accumulation of the resonances/eigenvalues. Namely,
it states the existence of the corresponding set of numbers 𝑘𝑛(ℓ), 𝑛 ∈ 𝑀ℓ along the given
segment [𝛽−, 𝛽+]. These quantities are represented by either limits (2.21) or by series (2.22).
Estimates (2.23), (2.24), (2.25) show the sharpness of approximating 𝑘𝑛 by the terms of the
sequence in (2.21) and by the partial sums of the series in (2.22). In particular, it follows from
estimate (2.24) that the quantities 𝑘𝑛(ℓ) are located in neighbourhoods of the numbers κ𝑛(ℓ)
and the sizes of these neighbourhoods are of order ℓ−1. At the same time, formulae (2.21),
(2.22) do not give an explicit answer how the imaginary parts of the quantities 𝑘𝑛(ℓ) are small
since in fact, one has to analyse the imaginary parts of each term in series (2.22) being power in
ℓ−1. This issue is resolved effectively in Theorem 2.2. Namely, here we provide representations
(2.27), (2.28) for the differences 𝑘𝑛(ℓ)−𝐾𝑛(ℓ), where 𝐾𝑛 are real roots of equation (2.11); these
representations are similar to (2.21), (2.22). The function 𝑃𝑛 is exponentially small for large ℓ
thanks to the factor 𝐺, since it follows from (2.18), (2.20) that the functions 𝐺 and 𝑃𝑛 satisfy
the estimates

|𝐺(𝑘, ℓ)| 6 𝐶ℓ−1𝑒−4𝛼𝜅ℓ, |𝑃𝑛(𝑘, ℓ)| 6 𝐶ℓ−1𝑒−4𝛼𝜅ℓ,

where 𝐶 are some constants independent of 𝑘, ℓ and 𝑛. Similar estimates hold for all derivatives
of these functions. In view of inequalities (2.30) this means that all terms in series (2.28) are
exponentially small in ℓ. Therefore, the numbers 𝑘𝑛(ℓ) accumulate along the segment [𝛽−, 𝛽+]
at exponentially small distances, while the mutual distances between these numbers are of order
ℓ−1. This implies that the imaginary parts of the quantities 𝑘𝑛(ℓ) are exponentially small. In
particular, the identities hold:

𝐺(𝑘, ℓ) = − i

4ℓ
𝑔(𝑘, ℓ) +𝑂

(︀
ℓ−1|𝑔(𝑘, ℓ)|2

)︀
= 𝑔0(𝑘, ℓ) +𝑂

(︀
𝑒−8𝛼

√
1−𝑘2ℓ

)︀
,

𝑔0(𝑘, ℓ) := − 𝑘

4ℓ
√

1 − 𝑘2

(︃
𝑎1(𝑘)𝑒−4𝛼−

√
1−𝑘2ℓ

𝑎2(𝑘)𝑎2(−𝑘)𝑏1(𝑘)
+
𝑏4(𝑘)𝑒−4𝛼+

√
1−𝑘2ℓ

𝑏3(𝑘)𝑏3(−𝑘)𝑎4(𝑘)

)︃
.

Hence, by estimate (2.30) with 𝑝 large enough and fixed by the condition

(𝑝+ 1)𝜅 > 2
√︀

1 − 𝛽2,

we get that

𝑘𝑛(ℓ) = 𝐾𝑛(ℓ) + 𝑔0
(︀
𝐾𝑛(ℓ), ℓ

)︀
+𝑂

(︀
𝑒−8𝛼

√
1−𝐾2

𝑛(ℓ)ℓ
)︀
,

where the estimate for the error term is uniform in ℓ and 𝑛. By the definition of the function
𝑔0, the second term in the right hand side of the above identity is exponentially small for large
ℓ.

It should be stressed that conditions (2.7), (2.8) are not strict and can be easily realized.
For instance, condition (2.8) holds immediately once the potential 𝑉ℓ is partially real, namely,
if the potentials 𝑉2 and 𝑉3 are real-valued. In this case we obviously have the identities

𝑎2(−𝑘) = 𝑎2(𝑘), 𝑏3(−𝑘) = 𝑏3(𝑘),

which ensure condition (2.8) for all real values of 𝑘. Condition (2.7) can be also easily satisfied
for arbitrary potentials 𝑉𝑖 by choosing an appropriate segment [𝛽−, 𝛽+]: the functions 𝑎𝑖, 𝑏𝑖 are
holomorphic, see the fifth section, and this is why can not vanish identically.

Assume that the function 𝑓 satisfies condition (2.8) on some segment [𝛽−, 𝛽+], while on a

large segment [𝛽−, 𝛽+] outside [𝛽−, 𝛽+] this condition fails. Then it can be shown that in this
case the operator ℋℓ possesses a series of resonances/eigenvalues with exponential asymptotics



ON INFINITE SYSTEM OF RESONANCES AND EIGENVALUES. . . 11

accumulating along the segment [𝛽−, 𝛽+] described in Theorems 2.1, 2.2 and also a series of

resonances/eigenvalues accumulating along the set [𝛽−, 𝛽+] ∖ [𝛽−, 𝛽+] and possessing a power in
ℓ−1 behavior described in works [12], [13]. Thus, it is possible to realize a situation, when an
operator with distant perturbations possesses unboundedly many resonances/eigenvalues with
both power and exponentially small imaginary parts.

We also mention that the range of values of ℓ, for which Lemma 2.1 and Theorems 2.1, 2.2
hold can be given rather explicitly. Namely, representation (2.13) and estimates (2.15) are true
as

ℓ > 𝑀 ′. (3.1)

The convergence of the first series in (2.14) and the validity of estimates (2.16) are guaranteed
by the inequality 𝜌ℓ > 𝑀 . The second series in (2.14) and estimates (2.17) are true as 𝜌ℓ >
𝑀 +𝛽+1. All these conditions obviously follow from estimates (2.15), (2.16), (2.17). A similar
situation is the statement of Theorem 2.1; here the range of the values of ℓ is determined by
the inequalities

|𝐿(𝑘, ℓ)| 6 (𝑀 + 1)ℓ−1, 𝑘 ∈ Ω, 𝜌ℓ > 𝑀 + 1,

This ensures (2.21), the first identity in (2.22) and estimates (2.23), (2.24). The second in-
equality in (2.22) and estimates (2.25) hold once we assume additionally that 𝜌ℓ > 𝑀 + 𝛽 + 1.
And finally, the statement of Theorem 2.2 is true for ℓ obeying the inequalities

ℓ > 𝑀 ′, |𝐺(𝑘, ℓ)| 6 𝐶2𝑒
−4𝛼𝜅ℓ < 1 −𝑀 ′ℓ−1, 𝜌ℓ > 𝐶2.

4. Equation for resonances and eigenvalues

Non-trivial solutions of equation (2.2) obeying conditions (2.3) can be easily constructed in
terms of the functions 𝑋𝑖. Namely, if 𝜓 is such non-trivial solution, then 𝑐± ̸= 0 since otherwise
the function 𝜓 would be identically zero for ±𝑥 > 𝑥0 and this would imply immediately that
𝜓 vanishes identically on R. This is why without loss of generality we suppose that 𝑐− = 1. In
view of the definition of the potnetial 𝑉ℓ we hence conclude that

𝜓(𝑥, 𝑘, ℓ) = 𝑋1

(︀
𝑥+ (2𝛼− + 1)ℓ, 𝑘

)︀
, 𝑥 6 −(𝛼− + 1)ℓ. (4.1)

As 𝑥 > −(𝛼− + 1)ℓ+ 𝑥0, by (2.5) we have:

𝑋1

(︀
𝑥+ (2𝛼− + 1)ℓ, 𝑘

)︀
= 𝑎1(𝑘)𝑒−(2𝛼−+1)

√
1−𝑘2ℓ𝑒−

√
1−𝑘2𝑥 + 𝑏1(𝑘)𝑒(2𝛼−+1)

√
1−𝑘2ℓ𝑒

√
1−𝑘2𝑥. (4.2)

Let 𝑘 ̸= 0. Then by identities (2.6) the functions 𝑋2(𝑥, 𝑘) and 𝑋2(𝑥,−𝑘) are linearly inde-
pendent and this is why they form a fundamental system of solutions for equation (2.4). This
is why by definition (2.1) of the potential 𝑉ℓ, as −(2𝛼− + 1) < ℓ < 𝑥 < 0, the function 𝜓 reads
as

𝜓(𝑥, 𝑘, ℓ) = 𝐴2(𝑘, ℓ)𝑋2(𝑥+ ℓ, 𝑘) +𝐵2(𝑘, ℓ)𝑋2(𝑥+ ℓ,−𝑘), (4.3)

where 𝐴2 = 𝐴2(𝑘, ℓ) and 𝐵2 = 𝐵2(𝑘, ℓ) are some constants. According (2.6), for 𝑥 < −ℓ − 𝑥0
we get:

𝑋2(𝑥+ ℓ,±𝑘) = 𝑎2(±𝑘)𝑒−
√
1−𝑘2ℓ𝑒−

√
1−𝑘2𝑥 + 𝑏2(±𝑘)𝑒

√
1−𝑘2ℓ𝑒

√
1−𝑘2𝑥. (4.4)

Substituting these relations into (4.3) and comparing the result with (4.2), we see that a required
smoothness of the function 𝜓 is equivalent to the following equations:

𝑎1(𝑘)𝑒−(2𝛼−+1)
√
1−𝑘2ℓ =

(︀
𝑎2(𝑘)𝐴2(𝑘, ℓ) + 𝑎2(−𝑘)𝐵2(𝑘, ℓ)

)︀
𝑒−

√
1−𝑘2ℓ,

𝑏1(𝑘)𝑒(2𝛼−+1)
√
1−𝑘2ℓ =

(︀
𝑏2(𝑘)𝐴2(𝑘, ℓ) + 𝑏2(−𝑘)𝐵2(𝑘, ℓ)

)︀
𝑒
√
1−𝑘2ℓ.

(4.5)

These relations define uniquely the constants 𝐴2(𝑘) and 𝐵2(𝑘) under the condition⃒⃒⃒⃒
𝑎2(𝑘) 𝑎2(−𝑘)
𝑏2(𝑘) 𝑏2(−𝑘)

⃒⃒⃒⃒
̸= 0. (4.6)
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Let us prove that this inequality indeed holds. We first observe that by equation (2.4) the
Wronskian of the functions 𝑋2(𝑥,−𝑘) and 𝑋2(𝑥, 𝑘) is non-zero and is independent of 𝑥. Cal-
culating this Wronskian for sufficiently large positive and negative 𝑥 on the base of relations
(2.6), we obtain:

2𝑖𝑘 =
√

1 − 𝑘2
(︂⃒⃒⃒⃒

𝑎2(−𝑘) 𝑏2(𝑘)
−𝑎2(−𝑘) 𝑏2(𝑘)

⃒⃒⃒⃒
−
⃒⃒⃒⃒
𝑎2(𝑘) 𝑏2(−𝑘)

−𝑎2(𝑘) 𝑏2(−𝑘)

⃒⃒⃒⃒)︂
= − 2

√
1 − 𝑘2

⃒⃒⃒⃒
𝑎2(𝑘) 𝑎2(−𝑘)
𝑏2(𝑘) 𝑏2(−𝑘)

⃒⃒⃒⃒
,

(4.7)

which implies inequality (4.6). Now the constants 𝐴2(𝑘, ℓ) and 𝐵2(𝑘, ℓ) are determined uniquely
by the formulae

𝐴2(𝑘, ℓ) := i

√
1 − 𝑘2

𝑘

(︀
𝑏2(−𝑘)𝑎1(𝑘)𝑒−2𝛼−

√
1−𝑘2ℓ − 𝑎2(−𝑘)𝑏1(𝑘)𝑒2𝛼−

√
1−𝑘2ℓ

)︀
,

𝐵2(𝑘, ℓ) := i

√
1 − 𝑘2

𝑘

(︀
𝑎2(𝑘)𝑏1(𝑘)𝑒2𝛼−

√
1−𝑘2ℓ − 𝑏2(𝑘)𝑎1(𝑘)𝑒−2𝛼−

√
1−𝑘2ℓ

)︀
.

(4.8)

We also note that according formulae (2.6), as −ℓ + 𝑥0 < 𝑥 < 0, function (4.3) casts into the
form:

𝜓(𝑥, 𝑘, ℓ) = 𝐴2(𝑘, ℓ)𝑒
i𝑘ℓ𝑒i𝑘𝑥 +𝐵2(𝑘, ℓ)𝑒

−i𝑘ℓ𝑒−i𝑘𝑥. (4.9)

Let us find the function 𝜓(𝑥) for 𝑥 > 0. According (2.3) and the definition of the potential
𝑉ℓ, for 𝑥 > (2𝛼+ + 1)ℓ+ 𝑥0 the function 𝜓 should read as

𝜓(𝑥, 𝑘) = 𝑐+𝑒
𝑖𝑘𝑥, 𝑐+ ̸= 0,

and this is why, by the definition of the function 𝑋4, similar to (4.1) we conclude immediately
that

𝜓(𝑥, 𝑘, ℓ) = 𝑐+𝑋4

(︀
𝑥− (2𝛼+ + 1)ℓ, 𝑘

)︀
.

As in (4.3), (4.4), (4.5), by (2.5) this implies that

𝜓(𝑥) = 𝑐+

(︁
𝐴3(𝑘, ℓ)𝑋3(𝑥− ℓ, 𝑘) +𝐵3(𝑘, ℓ)𝑋3(𝑥− ℓ,−𝑘)

)︁
as 0 < 𝑥 < 𝛼+ℓ,

where 𝐴3 = 𝐴3(𝑘, ℓ) and 𝐵3 = 𝐵3(𝑘, ℓ) is a solution to a system of linear equations:

𝑎4(𝑘)𝑒(2𝛼++1)
√
1−𝑘2ℓ =

(︀
𝑎3(𝑘)𝐴3(𝑘, ℓ) + 𝑎3(−𝑘)𝐵3(𝑘, ℓ)

)︀
𝑒
√
1−𝑘2ℓ,

𝑏4(𝑘)𝑒−(2𝛼++1)
√
1−𝑘2ℓ =

(︀
𝑏3(𝑘)𝐴3(𝑘, ℓ) + 𝑏3(−𝑘)𝐵3(𝑘, ℓ)

)︀
𝑒−

√
1−𝑘2ℓ.

An analogue of identity (4.7) here reads as

−2𝑖𝑘 =
√

1 − 𝑘2
(︂⃒⃒⃒⃒

𝑎3(−𝑘) 𝑏3(𝑘)
−𝑎3(−𝑘) 𝑏3(𝑘)

⃒⃒⃒⃒
−
⃒⃒⃒⃒
𝑎3(𝑘) 𝑏3(−𝑘)

−𝑎3(𝑘) 𝑏3(−𝑘)

⃒⃒⃒⃒)︂
= − 2

√
1 − 𝑘2

⃒⃒⃒⃒
𝑎3(𝑘) 𝑎3(−𝑘)
𝑏3(𝑘) 𝑏3(−𝑘)

⃒⃒⃒⃒
,

(4.10)

while the formulae for the coefficients 𝐴3, 𝐵3 are as follows:

𝐴3(𝑘) := −i

√
1 − 𝑘2

𝑘

(︀
𝑏3(−𝑘)𝑎4(𝑘)𝑒2𝛼+

√
1−𝑘2ℓ − 𝑎3(−𝑘)𝑏4(𝑘)𝑒−2𝛼+

√
1−𝑘2ℓ

)︀
,

𝐵3(𝑘) := −i

√
1 − 𝑘2

𝑘

(︀
𝑎3(𝑘)𝑏4(𝑘)𝑒−2𝛼+

√
1−𝑘2ℓ − 𝑏3(𝑘)𝑎4(𝑘)𝑒2𝛼+

√
1−𝑘2ℓ

)︀
.

(4.11)

For 0 < 𝑥 < ℓ− 𝑥0 the function 𝜓 becomes

𝜓(𝑥, 𝑘, ℓ) = 𝑐+

(︁
𝐴3(𝑘, ℓ)𝑒

i𝑘ℓ𝑒−i𝑘𝑥 +𝐵3(𝑘, ℓ)𝑒
−i𝑘ℓ𝑒i𝑘𝑥

)︁
. (4.12)
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At the point 𝑥 = 0 the function 𝜓 should be continuous and should have a continuous
derivative. These conditions are checked on the base of identities (4.9), (4.12). It is clear that
this determines a constant 𝑐+ in (4.12) and produces an additional equation for the functions
𝐴2, 𝐵2, 𝐴3, 𝐵3:

𝐴2(𝑘, ℓ)𝐴3(𝑘, ℓ)𝑒
2i𝑘ℓ = 𝐵2(𝑘, ℓ)𝐵3(𝑘, ℓ)𝑒

−2i𝑘ℓ. (4.13)

The latter equation determines the resonances and eigenvalues of the operator ℋℓ. Although
this equation has been obtained under the assumption 𝑘 ̸= 0, it is appropriate also for finding
the resonances and eigenvalues at the point 𝑘 = 0. Then formulae (4.9), (4.12) are to be treated
in the sense of the limit as 𝑘 → 0.

The solvability of the obtained equation and the behavior of its roots for large values of ℓ
will be done in the next section.

5. Study of equation for eigenvalues and resonances

In the present section we study equation (4.13) and prove Theorems 2.1, 2.2. We first
substitute expressions (4.8), (4.11) into this equation and rewrite it as follows:

𝑒4i𝑘ℓ = 𝐹 (𝑘, ℓ), (5.1)

where we have denoted

𝐹 (𝑘, ℓ) :=
𝑎2(𝑘)𝑏1(𝑘) − 𝑏2(𝑘)𝑎1(𝑘)𝑒−4𝛼−

√
1−𝑘2ℓ

𝑎2(−𝑘)𝑏1(𝑘) − 𝑏2(−𝑘)𝑎1(𝑘)𝑒−4𝛼−
√
1−𝑘2ℓ

· 𝑏3(𝑘)𝑎4(𝑘) − 𝑎3(𝑘)𝑏4(𝑘)𝑒−4𝛼+

√
1−𝑘2ℓ

𝑏3(−𝑘)𝑎4(𝑘) − 𝑎3(−𝑘)𝑏4(𝑘)𝑒−4𝛼+

√
1−𝑘2ℓ

.

In what follows we shall make use of the smoothness of the functions 𝑎𝑖 and 𝑏𝑖 with respect to
𝑘. Rewriting equations (2.4) and conditions (2.5) to Volterra integral equations in the standard
way, it is easy to make sure that the functions 𝑎𝑖 and 𝑏𝑖 are holomorphic in 𝑘 ∈ Ξ. Moreover,
by the definition of the function 𝑘 ↦→

√
1 − 𝑘2 we have

Re
√

1 − 𝑘2 > 0, 𝑘 ∈ Ξ.

Let Ω be some fixed open neighbourhood of the segment [𝛽−, 𝛽+] in the complex plane such
that Ω ⊂ Ξ. Then it is clear that the neighbourhood Ω is separated from the boundaries of the
set Ξ by a positive distance that implies the positivity of the constant 𝜅 in (2.31).

It follows from the holomorphy of 𝑎𝑗 and 𝑏𝑗 in 𝑘 ∈ Ω and condition (2.7) that the function
𝑓(𝑘) is holomorphic in 𝑘 ∈ Ω if the neighbourhood Ω is not too large. In view of inequality
(2.31) we also conclude that the functions 𝐹 (𝑘, ℓ) and 𝑔(𝑘, ℓ) are holomorphic in 𝑘 ∈ Ω and
uniform estimates hold:

|𝑔(𝑘, ℓ)| 6 𝐶𝑒−4𝛼
√
1−𝑘2ℓ 6 𝐶𝑒−4𝛼𝜅ℓ, (5.2)

|𝑔′(𝑘, ℓ)| 6 𝐶ℓ𝑒−4𝛼
√
1−𝑘2ℓ 6 𝐶ℓ𝑒−4𝛼𝜅ℓ, (5.3)

where 𝐶 is some constant independent of 𝑘 and sufficiently large ℓ. Moreover, by direct calcu-
lations on the base of relations (4.7), (4.10) we confirm the identity

𝐹 (𝑘, ℓ) = 𝑓(𝑘) + 𝑔(𝑘, ℓ)

The latter identity allows us to rewrite equation (5.1) as

𝑒4i𝑘ℓ = 𝑓(𝑘) + 𝑔(𝑘, ℓ). (5.4)

To study the latter equation in the domain Ω, we first consider auxiliary equation (2.11).

Lemma 5.1. All roots of equation (2.11) located in Ω satisfy the estimate

− 1

4ℓ
ln max

𝑘∈Ω
|𝑓(𝑘)| 6 Im 𝑘 6 − 1

4ℓ
ln min

𝑘∈Ω
|𝑓(𝑘)|. (5.5)
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All roots of equation (5.4) located in Ω satisfy the estimate

− 1

4ℓ
ln max

𝑘∈Ω
|𝑓(𝑘)| − 𝐶𝑒−4𝜅𝛼ℓ

4ℓ
6 Im 𝑘 6 − 1

4ℓ
ln min

𝑘∈Ω
|𝑓(𝑘)| +

𝐶𝑒−4𝜅𝛼ℓ

4ℓ
,

where 𝐶 is the constant from (5.2).

Proof. If 𝑘 is a root of equation (2.11), then an elementary apriori estimate

min
𝑘∈Ω

|𝑓(𝑘)| 6 |𝑒i𝑘ℓ| 6 max
𝑘∈Ω

|𝑓(𝑘)|

holds. And since |𝑒4i𝑘ℓ| = 𝑒−4ℓ Im 𝑘, we are led immediately to the statement of the lemma on the
roots of equation (2.11). The desired estimate for the roots of equation (2.11) can be proved
in the same way, one just need to employ estimate (2.31). The proof is complete.

Remark 5.1. Condition (2.8) yields that

min
𝑘∈Ω

|𝑓(𝑘)| 6 1 6 max
𝑘∈Ω

|𝑓(𝑘)|.

This is why the left hand side in (5.5) is non-positive, while the right hand side is non-negative.

In view of condition (2.8) we suppose that the domain Ω is chosen so that

|𝑓(𝑘)| > 𝑐0 > 0 as 𝑘 ∈ Ω.

This allows us to define the function ℎ(𝑘) by formula (2.10) and a branch of the logarithm in
the definition of this function can be chosen so that the function ℎ becomes holomorphic in the
domain Ω. For the mentioned choice of the function ℎ, it is sufficient to employ an approach
based on the notion of a complete analytic function, see, for instance, [4, Ch. 8, Sects. 4, 5].
We also mention that by (2.8) the function ℎ(𝑘) is real-valued for 𝑘 ∈ [𝛽−, 𝛽+].

Thanks to the definition of the function ℎ(𝑘), the identity

𝑓(𝑘) = 𝑒iℎ(𝑘)

holds and equation (2.11) turns out to be equivalent to the following one:

𝑘 − ℓ−1ℎ(𝑘) = κ𝑛(ℓ), 𝑛 ∈ Z. (5.6)

Since the function ℎ(𝑘) is real for 𝑘 ∈ [𝛽−, 𝛽+], its derivative is also real on this segment and
is bounded uniformly owing to the smoothness of the function ℎ. This is why, for sufficiently
large ℓ,

𝑑

𝑑𝑘

(︀
𝑘 − ℓ−1ℎ(𝑘)

)︀
= 1 − ℓ−1ℎ′(𝑘) > 0 as 𝑘 ∈ [𝛽−, 𝛽+]

and this is why the function in the left hand side of equation (5.6) turns out to be monotonically
increasing in 𝑘 ∈ [𝛽−, 𝛽+]. Its values cover the segment 𝐼ℓ defined in (2.12); the end-points of
this segment tend to 𝛽− and 𝛽+ as ℓ→ +∞. It is clear that for large ℓ the segment 𝐼ℓ contains
a large number of the points κ𝑛(ℓ) and to each such point, exactly one real root of equation
(5.6) corresponds. We denote this root by 𝐾𝑛 = 𝐾𝑛(ℓ), where 𝑛 ∈ Mℓ, and the set Mℓ is
defined by formula (2.12).

We denote

Ωℓ :=
{︀
𝑘 ∈ Ω : dist(𝑘, [𝛽−, 𝛽+]) 6𝑀ℓ−1

}︀
. (5.7)

It follows from the definition of the sets Ωℓ and Ω that for sufficiently large ℓ the inequality

dist(𝜕Ω,Ωℓ) > 𝜌 (5.8)

holds true. It also follows from the definition of the segment 𝐼ℓ that 𝐼ℓ ⊂ Ωℓ and inequalities
(5.5) yield that all roots of equation (2.11) with real parts in the segment 𝐼ℓ are located in the
set Ωℓ.
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Lemma 5.2. For ℓ satisfying condition (3.1) and 𝑛 ∈Mℓ, equation (5.6) has only real roots
𝐾𝑛 in the domain Ωℓ, which are represented by limit (2.13) and the sum of series (2.14). Both
series converge absolutely and uniformly in ℓ−1. Estimates (2.15), (2.16) and (2.17) hold true.

Proof. For each 𝑛 ∈Mℓ we define a set:

𝑆𝑛(ℓ) :=
{︀
𝑘 : |Re 𝑘 − κ𝑛(ℓ)| 6𝑀ℓ−1, | Im 𝑘| 6𝑀ℓ−1

}︀
.

The definition of the constant 𝑀 and Lemma 5.1 imply immediately that the sets 𝑆𝑛(ℓ) cover
Ωℓ, that is, Ωℓ ⊂

⋃︀
𝑛∈Mℓ

𝑆𝑛(ℓ).

Equation (5.6) implies an apriori estimate for the roots 𝐾𝑛:

|𝐾𝑛(ℓ) − κ𝑛(ℓ)| 6 |ℓ−1ℎ(𝐾𝑛(ℓ))| 6𝑀ℓ−1

and this is why the root 𝐾𝑛 is a point in the set 𝑆𝑛(ℓ).
We make the change of the variable 𝑧 := 𝑘 − κ𝑛(ℓ). Then, as the variable 𝑘 ranges over the

set 𝑆𝑛(ℓ), a new variable 𝑧 ranges over the set 𝑆0(ℓ). The estimates hold:

|Re ℓ−1ℎ
(︀
𝑧 + κ𝑛(ℓ)

)︀
| 6𝑀ℓ−1, | Im ℓ−1ℎ

(︀
𝑧 + κ𝑛(ℓ)

)︀
| 6𝑀ℓ−1, 𝑧 ∈ 𝑆0(ℓ),

|ℓ−1ℎ
(︀
𝑧1 + κ𝑛(ℓ)

)︀
− ℓ−1ℎ

(︀
𝑧2 + κ𝑛(ℓ)

)︀
| 6 ℓ−1 max

𝑘∈Ω
|ℎ′(𝑘)||𝑧2 − 𝑧1|, 𝑧1, 𝑧2 ∈ 𝑆0(ℓ).

(5.9)

It follows from these estimates that the function 𝑧 ↦→ ℓ−1ℎ
(︀
𝑧+κ𝑛(ℓ)

)︀
maps a compact set 𝑆0(ℓ)

into itself and is a contracting mapping for ℓ obeying condition (3.1). This is why equation
(5.6) has a unique solution in the set 𝑆𝑛(ℓ), which hence coincides with 𝐾𝑛. Representation
(2.13) is an immediate corollary of the contracting mapping principle. Representations (2.14),
estimates (2.15) and the first estimates for the remainders in (2.16), (2.17) can be proved in the
same way how similar representations and estimates in Theorem 1 in [13]. The second estimates
for the remainders in (2.16), (2.17) follow from the standard estimates for the derivatives of
holomorphic functions implied by the Cauchy integral formula and inequality (5.8):

max
𝑘∈Ωℓ

⃒⃒⃒⃒
𝑑𝑝ℎ𝑝+1

𝑑𝑘𝑝
(𝑘)

⃒⃒⃒⃒
6
𝑝!|𝜕Ω|

2𝜋

(︂
𝑀

𝜌

)︂𝑝+1

,

max
Ωℓ

⃒⃒⃒⃒
𝑑𝑝

𝑑𝑘𝑝
(︀
κ𝑛(ℓ) + ℎ(𝑘)

)︀𝑝+1

⃒⃒⃒⃒
6
𝑝!|𝜕Ω|

2𝜋

(︂
𝑀 + 𝛽 + 1

𝜌

)︂𝑝+1

.

The proof is complete.

Lemma 2.1 is an immediate corollary of the proven lemma.
We proceed to studying main equation (5.4) and we are going to prove Theorems 2.1, 2.2.

Proof of Theorem 2.1. We rewrite equation (5.4) as

𝑒4i𝑘ℓ−4iℎ(𝑘) = 1 + 𝑒−4iℎ(𝑘)𝑔(𝑘, ℓ). (5.10)

Since by estimate (5.2) the function 𝑔 is exponentially small, the function 𝐺(𝑘, ℓ) in (2.18) is
well-defined, holomorphic in 𝑘 ∈ Ω, univalent and exponentially small according to an obvious
estimate:

|𝐺(𝑘, ℓ)| 6 𝐶ℓ−1|𝑒−4iℎ(𝑘)𝑔(𝑘, ℓ)| 6 𝐶ℓ−1𝑒−4𝛼𝜅ℓ, (5.11)

where 𝐶 is a constant independent of ℓ and 𝑘. This allows us to rewrite equation (5.10) as
follows:

𝑘 = κ𝑛(ℓ) + 𝐿(𝑘, ℓ), 𝑛 ∈ Z, (5.12)

where 𝐿 is the function from (2.20). We are going to study the obtained equation reproducing
in fact the ideas in the proof of Lemma 5.2.

The definition of the constant 𝑀 in (5.7) and estimate (5.11) yield that

max
𝑘∈Ω

|𝐿(𝑘, ℓ)| 6 (𝑀 + 1)ℓ−1 (5.13)



16 D.I. BORISOV, M.N. KONYRKULZHAEVA

for sufficiently large ℓ. Estimates (5.2), (5.3) definition (2.18) of the function 𝐺 also imply that

|𝐺′(𝑘, ℓ)| 6 𝐶𝑒−4𝛼𝜅ℓ, 𝑘 ∈ Ω, (5.14)

where 𝐶 is some constant independent of ℓ and 𝑘.
We make the change of the variable 𝑧 = 𝑘 − κ𝑛(ℓ). Similar to estimates (5.9), by employing

inequalities (5.11), (5.13), (5.14) we confirm that

|Re𝐿𝑛(𝑧, ℓ)| 6 (𝑀 + 1)ℓ−1, | Im𝐿𝑛(𝑧, ℓ)| 6 (𝑀 + 1)ℓ−1, 𝑧 ∈ 𝑆𝐿(ℓ),

|𝐿𝑛(𝑧1, ℓ) − 𝐿𝑛(𝑧2, ℓ)| 6 𝐶ℓ−1|𝑧2 − 𝑧1|, 𝑧1, 𝑧2 ∈ 𝑆𝐿(ℓ),

where 𝐶 is a constant independent of 𝑧1, 𝑧2 and ℓ, while the set 𝑆𝐿(ℓ) is of the form

𝑆𝐿(ℓ) :=
{︀
𝑧 : |Re 𝑧| 6 (𝑀 + 1)ℓ−1, | Im 𝑧| 6 (𝑀 + 1)ℓ−1

}︀
.

Therefore, the function 𝑧 ↦→ 𝐿𝑛(𝑧, ℓ) maps the set 𝑆𝐿(ℓ) into itself and is a contracting mapping.
This implies immediately that equation (5.12) possesses exactly one root in 𝑆𝐿(ℓ), which is
denoted by 𝑘𝑛(ℓ). According the contracting mapping principle, this root can be found as the
limit of a corresponding sequence (2.21). And again similar to the proof of Theorem 1 in [13]
we establish representations (2.22), confirm the absolute uniform in ℓ−1 convergence of these
series and prove inequalities (2.23) and the estimates for the remainders:⃒⃒⃒⃒

⃒𝑘𝑛(ℓ) − κ𝑛(ℓ) −
𝑝∑︁

𝑚=1

1

𝑚!

𝑑𝑚−1𝐿𝑚

𝑑𝑘𝑚−1
(κ𝑛(ℓ), ℓ)

⃒⃒⃒⃒
⃒ 6 1

(𝑝+ 1)!
max
𝑘∈Ωℓ

⃒⃒⃒⃒
𝑑𝑝𝐿𝑝+1

𝑑𝑘𝑝
(𝑘, ℓ)

⃒⃒⃒⃒
,⃒⃒⃒⃒

⃒𝑘𝑛(ℓ) −
𝑝∑︁

𝑚=1

1

𝑚!

𝑑𝑚−1(κ𝑛(ℓ) + 𝐿
)︀𝑚

𝑑𝑘𝑚−1
(0, ℓ)

⃒⃒⃒⃒
⃒ 6 1

(𝑝+ 1)!
max
𝑘∈Ωℓ

⃒⃒⃒⃒
⃒𝑑𝑝
(︀
κ𝑛 + 𝐿

)︀𝑚
𝑑𝑘𝑝

(𝑘, ℓ)

⃒⃒⃒⃒
⃒ .

(5.15)

The aforementioned standard estimates for the derivatives of holomorphic functions again allow
to continue estimating and thanks to (5.8), (5.13) we get:⃒⃒⃒⃒

⃒𝑘𝑛(ℓ) − κ𝑛(ℓ) −
𝑝∑︁

𝑚=1

1

𝑚!

𝑑𝑚−1𝐿𝑚

𝑑𝑘𝑚−1
(κ𝑛(ℓ), ℓ)

⃒⃒⃒⃒
⃒ 6 |𝜕Ω|

2𝜋(𝑝+ 1)

(︂
𝑀 + 1

𝜌ℓ

)︂𝑝+1

,⃒⃒⃒⃒
⃒𝑘𝑛(ℓ) −

𝑝∑︁
𝑚=1

1

𝑚!

𝑑𝑚−1(κ𝑛(ℓ) + 𝐿
)︀𝑚

𝑑𝑘𝑚−1
(0, ℓ)

⃒⃒⃒⃒
⃒ 6 |𝜕Ω|

2𝜋(𝑝+ 1)

(︂
𝑀 + 𝛽 + 1

𝜌ℓ

)︂𝑝+1

,

and this completes the proof of Theorem 2.1.

Now we are going to describe the differences 𝑘𝑛(ℓ) −𝐾𝑛(ℓ) and to prove Theorem 2.2.

Proof of Theorem 2.2. We consider equation (5.12) and make the change 𝑧 = 𝑘−𝐾𝑛(ℓ). Then
in view of equation (5.6), for a new unknown 𝑧 we get:

𝑧 = ℓ−1
(︁
ℎ
(︀
𝑧 +𝐾𝑛(ℓ)

)︀
− ℎ
(︀
𝐾𝑛(ℓ)

)︀)︁
+𝐺

(︀
𝑧 +𝐾𝑛(ℓ), ℓ

)︀
.

We rewrite this equation as follows:(︃
1 − ℓ−1ℎ

(︀
𝑧 +𝐾𝑛(ℓ)

)︀
− ℎ
(︀
𝐾𝑛(ℓ)

)︀
𝑧

)︃
𝑧 = 𝐺

(︀
𝑧 +𝐾𝑛(ℓ), ℓ

)︀
,

which implies one more equation:
𝑧 = 𝑃𝑛(𝑧, ℓ), (5.16)

where the function 𝑃𝑛 comes from (2.26). We define a set: 𝑆 := {𝑧 ∈ C : |𝑧| 6 𝛿}, where 𝛿 is
some sufficiently small fixed number. By the holomorphy of the function ℎ and inequalities (5.2),
(5.3) we conclude that the function 𝑃𝑛(·, ℓ) is holomorphic in 𝑆 and obeys uniform estimates:

|𝑃𝑛(𝑧, ℓ)| 6 𝐶𝑒−4𝛼𝜅ℓ, |𝑃 ′
𝑛(𝑧, ℓ)| 6 𝐶ℓ𝑒−4𝛼𝜅ℓ, (5.17)
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where 𝐶 is some constant independent of 𝑘 and sufficiently large ℓ. Now, similar to estimates
(5.9), it is easy to confirm that the function 𝑧 ↦→ 𝑃𝑛(𝑧, ℓ) maps the set 𝑆 into itself and is
a contracting mapping on this set. A corresponding fixed point, a root of equation (5.16),
can be found as a limit of a corresponding sequence satisfying estimates (2.29) or as a sum of
series similar to (2.22) with estimates for the remainders similar to (5.15). This gives rise to
representations (2.27), (2.28) for the roots 𝑘𝑛(ℓ) and the following estimates for the remainders:⃒⃒⃒⃒

⃒𝑘𝑛(ℓ) −𝐾𝑛(ℓ) −
𝑝∑︁

𝑚=1

1

𝑚!

𝑑𝑚−1𝑃𝑚
𝑛

𝑑𝑧𝑚−1
(0, ℓ)

⃒⃒⃒⃒
⃒ 6 1

(𝑝+ 1)!
max
𝑧∈𝑆

⃒⃒⃒⃒
𝑑𝑝𝑃 𝑝+1

𝑛

𝑑𝑧𝑝
(𝑧, ℓ)

⃒⃒⃒⃒
(5.18)

The latter estimate with 𝑝 = 1 and inequalities (5.17) imply that

|𝑘𝑛(ℓ) −𝐾𝑛(ℓ)| 6 𝐶ℓ𝑒−4𝛼𝜅ℓ,

where 𝐶 is a constant independent of ℓ and 𝑛. The obtained estimate means that the roots of
equation (5.16) are exponentially close to zero. This allows us to improve estimate (5.18) by
reproducing once again an appropriate arguing from the proof of Theorem 1 in [13]:⃒⃒⃒⃒

⃒𝑘𝑛(ℓ) −𝐾𝑛(ℓ) −
𝑝∑︁

𝑚=1

1

𝑚!

𝑑𝑚−1𝑃𝑚
𝑛

𝑑𝑧𝑚−1
(0, ℓ)

⃒⃒⃒⃒
⃒ 6 1

(𝑝+ 1)!
max

|𝑧|6𝐶ℓ𝑒−4𝛼𝜅ℓ

⃒⃒⃒⃒
𝑑𝑝𝑃 𝑝+1

𝑛

𝑑𝑧𝑝
(𝑧, ℓ)

⃒⃒⃒⃒
. (5.19)

The function 𝑃𝑛 can be expressed in terms of the variable 𝑘:

𝑃𝑛(𝑧, ℓ) =

(︃
1 − ℓ−1ℎ(𝑘) − ℎ

(︀
𝐾𝑛(ℓ)

)︀
𝑘 −𝐾𝑛(ℓ)

)︃−1

𝐺(𝑘, ℓ).

This allows us to express the maximum with respect to 𝑧 in (5.19) via a corresponding maximum
with respect to 𝑘 and to employ once again the aforementioned estimates for the derivatives
of holomorphic functions. As a result, a final estimate for the remainder becomes (2.30). This
completes the proof of Theorem 2.2.
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