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SOLVABILITY OF HIGHER ORDER
THREE-POINT ITERATIVE SYSTEMS

K.R. PRASAD, M. RASHMITA, N. SREEDHAR

Abstract. In this paper, we consider an iterative system of nonlinear n'" order differential
equations:

yE") () + Xipi(t) fi(yiv1 () = 0, I<i<m, Ym41(t) = y1(t), t€10,1],

with three-point non-homogeneous boundary conditions
-2
yi(0) = 5/ (0) = -+ =" (0) =0,
i) = By P ) =, 1<i<m,

where n > 3, n € (0,1), pu; € (0,00) is a parameter, f; : RT — R™ is continuous, p; :
[0,1 — R™ is continuous and p; does not vanish identically on any closed subinterval
of [0,1] for 1 < i < m. We express the solution of the boundary value problem as a
solution of an equivalent integral equation involving kernels and obtain bounds for these
kernels. By an application of Guo—Krasnosel’skii fixed point theorem on a cone in a Banach
space, we determine intervals of the eigenvalues A1, Ag, - -+ , Ay, for which the boundary value
problem possesses a positive solution. As applications, we provide examples demonstrating
our results.

Keywords: boundary value problem, iterative system, kernel, three-point, eigenvalues,
cone, positive solution. Mathematics Subject Classification: 334B18, 34A40, 34B15

1. INTRODUCTION

The existence of positive solutions for multi-point boundary value problems associated with
ordinary differential equations are of a high interest and play a vital role in different areas
of applied mathematics and physics. Multi-point boundary value problems appear in the
mathematical modelling of deflection of a curve beam having a constant or varying cross section,
three layer beam, electromagnetic waves and so on. For example, the vibration of a guy wire of a
uniform cross-section and composed of different parts with different densities can be formulated
as multi-point boundary value problems.

Due to the importance in both theory and applications, much attention is focussed
on obtaining optimal eigenvalue intervals for the existence of positive solutions of the
iterative systems of nonlinear multi-point boundary value problems by an application of
Guo—Krasnosel’skii fixed point theorem. A few papers along these lines are Henderson and
Ntouyas [5], Henderson, Ntouyas and Purnaras [0, [7] and Prasad, Sreedhar and Kumar
[14]. In the past, the researchers have focussed and established the existence of positive
solutions of the boundary value problems associated with homogeneous boundary conditions,
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see |3, 13, 2, 12, [0, [I8]. However, some works have been carried out in establishing the existence of
positive solutions of the boundary value problems with non-homogeneous boundary conditions,
see |15 [I7, 1T} 16} 10].

Motivated by the papers mentioned above, in this paper, we determine intervals of the
eigenvalues Aq, Ag,- -+, A, which will give guarantee for the existence of positive solutions
of the iterative system of nonlinear n'® order differential equations

yE) AP O fiyia () =0, 1<i<m,  ygn®) =wm@), te[0,1], (L1

satisfying three-point non-homogeneous boundary conditions

vi0) =3/ (0) = =4O =0,  ay" V) -Gy =, 1<i<m, (12)
where n > 3, n € (0,1) and y; € (0,00) is a parameter for 1 < ¢ < m. Our approach is based
on application of Guo—Krasnosel’skii fixed point theorem on a cone in a Banach space.

Throughout the paper, we assume that the following conditions hold true:

(B1) fi: Rt — R* is continuous for 1 < i < m,

(B2) p; : [0,1] — R* is continuous and p; does not vanish identically on any closed subinterval
of[O 1] for 1 <i<m,

(B3) «; and f; are constants such that o; >0 and §; € (0,%) for 1 <i<m,

(B4) each of

fi(x) fi(x)

fio = lim and fi,o = lim
as—>0+ x r—00 I
for 1 < i < m exists as positive real number.

The rest of the paper is organized as follows. In Section 2, we express the solution of the
boundary value problem (1.1)—(1.2) as a solution of an equivalent integral equation involving
kernels and find bounds for the these kernels. In Section 3, we establish the criteria determining
the eigenvalues, for which the boundary value problems — has at least one positive
solution in a cone; this is done by using the Guo—Krasnosel’skiis fixed point theorem. In Section
4, as an application, we provide some examples to illustrate our results.

2. KERNELS AND BOUNDS

In this section, we express the solution of the boundary value problem (1.1)-(1.2)) into an
equivalent integral equation involving kernels by determining integral equation of y; for 1 <
¢ < m and find bounds for the kernels, which will be needed to establish the main results.

Lemma 2.1. If h(t) € C([0,1], RT), then the boundary value problem
y() +h(t) =0, 1<i<m, tel01], (2.1)

with (1.2)) has a unique solution and is given by
1

Nztn 1 thn 1
(1) = h(s)ds, .
W =) *O/ G, gy R 22
where [ ) 1}
1 " (1l—s)—(t—s)"|, 0<s<t<],
Gt ) (n—l)'{ (1 = ), 0<t<s<l, (2:3)
and : )
s(1— n) 0 < S < n < 17
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Proof. Let y;(t), 1 < i < m, be the solution of boundary value problem (2.1]), (1.2). Then an
equivalent integral equation of (2.1 is given by

t
1
WD) = Cort Cut o Catt o+ Gyt = / (t = 5)" " h(s)ds.
n—1)!
0
Using the boundary conditions (L.2]), we can determine C; as
C;=0 as j=0,1,2,---,n—2

and

(n—Dla; —nBi)  (n— )i —nB;)

5, h
" = Dl — B / (n = s)h(s) ds.

Thus, the unique solution of boundary value problem (2.1, (1.2)) is

1

itnil thn !
u) = o tia = (G“’S”(n—n.( —ay S)) ls) ds.

1
Cho1 = ki + o /(1 — $)h(s) ds
0

]

Lemma 2.2. Assume that the condition (B3) is satisfied. Then the kernels G(t,s) and
G1(t, s) are satisfies the following inequalities:
(i) G(t,s) =0 and Gi(t,s) = 0 for all t,s € [0, 1],
(ii) (ts)<G(1s)forallts€[01]

) G(t,s) > +=G(1,s) for allt € I and s € [0,1], where I = [l 5]

4’ 4

(iii
Proof. We prove the inequality (i). For 0 < s <t < 1, then we have
G(t,s) =

("1 =s) = (t—9)""") > ("L —s) = (t—st)")

(n—1)!
tn—l

:(n_nwa—sy—@—sw*)>o

(n—1)!

and
Gi(t,s) =s(1—1t) > 0.

For 0 <t < s <1, then we have

t"1(1 — )

G(t,s) = NCEE

>0

and
Gi(t,s) =t(1—s) > 0.
Now, we prove the inequality (7). For 0 < s <t < 1, then we have
=2
(n —2)!

2G(t s) =

pr ("1 —=s)—(t—5)"77) =

(nim! (1=s)=(1—s)"7?) 20
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For 0 <t < s <1, then we have

b) tn—2
EG(t 5) = (n—2)!

Therefore, G(t, s) is increasing in ¢, which implies that G(¢,s) < G(1, s).
We proceed to proving inequality (iii). Hence, as 0 < s <t < 1 and t € I, we have

(1—-1s)>=0.

_ n—1 1 — o o\l
G(t,s) 1) ("1 —s)—(t—s5)"")
tn_l -
> —(n —) (1=s)—(1—=95)"") > —G(1,s).
AsO0<t<s<1landt € [ we then get
tn—l
= —5) >

O

We note that an m-tuple (y;(¢),y2(t),- -+, ym(t)) is a solution of the boundary value problem
(1.1)-(1.2) if and only if y;(¢) satisfies the following equations

o "
) =G e — 0B
1 gt |
+ )\ZO/ |:G(t,8) + (n — 1)( 7761) ( ) pi(5>fi(yi+1(s>)d57 I<ism, te [07 1]7
and

Ym+1 (t) = yl(t)a S [07 1]7
so that, in particular,

1

+>\1/<G(t s1) +

7fn—l ﬁltn 1

(n — Dl (ar —nph)

H1
(n — a1 —np)

1
pasy Bost™!
4 <<n ity 2 [ (G0 iy G e

0

yi(t) = (77751)>p1(31)

1
fim Sy BSm
(i o | (G + Gt )

0

Pm(8m) frm (1 (Sm))dsm) T dSz) ds;.

The following Guo-Krasnosel’skii fixed point theorem is a fundamental tool to establish our
main results.

Theorem 2.1. 1,4, 8] Let B be a Bﬁnach space, P C B be a cone and suppose that €24,
are open subsets of B with 0 € Q and 0y C Qo. Suppose further that T : PN (Q\ 1) — P
15 completely continuous operator such that either
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@) [Tyl < lyll, y € PN O, and || Ty||= |lyll, y € PN 0OQy,

or

(i) [Tyl = llyll, y € PO, and [Tyl < [lyll, y € PN OQy.
Then T has a fized point in PN (Qy\ Q).

3. POSITIVE SOLUTIONS IN A CONE

In this section, we establish a criteria to determine the eigenvalues, for which the iterative
system of three-point non-homogeneous boundary value problem (1.1)—(1.2) has at least one

positive solution in a cone.
Let B = {x x € C|0, 1]} be the Banach space equipped with the norm

o] = max 20

Define a cone P C B by

1
P= {x €B:xz(t)>0 on tel0,1] and min z(t)> o Haz(t)”}

tel

We define an operator T': P — B for y; € P by
1

Mltn 1 Bltn 1
0 = e / (600 + e gy G0 m(o)
’u281 | S1, S 628”_1 S
f1<<n—1>!< ) “20/( ) ) -

-1

B S
=l —80) (’7’Sm))pm<8m)fm(y1(sm))d5”>'”d52) "

Lemma 3.1. The operator T : P — B is a self map on P.

Proof. From the positivity of the kernels G(t,s) and G1(¢,s) in Lemma that for y; € P,
Tyi(t) > 0on t € [0,1]. Also, for y; € P, and by Lemma [2.2] we have
1

_ put" ! 5 pit" .
Tyl(“?n—l)!ml—nm)“10/ R e )

,U231 / ﬁzs

-1

Tz 1%23 0B (777Sm))pM(Sm)fm(yl(Sm))dSm) ---d52> ds,
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1
A
< T =78 Hlo/( (0804 GO )
1

n—1 n—1
pl(sl)f1<( o] +/\20/ (G(ShSQ)Jr : Basy

n— 1) (az —nph) n — 1oz — 1)

-1

BinSp—
o= Dl —8) <”’Sm>)pm(8m)fm<y1(5m))d8m>'”d82> o
so that,
| b
N VS [PNTEA “10/( R e TR LIat)

1
n—1

H281 528711_1
pi(s)fi iz —1B) A20/ <G(Sl’ =)+ (n = Dl(az —np)
)

1
1

G1(77, 82))]92 52
Brm
+ 1)

-1

1
onSpm_1
o (G gy e f (G
0

G1(150) ) s) () 5 ) - d) ds.

(
Sm—

( nﬁm)

Further, if 3; € P, we have from Lemma [2.2] and the above inequalities that

(n -

0

pasi”! / Basi” )
P! 1<<n—1>< ) “20/ (G(81’52>+ )

(n— 1? (s’,; - 1Brm) (77’Sm>>Pm(8m)fm(y1(8m))dsm) ~~-d52> dsl}

24"1 1 ((n —1)! nﬁl / (G (L, 5) (n—1)! (50141 —np1) (. 81)>

0
1

0
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1
Snfl

Brmst !
1
2@!\7@1@)“-

Therefore, T': P — P and this completes the proof. O

G150 )5 (5 s ) - dSQ)dsl)

Next, by an applications of the Arzela-Ascoli theorem, one can easily prove the operator 7' is
completely continuous.

Now, we seek suitable fixed point of the operator 7" belonging to the cone P. To prove our
result, we define positive numbers Fy, Fy, F3 and Fy by the formulae

= max inO S Bi S (s S -
Fy = 1<i<m{<42n—2 / (G(L )+ Dl _nﬁi)Gl(n, )>pz( )d ) }, (3.2)
Fy = 1<z<m{2 (fzoo/ (G(l, ) + = 1)!(ai—nﬁi)G1(n’ ))pz( )d ) } (3.3)

Fy = {(f / (G(l,s>+(n_1)!(@;1,_Wam,s))pi(s)ds) } 3.1

sel

—min1~ l S b S -ss_l
F41<i<m{2(f”°0/ (G094 G G ) o >d> } (35)

Theorem 3.1. Assume that the conditions (B1)-(B4) are satisfied. — Then, for each
A1, Ag, o Ay Satisfying either

F1<)\1<F2, F1<>\2<F27"',F1<)\m<F27 (36)

or
F3<)\1<F4, F3<)\2<F4,"',F3<)\m<F4, (37)

there exists an m-tuple (Y1, Yo, ,Ym) satisfying (L.1)—(1.2) such that y;(t) > 0 on (0,1) and
p; € (0,00) is sufficiently small for 1 < i < m.

Proof. Let \;, 1 < i < m, be given as in (3.6). Let ¢ > 0 be chosen such that

fioo —€ ﬁz - .

sel

and
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Now, we seek a fixed point of the completely continuous operator T : P — P defined by (3.1} -
By the definition of f;y, 1 < i < m, there exists an H; > 0 such that, for each 1 < ¢ < m, the
inequality

filr) < (fio+ ez, 0<az< Hyp,

holds true.
Let p;, 1 <7 < m, be such that

(n — D! — nBi)Hy
2
Let y; € P with ||y1|| = H;. By Lemmaﬂ and the choice of €, for 0 < s,,,_1 < 1 we have

Hm an 11 / 5m5
(0= 1) — 1) “mo/< T L)
Pm(8m) fin (W1 (5m)) dsm

fom 1 B
(n — D (ctm — 18m) + Amo/ (G(l,sm) + (7= 1)l = 77Bm)Gl(n, sm)>

Pm(5m) (fmo + €)y1(5m) dsm

<5 [ (000 + G5 G m(omdsat o +

0

0 <<

<

1

H, H,
<2t —H
5 T3 1

In the same way, it follows from Lemma and the choice of € that, for 0 < s,,_o < 1,

1
n—1

n—l
Hm—18py_2 Bm 15m

(n — DN m_1 —nBm-1) - >\m—10/ (G(sm_Q’Sm_l) + (n— DN omo1 — nﬁm 1)

1

G (1, Sml))pml(sml)fml ((n — 1)750%1;1_ o) + A / (G(sml, Sm)
BmsSm_
+ (n— 1)y, nﬁm) Ga(n, Sm))pm(sm)fm(yl(sm))d5m> dSm_1

1
Mm—1 /Bm—l
<(n— DY am-1 — nBm-1) +)\m 10/ (G (L, $m-a) (n— D am—1 — nPm-1)

G1(n, Sm—l))pm—l (Sm-1)dSm—1(fm-1,0+ €)Hi

H, H
<Lt op.
2 T !

Continuing with this bootstrapping argument, we have, for 0 <t < 1,

1
,ultnfl ﬁltn 1

(n — 1) cq —np) " )\10/ <G(t7 s+ (n— 1)1 —np) G (n, 81))]71(51)
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p2st ' / Bast™
fi ((n — 1)z — 1) + )\20/ (G(S1, S2) + (n = 1)!(0n —15) (?7,82)>p2(32)

1
NmS:Ln_}l Bm 3%111
. _ by _
& 1<<n =1 — 0Bm) ’“0/ (G<Sm b D @ )

77) Sm )pm Sm fm U1 Sm))dsm> : "d82) dSl < Hla

so that for 0 <t < 1,

1= ”y1H If we let

Hence, | Tyl < H
Ql = {l’ € B: ||IL‘|| < Hl},

(3.8)

then
Y1 € Pﬂan

[Tl <yl for
0, such that, for each 1 < i < m,

By the definitions of f;.o,1 < i < m, there exists Hy >

fi(z) = (fiow — €z, x> Ho.

Let
H2 = Inax {2H1, 471—1]?]2}‘

We choose y; € P and ||y,|| = Hs. Then

min g () > - Sl >

By Lemma and the choice of ¢, for i Sm—1 < %, we have:

1
Mmsﬁn_—ll 6m3 )
( nﬁm +AmJ( Sm— 1;3m + (n_1>( nﬁm) (U;Sm)

(n— 1)«
mpm(sm)fm(yl(sm)) dsp,
! B n—1
s
2 )‘m m—1 m moml b m m m m m d m
O/<G(S 1S )+ (n_l)'(am_nﬁm)Gl(T] S ))p (S )f (yl(s )) S
> 1 A G(1 B G d
= m m ( >Sm) + (TL — 1)'(&m _ Wﬁm> 1(777 Sm) prn(sm)(fmoo - E)yl<$m) Sm
sel
1 A G(1 B G d
Z pnatm (1, 5m) + (7= Dl — 75 1(1, 8m) | Pm(8m) dsm(fmoo — €) |91
sel
2 [|ly1]| = Ho.
In the same way, it follows from Lemma [2.2|and the choice of €, that for }1 < Sl < i, we have
n—1 ! nfl
=152 Bim—15m
+ A /(G Sm-2,Sm—1) +
0= D — g ot (Fmmaeny) = Dlans — 18]
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(TL - 1)!<am—1 - nﬁm 1

Nmsnmill /
Gl(n; Smfl) pmfl(smfl)fmfl +)\m/ Sm 175m
0

ﬁm lsn_1
* = Dlfant — nfon) Sm))pm(smﬁm(yﬂsm))dsm) -
1 Bm—l
> FAm—l /I' (G(l, Sm—l) + (n _ 1)'(am_1 — T]Bm_l)Gl(n’ Sm—1)>
pmfl(smfl)d5m71<fmfl,oo - E)H2
1 6m—1
= W)\mfl / <G(1,Sm1) + ("= D)/ (cm 1 — 1B 1)G1(T], Sml))

sel

Pm— 1<3m l)dsm 1<fm 100_6)H2 H2

Proceeding as above, we get:

(n— 1?1(75;11— 77/31 0/( (t,51) (n— 1fl(tn 1 —nf) Gi(n, 31))])1(51)
N ((n — 1/;2552 1_ 5] + )\20/ (G(sl, s9) + = 1%; m—y G1(n, 32))192(32)

1
n—1

.. Pom Sm—1 Bmsﬁn_—ll
fmil <<Tl o 1) (am 1 nﬁm 1) " )‘m/ (GY(Sm17 Sm) " (n - 1)!(am - nﬁm)

0

Gl(%8m)>pm(3m)fm(y1(3m))d3m> "'d82> ds1 =2 Ho,

so that, for 0 <t < 1,
T (t) = Hy = [yl
Hence, || Ty1|| = ||y1]]. If we let
Q= {z € B:|z| < Hy},
then
[Tyl = |lyall,  for g1 € PN OSQs. (3.9)

Applying Theorem [2.1] . to (3.8) and (B.9)), we obtain that T has a fixed pomt y1 € PN(Q\ ).

Since Y11 = Y1, We obtaln a positive solution (y1,ya, -+ ,Ym) of . given iteratively
by

(n — 1oy n@) n — 1) (a; —nBi)

ast=m,m-—1,---,1.
Let \;, 1 <i < m, be given as in (3.7 and let € > 0 be chosen such that

fio — € B; - .

sel

bty = / (609 + G Gu5) () ()
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and

max{A;, Ao, -+, A }

< min. {%( (6094 56109 o) st +e>) }

0

We seek fixed point of the completely continuous operator T': P — P defined in (3.1). By the
definition of f;p, 1 < i < m, there exists an H3 > 0 such that, for each 1 <7 < m,

fi(x) = (fio—€)z, 0<ux< Hs.
Also, it follows fI"OIEl the definition of f;y that f;p =0,1<i<m
lyno1 < -+ < ly < Hg such that

, and so there exists 0 < [,,, <

2| ( (L) + iy Galsu) o) ds
O<,ui<(n )(2 n)li-1 for 3<i<m,
and
H
)\2f2(l‘) < 1 ] ) T [O’ l2]7
2{( (1, 5m) m&(n,sm))m@) ds
— Dl — H
0<M2<(” )2 — 1) 3

2
Choose y; € P with |ly1|| = l,,. Then we have

! BmS:qill

HomSm_1 /
e (6005004 e

G, sm>)pm<sm>fm<y1<sm>>dsm

1

Hm 6m
<o =gt [ (0 )
0
Pm(8m) fin(Y1(5m)) dsim
1
lm71 gﬂ (G(l; Sm) + ("*1)!(‘@—2*77%(;1 (77, Sm)) lm—lpm(3m>d5m
+ < lmfl'

2 f[ (L 5m) + Gy G (0, 5m) | P (5

Continuing as above, we get:

(n— 1/;!2(81 7752 / ( 1, 52) (n— 1?2;? : nﬁQ)Gl(n’ 32))192(32)

43Sy / Bgsn—l
f2<<n_1)!< — 1) +>\3/ ( 2%2) n—l) (043—7753)(;1(777830

0
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p3(s3) -+ frn(Y1(Sm))dSp, - - - ds ) dsy < Hs.

Then,

0~ iy | (G + iy o)

0
1

sy ! fas1” :
p1(81)f1<(n_1)'( —0B) +)\20/ <G(S1,82)Jr (n — 1)!(ae — npa)

G1(n, 32))p2(52) o fm(yi(sm))ds, - - -d52> ds;

(1o — &)llyall s B s s1)ds
2 a2 )\1/ (G(L 1)+ (n = Dl(ar — nfh) Gi(n, 1))]91( 1) dsy

sel
Z|lyal-

So, [[Ty1[l = [lys[l. We let
0, = {x € B:|z] < lm},
then
| Ty1|| = |lpall for y1 € PN oK. (3.10)

Since each f;, is assumed to be a positive real number, it follows that f;, 1 < i < m, is
unbounded at co. For each 1 <7 < m, let

fi(x) = sup fi(s).

0<s<z

Then, it is straightforward that, for each 1 < i < m, f(z) is a non-decreasing real-valued
function, f; < f; and

Tr—r00
By the definition of f;., 1 < ¢ < m, there exists H, such that, for each 1 <i < m,

This implies that there exists Hy > max {2}73, h_f4} such that, for each 1 <7 < m,

fi(@) < fi(Ha), 0<z<Hy

1

Let p;, 1 <17 < m, satisty
(n — 1) — nBi)H
2
We choose y; € P with ||y;|| = Hy. Then, using the above bootstrapping argument, we obtain

0<p; <

1

puat™ ! Byt
0 = e o T / R e )

1

M281 62371—1
pl(s”f1<<n_1>!< = (G e

0
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G (n, 52))192(52) o fm(Y1(sm))dsm - - - d52> ds1

1
H P

ST s By “10/ (6620 + Gt )

1
n—1

n—1
pl(sl)fl*< H251 ] + )xgo/ <G(31,32) + ( P21

(n — 1)z — 1B n—1)!(ay — 1)

G1(n, 52))192(52) o (Y1 (8m)) Sy - 'd=92) ds

1

g% A / (G(l’ Wz 1)!(%1 — o 81))p1(31)f1‘(H4) dsy

1

<% + A (fioo +€)H4/ <G(1,$1) + 1) b

oy —nph)

G50 (o1

H, H
4+—4=H4-

22
Hence, || Ty1|| < ||ly1]|- So, if we set

0y, = {LE € B: HJJH < H4},

<

then
ITyill < llyall, for y1 € PN OQy. (3.11)

Applying Theoremto (3.10) and (3.11]), we obtain that T has a fixed point y; € PN (Q2\ Q).
In view of the identity y,,.1 = y; this yields that the m-tuple (y1,ys, - , ¥, ) satisfies boundary

value problem (1.1))-(1.2)) for the values \;, 1 <4 < m. The proof is complete. O

4. EXAMPLES

Here we consider two examples demonstrating our results.

Ezample 1. Consider the iterative system of third order three-point non-homogeneous boundary
value problem

vl + Mfi(ye(t) =0, tel0,1],
vy + X folys(t) =0, t€0,1], (4.1)
ys + Asfs((t)) =0, te[0,1],

1
y1(0) =0, %1(0)=0, 2y (1) -3y, (5) = ju,

n(0) =0 5500) =0, 33400) ~ 155 (5) = (42)
m(0) =0, 400) =0, 3400) - 24 (5) =

where

f1(y2) = y2(476.5 — 468.7e72) (210 — 202.7¢~3¥2),
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fo(ys) = y3(872.5 — 867.2¢7 %) (162 — 149.5¢~23),
Fa(yn) = y1(374.6 — 366.5¢1)(250 — 238.5¢241).

and
pi(t) = pa(t) = ps(t) = 1.

The kernels G(t,s) and Gy(t, s) are

Git.5) 1 [Pl —5s)—(t—3s)* 0<s<t<l,
t,8) = =
2 t2(1 — s), 0<t<s<1,
and
i 0<s< e
1 57 \5\5\7
Gi(5:8) = i-s) ,_1___,
IS
2 2

By direct calculation, we find that

f10 =56.94, foo = 66.25, fs0 = 93.15,
f1e0 =100065, faoo = 141345, f300 = 93650,

0.75 1
1 1
F, = max { (ﬁ / (G(l,s) + 3G1(§, s)) ds(100065)> :
0.
7

25
0
5 |
256

0.25

<% 0'/75<G(1, 5) + (0.5)(;1(%78)) d5(9365o)> —1}

0.25

5

(0(1, s) + 201(%, s)) ds(141345)> _ ,

— max {0.0031692, 0.0032499, 0.0149956}
—0.0149956

F5 =min {0.019158895, 0.022641543, 0.0368069256} = (0.019158895.
Applying Theorem we get an optimal eigenvalue interval 0.0149956 < \; < 0.019158895,

i = 1,2,3 for which the boundary value problem (4.1)—(4.2)) has at least one positive solution
by choosing pq, ps and ug are sufficiently small.

Example 2. Here we consider the iterative system of third order three-point non-homogeneous
boundary value problem

yi' + Mfi(ye(t) =0, te[0,1],
Ys + Aafa(ys(t) =0, te€[0,1], (4.3)
Y3 + Asfs((t)) =0, te€[0,1],



SOLVABILITY OF HIGHER ORDER THREE-POINT ITERATIVE SYSTEMS 121
/ / / 1
y(0) =0, 1(0) =0, 2i(1) -3y} (§> = pu,
1
R0 =0, 0 =0, 340 — 45 (3) = (1.4

1
s0h(1) - 2 (5) =

where
filyz) = y2(11 4 1001e22) (11 + 1101e~42),
fo(ys) = y3(21 + 1011e72¥)(21 + 1111e~%%),
falyr) = (31 + 1021e ") (31 + 1121e~%),
and

pi(t) = p2(t) = ps(t) = 1.

By direct calculation, we find that

fio = 1125344,
froo = 121, fono = 441,

F3 = max {0.00028178, 0.0003932, 0.00115891} = (0.00115891,

fa0 = 1168224,  f39 = 1211904,
f300 = 961,

F)y = min {0.009015, 0.0034013, 0.0035676} = (0.0034013.

Applying Theorem 3.1, we get an optimal eigenvalue interval 0.00115891 < \; < 0.0034013,
i = 1,2,3 for which boundary value problem (4.3])-(4.4) has at least one positive solution once
11, po and pg are sufficiently small.
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