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ON ANTIPERIODIC BOUNDARY VALUE PROBLEM

FOR SEMILINEAR FRACTIONAL DIFFERENTIAL

INCLUSION WITH DEVIATING ARGUMENT

IN BANACH SPACE

G.G. PETROSYAN

Abstract. We consider a boundary value problem for a semi-linear differential inclusion
of Caputo fractional derivative and a deviating coefficient in a Banach space. We assume
that the linear part of the inclusion generates a bounded 𝐶0-semigroup. A nonlinear part
of the inclusion is a multi-valued mapping depending on the time and the prehistory of the
function before a current time. The boundary condition is functional and anti-periodic in
the sense that one function is equals to another with an opposite sign. To solve the consid-
ered problem, we employ the theory of fractional mathematical analysis, the properties of
Mittag-Leffler as well as the theory of topological power for multi-valued condensing maps.
The idea is as follws: the original problem is reduced to the existence of fixed points of a
corresponding resolving multi-valued integral operator in the space of continuous functions.
To prove the existence of the fixed points of the resolving multi-operator we employ a gen-
eralized theorem of Sadovskii type on a fixed point. This is why we show that the resolving
integral multi-operator is condensing with respect to a vector measure of non-compactness
in the space of continuous functions and maps a closed ball in this space into itself.
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1. Introduction

The study of controlled systems with nonlinear components is a complicated and extremely
important part of the modern mathematical control theory and harmonic analysis, with many
applications, attracting a lot of attention both in Russia and entire world. The developing of
the theory of differential inclusions is due to the fact that they are a natural and convenient
approach for describing controlled systems from various classes, systems with discontinuous
characteristics studied in various parts of the optimal control theory, mathematical physics,
radiophysics, acoustics, etc. However, solving of problems in the framework of the present the-
ories is often a complicated problem since many of them have an adequate description in terms
of differential equations and inclusions with fractional derivatives. Many physical, economical,
biological and engineering problems, first of all related with processes in dynamical systems,
lead one to boundary value problems for differential equations and inclusions of fractional or-
der, see monographs [8], [16], [19], [20], [23] and paper [17]. During recent years, a large set of
problems related with equations and inclusions of fractional order is very intensively studied in
Russia and abroad, see paper [1]–[5], [10]–[15], [21], [22].
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In the present work we study the solvability of a boundary value problem for a semi-linear
differential inclusion of a fractional order in a separable Banach space 𝐸:

𝐶𝐷𝑞𝑥(𝑡) ∈ 𝐴𝑥(𝑡) + 𝐹 (𝑡, 𝑥𝑡), 𝑡 ∈ [0, 𝑇 ], (1.1)

with an antiperiodic boundary condition

𝑥0 ≡ −𝑥𝑇 . (1.2)

Here the symbol 𝐶𝐷𝑞 stands for the Caputo fractional derivative of order 𝑞 ∈ (0, 1), 𝐴 : 𝐷(𝐴) ⊂
𝐸 → 𝐸 is a linear operator generating a bounded 𝐶0-semigroup; the details on the theory
of operator semigroups can be found in monograph [6], 𝐹 : [0, 𝑇 ] × 𝐶([−ℎ, 0];𝐸) ( 𝐸 is a
nonlinear multivalued mapping and the function 𝑥𝑡 describes the prehistory of the solution up
to the moment 𝑡 ∈ [0, 𝑇 ], that is, 𝑥𝑡(𝑠) = 𝑥(𝑡 + 𝑠), 𝑠 ∈ [−ℎ, 0], 0 < ℎ < 𝑇, and we suppose that
𝑥0, 𝑥𝑇 ∈ 𝐶([−ℎ, 0];𝐸). To solve this problem, we shall make use of the theory of topological
degree for multi-valued condensing mappings. The idea of solving is as follows: the original
problem is reduced to the problem on existence of fixed points for a corresponding resolving
multi-valued integral operator. To prove the existence of fixed points of the resolving multi-
operator, we shall employ a generalized fixed point theorem of Sadovskii type.

2. Preliminaries

2.1. Fractional integral and fractional derivative. We first introduce needed notions
and notation from fractional mathematical analysis, more details can be found in monographs
[16], [19], [23].

Let 𝐸 be a real Banach space.

Definition 2.1. A fractional integral of order 𝑞 ∈ (0, 1) of a function 𝑔 : [0, 𝑇 ] → 𝐸 is a
function 𝐼𝑞𝑔 of the following form:

𝐼𝑞𝑔(𝑡) =
1

Γ(𝑞)

𝑡∫︁
0

(𝑡− 𝑠)𝑞−1𝑔(𝑠) 𝑑𝑠,

where Γ is the Euler Gamma function:

Γ(𝑞) =

∞∫︁
0

𝑥𝑞−1𝑒−𝑥𝑑𝑥.

Definition 2.2. A Riemann-Liouville fractional derivative of order 𝑞 ∈ (0, 1) of a continuous
function 𝑔 : [0, 𝑇 ] → 𝐸 is a function 𝐷𝑞𝑔 of the following form:

𝐷𝑞𝑔(𝑡) =
1

Γ(1 − 𝑞)

𝑑

𝑑𝑡

𝑡∫︁
0

(𝑡− 𝑠)−𝑞𝑔(𝑠) 𝑑𝑠

provided the right hand side is well-defined.

Definition 2.3. A Caputo fractional derivative of order 𝑞 ∈ (𝑁 − 1, 𝑁 ] of a function
𝑔 ∈ 𝐶𝑁([0, 𝑇 ];𝐸) is a function 𝐶𝐷𝑞

0𝑔 of the following form:

𝐶𝐷𝑞
0𝑔(𝑡) =

1

Γ(𝑁 − 𝛼)

𝑡∫︁
0

(𝑡− 𝑠)𝑁−𝑞−1𝑔(𝑁)(𝑠) 𝑑𝑠

provided the right hand side is well-defined.
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A Caputo fractional derivative of order 𝑞 ∈ (0, 1) of a continuous function 𝑔 : [0, 𝑇 ] → 𝐸
is related with a Riemann-Liouville fractional derivative of order 𝑞 ∈ (0, 1) by the following
formula:

𝐶𝐷𝑞𝑔(𝑡) =
(︁
𝐷𝑞(𝑔(·) − 𝑔(0))

)︁
(𝑡).

A great advantage of the Caputo fractional derivative, in comparison with a Riemann-
Liouville fractional derivative, is that the former keeps all main properties of the derivatives of
integer order, for instance, the vanishing of the derivative of a constant.

Definition 2.4. A function of form

𝐸𝑞,𝛽(𝑧) =
∞∑︁
𝑛=0

𝑧𝑛

Γ(𝑞𝑛 + 𝛽)
, 𝑞, 𝛽 > 0, 𝑧 ∈ C,

is called a Mittag-Leffler function.

As a rule, the function 𝐸𝑞,1 is denoted simply by 𝐸𝑞. The Mittag-Leffler function plays an
important role in the fractional calculus. For instance, consider the Cauchy problem for a scalar
fractional differential equation:

𝐶𝐷𝑞𝑥(𝑡) = 𝜆𝑥(𝑡) + 𝑓(𝑡), 𝑡 ∈ [0, 𝑇 ], (2.1)

𝑥(0) = 𝑥0, (2.2)

where 𝜆 ∈ R and 𝑓 : [0, 𝑇 ] → R is a continuous function. A solution to this problem is a
continuous function 𝑥 : [0, 𝑇 ] → R satisfying condition (2.2), for which the Caputo fractional
derivative 𝐶𝐷𝑞𝑥 is also continuous and satisfies equation (2.1). It is known, see [16, Exam. 4.9]
that the only solution to this problem is the function

𝑥(𝑡) = 𝐸𝑞(𝜆𝑡
𝑞)𝑥0 +

𝑡∫︁
0

(𝑡− 𝑠)𝑞−1𝐸𝑞,𝑞(𝜆(𝑡− 𝑠)𝑞)𝑓(𝑠) 𝑑𝑠. (2.3)

Below we shall make use of the following relations [7]:

𝐸𝑞,𝛽(𝑧) =
1

Γ(𝛽)
+ 𝑧𝐸𝑞,𝛽+𝑞(𝑧), (2.4)

𝑧∫︁
0

𝑡𝛽−1𝐸𝑞,𝛽(𝜆𝑡𝑞)𝑑𝑡 = 𝑧𝛽𝐸𝑞,𝛽+1(𝜆𝑧
𝑞). (2.5)

2.2. Measures of non-compactness and condensing mappings. Let ℰ be a Banach
space. We introduce the following notations:

∙ 𝑃 (ℰ) = {𝐴 ⊆ ℰ : 𝐴 ̸= ∅} ;
∙ 𝑃𝑏(ℰ) = {𝐴 ∈ 𝑃 (ℰ) : 𝐴 is bounded} ;
∙ 𝑃𝑣(ℰ) = {𝐴 ∈ 𝑃 (ℰ) : 𝐴 is convex} ;
∙ 𝐾(ℰ) = {𝐴 ∈ 𝑃𝑏(ℰ) : 𝐴 is compact} ;
∙ 𝐾𝑣(ℰ) = 𝑃𝑣(ℰ) ∩𝐾(ℰ).

Definition 2.5 (see, for instance, [9]). Let (𝒜,>) be a partially ordered set. The function
𝛽 : 𝑃𝑏(ℰ) → 𝒜 is a called a measure of non-compactness (MNC) in ℰ if for each Ω ∈ 𝑃𝑏(ℰ)
the identity

𝛽(co Ω) = 𝛽(Ω),

holds true, where co Ω denotes the closure of the convex hull of Ω.

A measure of non-compactness 𝛽 is called
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1) monotonous if for each Ω0,Ω1 ∈ 𝑃𝑏(ℰ), the embedding Ω0 ⊆ Ω1 implies the inequality
𝛽(Ω0) 6 𝛽(Ω1);

2) non-singular if for each 𝑎 ∈ ℰ and each Ω ∈ 𝑃𝑏(ℰ) the identity 𝛽({𝑎} ∪ Ω) = 𝛽(Ω) holds.

If 𝒜 is a cone in a Banach space, then a measure of non-compactness 𝛽 is called

3) regular if the identity 𝛽(Ω) = 0 is equivalent to a relative compactness of the set Ω ∈
𝑃𝑏(ℰ);

4) real if 𝒜 is a subset of real numbers R with the natural order;
5) algebraically semi-additive if 𝛽(Ω0 + Ω1) 6 𝛽(Ω0) + 𝛽(Ω1) for all Ω0,Ω1 ∈ 𝑃𝑏(ℰ).

An example of a real MNC obeying all aforementioned properties is Hausdorff MNC 𝜒(Ω):

𝜒(Ω) = inf{𝜀 > 0 for which Ω possesses a finite 𝜀-net in ℰ }.
We observe that the Hausdorff MNC satisfies also semi-homogeneity property:

𝜒(𝜆Ω) = |𝜆|𝜒(Ω),

for all 𝜆 ∈ R and Ω ∈ 𝑃 (ℰ). Moreover, if ℒ : ℰ → ℰ is a linear bounded operator, then

𝜒(ℒ(Ω)) = ‖ℒ‖𝜒(Ω)

for each Ω ∈ 𝑃 (ℰ).
A norm of a set 𝑀 ∈ 𝑃𝑏(ℰ) is defined by the formula:

‖𝑀‖ = sup
𝑥∈𝑀

‖𝑥‖ℰ .

2.3. Multi-valued mappings. The following notions and statements can be found in mono-
graphs [9], [18].

Definition 2.6. Let 𝑋 be a closed subset in ℰ and 𝛽 be a MNC in ℰ . A multi-valued map-
ping (multi-mapping) ℱ : 𝑋 → 𝐾(ℰ) is called condensing with respect to the MNC 𝛽 (or
𝛽-condensing) if for each Ω ∈ 𝑃𝑏(𝑋) not being relatively compact a relation holds:

𝛽(𝐹 (Ω)) ̸> 𝛽(Ω).

Definition 2.7. Let 𝑋 be a metric space. A multi-mapping ℱ : 𝑋 → 𝑃 (ℰ) is called lower
semi-continuous if

ℱ−1(𝑉 ) = {𝑥 ∈ 𝑋 : ℱ(𝑥) ⊂ 𝑉 }
is an open subset in 𝑋 for each open set 𝑉 ⊂ ℰ .

Theorem 2.1 ([9, Cor. 3.3.1]). Let ℳ be a bounded convex closed subset ℰ and ℱ : ℳ →
𝐾𝑣(ℳ) be an upper semi-continuous 𝛽-condensing multi-mapping, where 𝛽 is a non-singular
MNC in ℰ. Then the set of fixed points Fixℱ = {𝑥 : 𝑥 ∈ ℱ(𝑥)} is a non-empty set.

Definition 2.8. For 1 6 𝑝 6 ∞, a multi-function 𝐺 : [0, 𝜏 ] → 𝐾(ℰ) is called

∙ 𝐿𝑝-integrable if it admits a Bochner 𝐿𝑝-integrable selection, that is, there exists a function
𝑔 ∈ 𝐿𝑝 ((0, 𝜏); ℰ) such that 𝑔(𝑡) ∈ 𝐺(𝑡) for almost each 𝑡 ∈ [0, 𝜏 ];

∙ 𝐿𝑝-integrally bounded if there exists a function 𝜉 ∈ 𝐿𝑝((0, 𝜏)) such that

‖𝐺(𝑡)‖ 6 𝜉(𝑡)

for almost each 𝑡 ∈ [0, 𝜏 ].

The set of 𝐿𝑝-integrable selections of a multi-function 𝐺 : [0, 𝜏 ] → 𝐾(ℰ) is denoted by
𝒮𝑝
𝐺[0, 𝜏 ].

Definition 2.9. An integral for an 𝐿𝑝-integrable multi-function 𝐺 : [0, 𝜏 ] → 𝐾(ℰ) is defined
as follows:

𝜏∫︁
0

𝐺(𝑠) 𝑑𝑠 =

{︂ 𝜏∫︁
0

𝑓(𝑠) 𝑑𝑠 : 𝑓 ∈ 𝒮𝑝
𝐺[0, 𝜏 ]

}︂
.



ON ANTIPERIODIC BOUNDARY VALUE PROBLEM . . . 73

Lemma 2.1 ([9, Thm. 4.2.3]). Let ℰ be a separable Banach space and 𝐺 : [0, 𝜏 ] → 𝐾(ℰ) be
an integrable, integrally bounded multi-function such that

𝜒(𝐺(𝑡)) 6 𝑣(𝑡) for a.e. 𝑡 ∈ [0, 𝜏 ],

where 𝜒 is the Hausdorff MNC in ℰ and 𝑣 ∈ 𝐿1
+(0, 𝜏). Then

𝜒
(︁ 𝜏∫︁

0

𝐺(𝑠) 𝑑𝑠
)︁
6

𝜏∫︁
0

𝑣(𝑠) 𝑑𝑠.

3. Existence of solutions

In what follows, for the sake of brevity we denote 𝒞 := 𝐶([−ℎ, 0];𝐸).
We assume that the operator 𝐴 obeys a condition:

(𝐴) 𝐴 : 𝐷(𝐴) ⊆ 𝐸 → 𝐸 is a linear closed (not necessarily bounded) operator generating a
bounded 𝐶0-semigroup {𝑈(𝑡)}𝑡>0 of linear operators in 𝐸.

We impose the following conditions for the multi-valued operator 𝐹 : [0, 𝑇 ] × 𝒞 → 𝐾𝑣(𝐸):

(𝐹1) for each 𝜉 ∈ 𝒞, a multi-function 𝐹 (·, 𝜉) : [0, 𝑇 ] → 𝐾𝑣 (𝐸) admits a measurable selection;
(𝐹2) for almost each 𝑡 ∈ [0, 𝑇 ], the multi-operator 𝐹 (𝑡, ·) : 𝐸 → 𝐾𝑣 (𝐸) is upper semi-

continuous;
(𝐹3) there exists a function 𝛼 ∈ 𝐿∞

+ ([0, 𝑇 ]) such that for each 𝜉 ∈ 𝒞 the inequality

‖𝐹 (𝑡, 𝜉)‖𝐸 6 𝛼(𝑡)(1 + ‖𝜉‖𝒞) for a.e. 𝑡 ∈ [0, 𝑇 ],

holds;
(𝐹4) there exists a function 𝜇 ∈ 𝐿∞

+ ([0, 𝑇 ]) such that for each bounded set ∆ ⊂ 𝒞, the inequality

𝜒(𝐹 (𝑡,∆)) 6 𝜇(𝑡)𝜙(∆)

holds for almost each 𝑡 ∈ [0, 𝑇 ], where 𝜙(∆) = sup𝑠∈[−ℎ,0] 𝜒(∆(𝑠)), 𝜒 is the Hausdorff
MNC in 𝐸 and ∆(𝑠) = {𝑦(𝑠) : 𝑦 ∈ ∆}.

For a function 𝑥 ∈ 𝐶([−ℎ, 𝑇 ];𝐸) we consider a multi-function

Φ : [0, 𝑇 ] → 𝐾𝑣(𝐸), Φ(𝑡) = 𝐹 (𝑡, 𝑥𝑡).

It follows from conditions (F1)-(F3) [9, Thm. 1.3.5] that a multi-function Φ is 𝐿∞-integrable
and this is why a superposition multi-operator 𝒫∞

𝐹 : 𝐶([−ℎ, 𝑇 ];𝐸) → 𝑃 (𝐿∞([0, 𝑇 ];𝐸)) can be
defined as follows:

𝒫∞
𝐹 (𝑥) = 𝒮∞

Φ [0, 𝑇 ].

Definition 3.1. A mild solution to inclusion (1.1) is a function 𝑥 ∈ 𝐶([−ℎ, 𝑇 ];𝐸) satisfying
the identity

𝑥(𝑡) = 𝒢(𝑡)𝑥(0) +

𝑡∫︁
0

(𝑡− 𝑠)𝑞−1𝒯 (𝑡− 𝑠)𝜑(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝑇 ], (3.1)

where 𝜑 ∈ 𝒫∞
𝐹 (𝑥),

𝒢(𝑡) =

∞∫︁
0

𝜉𝑞(𝜃)𝑈(𝑡𝑞𝜃)𝑑𝜃, 𝒯 (𝑡) = 𝑞

∞∫︁
0

𝜃𝜉𝑞(𝜃)𝑈(𝑡𝑞𝜃)𝑑𝜃,

𝜉𝑞(𝜃) =
1

𝑞
𝜃−1− 1

𝑞 Ψ𝑞(𝜃
−1/𝑞),

Ψ𝑞(𝜃) =
1

𝜋

∞∑︁
𝑛=1

(−1)𝑛−1𝜃−𝑞𝑛−1Γ(𝑛𝑞 + 1)

𝑛!
sin(𝑛𝜋𝑞), 𝜃 ∈ R+.
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Remark 3.1 (see, for instance, [21], [23]). The following relations hold:

𝜉𝑞 (𝜃) > 0,

∞∫︁
0

𝜉𝑞 (𝜃) 𝑑𝜃 = 1,

∞∫︁
0

𝜃𝜉𝑞 (𝜃) 𝑑𝜃 =
1

Γ(𝑞 + 1)
.

Remark 3.2 (see, for instance, [17]). In the scalar case when 𝐸 = R and 𝑈(𝑡) = 𝑒−𝜂𝑡 with
𝜂 > 0 we have:

𝒢(𝑡) = 𝐸𝑞(−𝜂𝑡𝑞), 𝒯 (𝑡) = 𝐸𝑞,𝑞(−𝜂𝑡𝑞), 𝑡 ∈ [0, 𝑇 ].

This is why the following identities hold:

𝐸𝑞(−𝑧) =

∞∫︁
0

𝜉𝑞(𝜃)𝑒−𝑧𝜃𝑑𝜃, 𝐸𝑞,𝑞(−𝑧) =

∞∫︁
0

𝑞𝜃𝜉𝑞(𝜃)𝑒−𝑧𝜃𝑑𝜃,

which imply that

𝐸𝑞(𝜏) > 0, 𝐸𝑞,𝑞(𝜏) > 0 for 𝜏 < 0. (3.2)

Lemma 3.1 (see [23], [21]). The operator functions 𝒢 and 𝒯 satisfy the following conditions:

1) for each 𝑡 ∈ [0, 𝑇 ], 𝒢(𝑡) and 𝒯 (𝑡) are linear bounded operators and moreover, if the semi-
group 𝑈(𝑡) satisfies the estimate

‖𝑈(𝑡)‖ 6 𝑒−𝜂𝑡, 𝑡 > 0, (3.3)

with 𝜂 > 0, then

‖𝒢(𝑡)‖ 6 𝐸𝑞(−𝜂𝑡𝑞) 6 1, 𝑡 ∈ [0, 𝑇 ], (3.4)

‖𝒯 (𝑡)‖ 6 𝐸𝑞,𝑞(−𝜂𝑡𝑞) 6
𝑞

Γ(1 + 𝑞)
, 𝑡 ∈ [0, 𝑇 ]; (3.5)

2) the operator functions 𝒢(·) and 𝒯 (·) are strongly continuous, that is, the functions 𝑡 ∈
[0, 𝑇 ] → 𝒢(𝑡)𝑥 and 𝑡 ∈ [0, 𝑇 ] → 𝒯 (𝑡)𝑥 are continuous for all 𝑥 ∈ 𝐸.

To solve the formulated problem, we assume the following condition:

1 /∈ 𝑠𝑝[−𝒢(𝑇 )]. (3.6)

We consider a multi-operator 𝐺 : 𝐶([−ℎ, 𝑇 ];𝐸) → 𝑃 (𝐶([−ℎ, 𝑇 ];𝐸)) defined as

𝐺(𝑥) = {𝑦}

for all functions 𝑦 of form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦(𝑡) = − 𝒢(𝑡) (𝐼 + 𝒢(𝑇 ))−1

𝑇∫︁
0

(𝑇 − 𝑠)𝑞−1𝒯 (𝑇 − 𝑠)𝜑(𝑠)𝑑𝑠

+

𝑡∫︁
0

(𝑡− 𝑠)𝑞−1𝒯 (𝑡− 𝑠)𝜑(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝑇 ],

𝑦(𝑠) = − 𝑦(𝑇 − 𝑠), 𝑠 ∈ [−ℎ, 0],

(3.7)

where 𝜑 ∈ 𝒫∞
𝐹 (𝑥).

The multi-operator 𝐺 is well-defined thanks to the following lemma.

Lemma 3.2. If 𝑦 ∈ 𝐺(𝑥) for 𝑥 ∈ 𝐶([−ℎ, 𝑇 ];𝐸), then 𝑦(0) = −𝑦(𝑇 ) and this is why 𝑦0 =
−𝑦𝑇 .
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Proof. Indeed,

𝑦(𝑇 ) = − 𝒢(𝑇 ) (𝐼 + 𝒢(𝑇 ))−1

𝑇∫︁
0

(𝑇 − 𝑠)𝑞−1𝒯 (𝑇 − 𝑠)𝜑(𝑠)𝑑𝑠 +

𝑇∫︁
0

(𝑇 − 𝑠)𝑞−1𝒯 (𝑇 − 𝑠)𝜑(𝑠)𝑑𝑠

=
(︁
− 𝒢(𝑇 ) (𝐼 + 𝒢(𝑇 ))−1 + 𝐼

)︁ 𝑇∫︁
0

(𝑇 − 𝑠)𝑞−1𝒯 (𝑇 − 𝑠)𝜑(𝑠)𝑑𝑠

= (𝐼 + 𝒢(𝑇 ))−1

𝑇∫︁
0

(𝑇 − 𝑠)𝑞−1𝒯 (𝑇 − 𝑠)𝜑(𝑠)𝑑𝑠 = −𝑦(0).

The identity 𝑦0 = −𝑦𝑇 is implied by the definition of 𝐺. The proof is complete.

Theorem 3.1. Fixed points of the multi-operator 𝐺 are integral solutions of problem (1.1)–
(1.2) and vice versa, mild solutions of problem (1.1)–(1.2) are fixed points of the multi-operator
𝐺.

Proof. Let 𝑥 be a mild solution of problem (1.1)–(1.2), then for 𝑡 ∈ [0, 𝑇 ] the identity

𝑥(𝑡) = 𝒢(𝑡)𝑥(0) +

𝑡∫︁
0

(𝑡− 𝑠)𝑞−1𝒯 (𝑡− 𝑠)𝜑(𝑠)𝑑𝑠

holds true, where 𝜑 ∈ 𝒫∞
𝐹 (𝑥). Then it follows from Condition (1.2) that

𝑥(0) = −𝑥(𝑇 ) = −𝒢(𝑇 )𝑥(0) −
𝑇∫︁

0

(𝑇 − 𝑠)𝑞−1𝒯 (𝑇 − 𝑠)𝜑(𝑠)𝑑𝑠,

which implies the identity

𝑥(0) = − (𝐼 + 𝒢(𝑇 ))−1

𝑇∫︁
0

(𝑇 − 𝑠)𝑞−1𝒯 (𝑇 − 𝑠)𝜑(𝑠)𝑑𝑠.

Thanks to this identity, for 𝑡 ∈ [0, 𝑇 ] we obtain:

𝑥(𝑡) = −𝒢(𝑡) (𝐼 + 𝒢(𝑇 ))−1

𝑇∫︁
0

(𝑇 − 𝑠)𝑞−1𝒯 (𝑇 − 𝑠)𝜑(𝑠)𝑑𝑠 +

𝑡∫︁
0

(𝑡− 𝑠)𝑞−1𝒯 (𝑡− 𝑠)𝜑(𝑠)𝑑𝑠 (3.8)

and therefore, 𝑥 ∈ Fix𝐺.
Vice versa, let 𝑥 ∈ Fix𝐺, then for 𝑡 ∈ [0, 𝑇 ] this function solves equation (3.8) with 𝜑 ∈

𝒫∞
𝐹 (𝑥). This implies that this function is a mild solution of inclusion (1.1). In its turn, the

validity of condition (1.2) follows from Lemma 3.2. The proof is complete.

We proceed to studying topological properties of the multi-operator 𝐺.

Lemma 3.3. The multi-operator 𝐺 is upper semi-continuous and has compact values.

Proof. It is obvious that it is sufficient to prove the statement for the restriction of the multi-

operator 𝐺 on the space 𝐶([0, 𝑇 ];𝐸). We denote this restriction by ̃︀𝐺.

The multi-operator ̃︀𝐺 : 𝐶([−ℎ, 𝑇 ];𝐸) → 𝑃 (𝐶([0, 𝑇 ];𝐸)) can be represented via superposi-
tions: ̃︀𝐺(𝑥) = 𝜎 ∘ 𝑒 ∘ 𝑔 ∘ 𝑆 ∘ 𝒫∞

𝐹 (𝑥), (3.9)
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where

𝑆 : 𝐿∞([0, 𝑇 ];𝐸) → 𝐶([0, 𝑇 ];𝐸),

𝑆(𝜑)(𝑡) =

𝑡∫︁
0

(𝑡− 𝑠)𝑞−1𝒯 (𝑡− 𝑠)𝜑(𝑠)𝑑𝑠,

𝑔 : 𝐶([0, 𝑇 ];𝐸) → 𝐶([0, 𝑇 ];𝐸) × 𝐶([0, 𝑇 ];𝐸),

𝑔(𝑢) = (𝑢, 𝑢),

𝑒 : 𝐶([0, 𝑇 ];𝐸) × 𝐶([0, 𝑇 ];𝐸) → 𝐶([0, 𝑇 ];𝐸) × 𝐶([0, 𝑇 ];𝐸),

𝑒(𝑢, 𝑣) = (𝑤, 𝑣),

𝑤(𝑡) = −𝒢(𝑡)(𝐼 + 𝒢(𝑇 ))−1𝑢(𝑇 ),

𝜎 : 𝐶([0, 𝑇 ];𝐸) × 𝐶([0, 𝑇 ];𝐸) → 𝐶([0, 𝑇 ];𝐸),

𝜎(𝑢, 𝑣) = 𝑢 + 𝑣.

It was proved in work [10] that the multi-operator 𝑆 ∘ 𝒫∞
𝐹 is upper semi-continuous and has

compact values. Taking into consideration that 𝑔, 𝑒 and 𝜎 are linear bounded operators, we
obtain the desired result. The proof is complete.

We are going to show that the multi-operator 𝐺 is condensing; in order to do this, we consider
the cone

R2
+ = {𝜁 = (𝜁1, 𝜁2) : 𝜁1 > 0, 𝜁2 > 0} (3.10)

treating R+ as a linear ordered set with the natural order. In the space 𝐶([−ℎ, 𝑇 ];𝐸) we
introduce an MNC

𝜈 : 𝑃 (𝐶([−ℎ, 𝑇 ];𝐸)) → R2
+

defined as
𝜈(Ω) =

(︀
𝜙(Ω),mod𝐶(Ω)

)︀
,

where 𝜙(Ω) is the modulus of the fiber non-compactness:

𝜙(Ω) = sup
𝑡∈[−ℎ,𝑇 ]

𝜒({𝑦(𝑡) : 𝑦 ∈ Ω}),

while the second component of the modulus of the equicontinuity:

mod𝐶(Ω) = lim
𝛿→0

sup
𝑢∈Ω

max
|𝑡1−𝑡2|6𝛿

‖𝑢(𝑡1) − 𝑢(𝑡2)‖.

Theorem 3.2. Under conditions (A), (F1)-(F4) and the condition

(𝐴1) the semi-group 𝑈 obeys estimate (3.3) for some 𝜂 > 0.

If
‖𝜇‖∞
𝜂

< 1, (3.11)

where 𝜇(·) is the function from condition (F4), then the multi-operator 𝐺 is 𝜈-condensing.

Proof. Let Ω ⊂ 𝐶([−ℎ, 𝑇 ];𝐸) be a non-empty bounded set, for which

𝜈(𝐺(Ω)) > 𝜈(Ω). (3.12)

We are going to show that Ω is a relatively compact set.
It follows from (3.12) that

𝜙(𝐺(Ω)) > 𝜙(Ω). (3.13)

Let 0 6 𝑡 6 𝑇. Employing estimates (3.4)–(3.5), property (F4) and denoting

Ω𝑠 = {𝑥𝑠 : 𝑥 ∈ Ω},
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for 0 6 𝑠 6 𝑇 , Ω𝑠 ⊂ 𝒞, we obtain:

𝜒 (𝐺(Ω)(𝑡)) 6𝜒

(︃
− 𝒢(𝑡) (𝐼 + 𝒢(𝑇 ))−1

𝑇∫︁
0

(𝑇 − 𝑠)𝑞−1𝒯 (𝑇 − 𝑠)𝐹 (𝑠,Ω𝑠) 𝑑𝑠

+

𝑡∫︁
0

(𝑡− 𝑠)𝑞−1𝒯 (𝑡− 𝑠)𝐹 (𝑠,Ω𝑠) 𝑑𝑠

)︃

6 ‖−𝒢(𝑡)‖
⃦⃦

(𝐼 − (−𝒢 (𝑇 )))−1
⃦⃦
𝜒

⎛⎝ 𝑇∫︁
0

(𝑇 − 𝑠)𝑞−1𝒯 (𝑇 − 𝑠)𝐹 (𝑠,Ω𝑠) 𝑑𝑠

⎞⎠
+ 𝜒

⎛⎝ 𝑡∫︁
0

(𝑡− 𝑠)𝑞−1𝒯 (𝑡− 𝑠)𝐹 (𝑠,Ω𝑠) 𝑑𝑠

⎞⎠
6

𝐸𝑞(−𝜂𝑡𝑞)

1 − 𝐸𝑞(−𝜂𝑇 𝑞)

𝑇∫︁
0

(𝑇 − 𝑠)𝑞−1𝐸𝑞,𝑞(−𝜂(𝑇 − 𝑠)𝑞)𝜇(𝑠)𝜙 (Ω𝑠) 𝑑𝑠

+

𝑡∫︁
0

(𝑡− 𝑠)𝑞−1𝐸𝑞,𝑞(−𝜂(𝑡− 𝑠)𝑞)𝜇(𝑠)𝜙 (Ω𝑠) 𝑑𝑠

6
𝐸𝑞(−𝜂𝑡𝑞)

1 − 𝐸𝑞(−𝜂𝑇 𝑞)
‖𝜇‖∞ sup

𝑡∈[−ℎ,𝑇 ]

𝜒(Ω(𝑡))

𝑇∫︁
0

(𝑇 − 𝑠)𝑞−1𝐸𝑞,𝑞(−𝜂(𝑇 − 𝑠)𝑞)𝑑𝑠

+ ‖𝜇‖∞ sup
𝑡∈[−ℎ,𝑇 ]

𝜒(Ω(𝑡))

𝑡∫︁
0

(𝑡− 𝑠)𝑞−1𝐸𝑞,𝑞(−𝜂(𝑡− 𝑠)𝑞)𝑑𝑠.

To proceed with estimating 𝜒 (𝐺(Ω)(𝑡)), 𝑡 ∈ [0, 𝑇 ], we calculate the integrals in the latter
estimate by means of formula (2.5):

𝑇∫︁
0

(𝑇 − 𝑠)𝑞−1𝐸𝑞,𝑞(−𝜂(𝑇 − 𝑠)𝑞)𝑑𝑠 = −
𝑇∫︁

0

(𝑇 − 𝑠)𝑞−1𝐸𝑞,𝑞(−𝜂(𝑇 − 𝑠)𝑞)𝑑(𝑇 − 𝑠)

=

𝑇∫︁
0

𝑦𝑞−1𝐸𝑞,𝑞(−𝜂𝑦𝑞)𝑑𝑦 = 𝑇 𝑞𝐸𝑞,𝑞+1(−𝜂𝑇 𝑞).

In the same way we obtain

𝑡∫︁
0

(𝑡− 𝑠)𝑞−1𝐸𝑞,𝑞(−𝜂(𝑡− 𝑠)𝑞)𝑑𝑠 = 𝑡𝑞𝐸𝑞,𝑞+1(−𝜂𝑡𝑞).

We note that choosing 𝛽 = 1 in formula (2.4), we get:

𝐸𝑞(−𝜂𝑡𝑞) =
1

Γ(1)
− 𝜂𝑡𝑞𝐸𝑞,𝑞+1(−𝜂𝑡𝑞) = 1 − 𝜂𝑡𝑞𝐸𝑞,𝑞+1(−𝜂𝑡𝑞).
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Thus, we obtain the following identities:

𝑇∫︁
0

(𝑇 − 𝑠)𝑞−1𝐸𝑞,𝑞(−𝜂(𝑇 − 𝑠)𝑞)𝑑𝑠 = 𝑇 𝑞 1

𝜂𝑇 𝑞
(1 − 𝐸𝑞(−𝜂𝑇 𝑞)) =

1

𝜂
(1 − 𝐸𝑞(−𝜂𝑇 𝑞)) ,

𝑡∫︁
0

(𝑡− 𝑠)𝑞−1𝐸𝑞,𝑞(−𝜂(𝑡− 𝑠)𝑞)𝑑𝑠 =
1

𝜂
(1 − 𝐸𝑞(−𝜂𝑡𝑞)) .

This is why for 𝑡 ∈ [0, 𝑇 ] we have

𝜒 (𝐺(Ω)(𝑡)) 6
𝐸𝑞(−𝜂𝑡𝑞)

1 − 𝐸𝑞(−𝜂𝑇 𝑞)
‖𝜇‖∞ sup

𝑡∈[−ℎ,𝑇 ]

𝜒(Ω(𝑡))
1

𝜂
(1 − 𝐸𝑞(−𝜂𝑇 𝑞))

+ ‖𝜇‖∞ sup
𝑡∈[−ℎ,𝑇 ]

𝜒(Ω(𝑡))
1

𝜂
(1 − 𝐸𝑞(−𝜂𝑡𝑞))

=
‖𝜇‖∞
𝜂

sup
𝑡∈[−ℎ,𝑇 ]

𝜒(Ω(𝑡)).

The latter estimate implies the inequality

sup
𝑡∈[0,𝑇 ]

𝜒 (𝐺(Ω)(𝑡)) 6
‖𝜇‖∞
𝜂

sup
𝑡∈[−ℎ,𝑇 ]

𝜒(Ω(𝑡)). (3.14)

At the same time, by the definition of the multi-operator 𝐺, the relation holds:

sup
𝑠∈[−ℎ,0]

𝜒 (𝐺(Ω)(𝑠)) = sup
𝑡∈[𝑇−ℎ,𝑇 ]

𝜒 (𝐺(Ω)(𝑡)) 6 sup
𝑡∈[0,𝑇 ]

𝜒 (𝐺(Ω)(𝑡)) . (3.15)

Taking into consideration estimates (3.14) and (3.15), we find that

sup
𝑡∈[−ℎ,𝑇 ]

𝜒 (𝐺(Ω)(𝑡)) 6
‖𝜇‖∞
𝜂

sup
𝑡∈[−ℎ,𝑇 ]

𝜒(Ω(𝑡)),

or, equivalently,

𝜙 (𝐺(Ω)) 6
‖𝜇‖∞
𝜂

𝜙(Ω).

It follows from the latter estimate and inequalities (3.11), (3.13) that

𝜙(Ω) = 0.

It was shown in work [10] that on the segment [0, 𝑇 ], the identity holds:

mod𝐶 (𝑆 ∘ 𝒫∞
𝐹 (Ω)) = 0.

For the multi-operator ̃︀𝐺 in (3.9) we also obtain that

mod𝐶

(︁ ̃︀𝐺(Ω)
)︁

= 0.

Employing the definition of the multi-operator 𝐺 once again, we get the identity:

mod𝐶 (𝐺(Ω)) = 0,

which by (3.12) finally yields that

mod𝐶 (Ω) = 0.

By Arzelà-Ascoli theorem we obtain that Ω is a relatively compact set. The proof is complete.

Now we are in position to prove the main result of the work.
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Theorem 3.3. Under conditions (A), (A1), (F1)–(F4), if

𝑘

𝜂
< 1, (3.16)

where 𝑘 = max {‖𝛼‖∞, ‖𝜇‖∞} , the functions 𝛼 and 𝜇 are from conditions (F3) and (F4),
respectively, 𝜂 is a constant from condition (A1), then problem (1.1)–(1.2) is solvable.

Proof. We choose arbitrary 𝑥 ∈ 𝐶([−ℎ, 𝑇 ];𝐸) and 𝑦 ∈ 𝐺(𝑥), then for 𝜑 ∈ 𝒫∞
𝐹 (𝑥) and 𝑡 ∈ [0, 𝑇 ]

we have the following estimate:

‖𝑦(𝑡)‖𝐸 6

⃦⃦⃦⃦
⃦⃦−𝒢(𝑡) (𝐼 + 𝒢(𝑇 ))−1

𝑇∫︁
0

(𝑇 − 𝑠)𝑞−1𝒯 (𝑇 − 𝑠)𝜑(𝑠)𝑑𝑠 +

𝑡∫︁
0

(𝑡− 𝑠)𝑞−1𝒯 (𝑡− 𝑠)𝜑(𝑠)𝑑𝑠

⃦⃦⃦⃦
⃦⃦
𝐸

6 ‖−𝒢(𝑡)‖
⃦⃦

(𝐼 − (−𝒢(𝑇 )))−1
⃦⃦ 𝑇∫︁

0

(𝑇 − 𝑠)𝑞−1𝒯 (𝑇 − 𝑠)𝛼(𝑠)(1 + ‖𝑥𝑠‖𝒞)𝑑𝑠

+

𝑡∫︁
0

(𝑡− 𝑠)𝑞−1 ‖𝒯 (𝑡− 𝑠)‖𝛼(𝑠)(1 + ‖𝑥𝑠‖𝒞)𝑑𝑠

6
𝐸𝑞(−𝜂𝑡𝑞)

1 − 𝐸𝑞(−𝜂𝑇 𝑞)

𝑇∫︁
0

(𝑇 − 𝑠)𝑞−1𝐸𝑞,𝑞(−𝜂(𝑇 − 𝑠)𝑞)𝛼(𝑠)(1 + ‖𝑥‖𝐶([−ℎ,𝑇 ];𝐸))𝑑𝑠

+

𝑡∫︁
0

(𝑡− 𝑠)𝑞−1𝐸𝑞,𝑞(−𝜂(𝑡− 𝑠)𝑞)𝛼(𝑠)(1 + ‖𝑥‖𝐶([−ℎ,𝑇 ];𝐸))𝑑𝑠

6
𝐸𝑞(−𝜂𝑡𝑞)

1 − 𝐸𝑞(−𝜂𝑇 𝑞)
‖𝛼‖∞(1 + ‖𝑥‖𝐶([−ℎ,𝑇 ];𝐸))

1

𝜂
(1 − 𝐸𝑞(−𝜂𝑇 𝑞))

+ ‖𝛼‖∞(1 + ‖𝑥‖𝐶([−ℎ,𝑇 ];𝐸))
1

𝜂
(1 − 𝐸𝑞(−𝜂𝑡𝑞))

=
‖𝛼‖∞
𝜂

(1 + ‖𝑥‖𝐶([−ℎ,𝑇 ];𝐸)) 6
𝑘

𝜂
(1 + ‖𝑥‖𝐶([−ℎ,𝑇 ];𝐸)).

We note that by the definition of the multi-operator 𝐺, the latter estimate holds also for
𝑡 ∈ [−ℎ, 0].

Now we take

𝑅 >
𝑘𝜂−1

1 − 𝑘𝜂−1

and the inequality ‖𝑥‖𝐶([−ℎ,𝑇 ];𝐸) 6 𝑅 yields the estimate ‖𝐺(𝑥)‖𝐶([−ℎ,𝑇 ];𝐸) 6 𝑅. Thus, the

multi-operator 𝐺 maps a closed ball 𝐵𝑅(0) ⊂ 𝐶([−ℎ, 𝑇 ];𝐸) into itself. By Theorem 2.1, the
multi-operator 𝐺 possesses a fixed point, which by Theorem 3.1 is a mild solution of problem
(1.1)–(1.2). The proof is complete.
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