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ON SOLVABILITY OF CLASS OF NONLINEAR EQUATIONS

WITH SMALL PARAMETER IN BANACH SPACE

E.M. MUKHAMADIEV, A.B. NAZIMOV, A.N. NAIMOV

Abstract. We study the solvability of one class of nonlinear equations with a small param-
eter in a Banach space. The main difficulty is that the principal linear part of this equation
is non-invertible. To study the solvability of the considered class of equations we apply a
new method combining the Pontryagin method from the theory of autonomous systems on
the plane and the methods of calculating the rotations of vector fields. We also employ
a scheme for matrix representations of split operators known in the bifurcation theory of
solutions to nonlinear equations. In contrast to the Pontryagin method, we do not assume
a differentiability for a nonlinear mapping and apply methods for calculating the rotations
of vector fields. On the base of the proposed method we formulate and prove a theorem on
solvability conditions for the considered class of nonlinear equations. As an application, we
study two periodic problems for nonlinear differential equations with a small parameter,
namely, a periodic problem for the system of ordinary differential equations in a resonance
case and a periodic problem for a nonlinear elliptic equations with a non-invertible linear
part.
Keywords: nonlinear equation with small parameter, Pontryagin method, rotation of
vector field, periodic problem.
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1. Introduction

We consider the solvability of following nonlinear equations:

𝐴𝑥 = 𝜇𝑓(𝑥, 𝜇), 𝑥 ∈ 𝐸. (1.1)

Here 𝐸 is a Banach space, 𝜇 is a real parameter, |𝜇| 6 𝜇0, 𝐴 : 𝐷𝐴 ↦→ 𝐸 is a linear operator
with the domain 𝐷𝐴 ⊂ 𝐸 and the operator 𝐴 is assumed to be closed and normally solvable,
𝑓 : 𝐸 × [−𝜇0, 𝜇0] ↦→ 𝐸 is a continuous mapping.

If the operator 𝐴 is invertible, the equation (1.1) is reduced to

𝑥 = 𝜇𝐴−1𝑓(𝑥, 𝜇), 𝑥 ∈ 𝐸. (1.2)

Assuming that 𝐴−1 is completely continuous and applying Schauder fixed point theorem, see
[1, Sect. 35], one can prove that equation (1.2) is solvable for small values of the parameter 𝜇.

In the present paper we study the solvability of equation (1.1) with an invertible operator
𝐴. In this case we apply a new method originating from the Pontryagin method known in the
theory of autonomous systems on the planem, see [2], [3, Ch. 11, Sect. 7]. Pontryagin method
is applied for proving the existence a limit cycle for a nonlinear autonomous system consisting
in a linear part and a nonlinear perturbation governed by a small parameter. The matter of
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the Pontryagin method is that by means of the nonlinear perturbation, one selects a certain
periodic solution of a corresponding linear system and this solution is employed to prove the
existence of the cycle in the nonlinear system for small values of the parameter. We perform
this idea for nonlinear equations (1.1), wherein, we employ a scheme of matrix representations
for split operators known in the bifurcation theory of solutions to nonlinear equations [4, Ch. 5,
Sect. 22]. Moreover, opposite to the Pontryagin method, we do not assume a differentiability
for nonlinear mapping 𝑓 and we employ methods for calculating the rotations of vector fields,
see, for instance, [5, Ch. 2]. On the base of the proposed method, we formulate and prove a
theorem on solvability of equation (1.1) for small values of the parameter 𝜇.

As an application, we study two periodic problems for nonlinear differential equations with
a small parameter:

1) a periodic problem for a system of ordinary differential equations

𝑦′ = 𝐶𝑦 + 𝜇𝑔(𝑡, 𝑦, 𝜇), 𝑡 ∈ (0, 𝜔), 𝑦 ∈ R𝑛, 𝑦(0) = 𝑦(𝜔),

in the resonance case, that is, in the case when the matrix 𝐶 has pure imaginary eigenvalues
±𝑖2𝜋/𝜔;

2) a periodic problem for nonlinear elliptic equation

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+ (𝑘20 + 𝑙20)𝑢 = 𝜇𝐹 (𝑥, 𝑦, 𝑢, 𝜇), (𝑥, 𝑦) ∈ Π = (0, 2𝜋) × (0, 2𝜋),

𝑢(0, 𝑦) = 𝑢(2𝜋, 𝑦), 𝑢(𝑥, 0) = 𝑢(𝑥, 2𝜋), 𝑥, 𝑦 ∈ [0, 2𝜋],

where the linear part is non-invertible.
The obtained results are new and they can be employed in studying other classes of boundary

conditions for nonlinear differential equations. In work [6], equation (1.1) was studied in a finite-
dimensional case as 𝐸 = R𝑛. In an infinite-dimensional, when 𝐸 is a Hilbert space, equation
of form (1.1) was studied in work [7] at an example of one nonlinear boundary value problem
with a small parameter.

2. Main results

Let a linear operator 𝐴 : 𝐷𝐴 ↦→ 𝐸 be defined on a linear manifold 𝐷𝐴 of a Banach space 𝐸
equipped with a norm ‖ · ‖ and assume that the following conditions hold:

1) Ker𝐴 := {𝑥 ∈ 𝐷𝐴 : 𝐴𝑥 = 0} ≠ {0};
2) 𝐸 = 𝐸1 ⊕ 𝐸2, where 𝐸1, 𝐸2 are linear manifolds, 𝐸1 ⊂ 𝐷𝐴, 𝐸2 ∩ Ker𝐴 = {0} and

𝐴(𝐸2 ∩𝐷𝐴) = 𝐴(𝐷𝐴).
The decomposition 𝐸 = 𝐸1 ⊕ 𝐸2 is equivalent to the existence of two linear operators

𝑃𝑖 : 𝐸 ↦→ 𝐸𝑖, 𝑖 = 1, 2, possessing the properties: 𝑃 2
𝑖 = 𝑃𝑖, 𝑖 = 1, 2, 𝑃1 + 𝑃2 = 𝐼, where 𝐼

is the identity mapping; such operators are called projectors. By these operator we introduce
linear operators 𝐴𝑖𝑗 = 𝑃𝑖𝐴𝑃𝑗 : (𝐸𝑗 ∩𝐷𝐴) ↦→ 𝐸𝑖, 𝑖, 𝑗 = 1, 2. By the condition 𝐸2 ∩Ker𝐴 = {0},
there exists a linear operator 𝐴−1

22 inverse for the operator 𝐴22.
The following lemma holds true.

Lemma 2.1. If Conditions 1), 2) hold and a mapping 𝑓 : 𝐷𝐴× [−𝜇0, 𝜇0] ↦→ 𝐸 is given, then
for 𝜇 ̸= 0 equation (1.1) is equivalent to the system of equations

𝑃1𝑓(𝑥1 + 𝑥2, 𝜇) − 𝐴12𝐴
−1
22 𝑃2𝑓(𝑥1 + 𝑥2, 𝜇) = 0,

𝑥2 = −𝐴−1
22 𝐴21𝑥1 + 𝜇𝐴−1

22 𝑃2𝑓(𝑥1 + 𝑥2, 𝜇), (2.1)

where 𝑥1 = 𝑃1𝑥, 𝑥2 = 𝑃2𝑥.
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Lemma 2.1 can be proved similar to the proof of Theorem 22.1 in book [4, Ch. 5, Sect. 22].
It follows from Conditions 1) and 2) that (𝐼 − 𝐴−1

22 𝐴21) : 𝐸1 ↦→ Ker𝐴 is an isomorphism and
this is why as 𝐸1 one can choose Ker𝐴. It may be difficult to find Ker𝐴 for some operators 𝐴
and in this case, it could be easier to find 𝐸1 and 𝐸2 obeying Condition 2).

To study the solvability of system of equations (2.1), we assume that
3) 𝐴 is closed and normally solvable;
4) dim𝐸1 <∞.
We equip linear manifolds 𝐸1 and 𝐸𝐴 = 𝐸2 ∩𝐷𝐴 with the norms:

‖𝑥1‖𝐸1 := ‖𝑥‖, ‖𝑥2‖𝐸𝐴
:= ‖𝑥2‖ + ‖𝐴𝑥2‖.

Condition 3) implies that 𝐸𝐴 is a Banach space and the operators 𝐴𝑖,𝑗, 𝑖, 𝑗 = 1, 2 and 𝐴−1
22 are

bounded.
Assume Conditions 1)–4) hold as well as the condition
5) the operator 𝑓(𝑥1 + 𝑥2, 𝜇) : 𝐸1 × 𝐸𝐴 × [−𝜇0, 𝜇0] ↦→ 𝐸 is completely continuous.
Then the following statement is true.

Lemma 2.2. If Conditions 1)–5) hold and for each 𝜇 = 𝜇𝑛, where 𝜇𝑛 → 0, 𝑛→ ∞, system
of equations (2.1) is solvable on a bounded set 𝑈 ⊂ 𝐸1 × 𝐸𝐴, then the equation

(𝑃1 − 𝐴12𝐴
−1
22 𝑃2)𝑓(𝑥, 0) = 0, 𝑥 ∈ Ker𝐴, (2.2)

is solvable.

Thus, the solvability of equation (2.2) is necessary for solvability of system of equations (2.1)
for small values of 𝜇. Following Pontryagin method [3, Ch. 11, Sect. 7], we choose an isolated
solution to system (2.2) and by this solution we prove the existence of solution to system of
equations (2.1) for small values of 𝜇. In order to do this, we employ the methods for calculating
rotations of vector fields [5, Ch. 2].

We consider a finite-dimensional vector field Φ : 𝐸1 ↦→ 𝐸1 defined by the formula

Φ(𝑥1) = (𝑃1 − 𝐴12𝐴
−1
22 𝑃2)𝑓(𝑥1 − 𝐴−1

22 𝐴21𝑥1, 0), 𝑥1 ∈ 𝐸1.

For each 𝑥1 ∈ 𝐸1 we have (𝑥1 − 𝐴−1
22 𝐴21𝑥1) ∈ Ker𝐴, see [4, Ch. 5, Sect. 22]. We assume that

there exist 𝑥*1 ∈ 𝐸1 and 𝜀 > 0 such that
6) Φ(𝑥*1) = 0 and Φ(𝑥1) ̸= 0 as 0 < ‖𝑥1 − 𝑥*1‖𝐸1 6 𝜀;
7) 𝛾(Φ, 𝑆1

𝜀 (𝑥*1)) ̸= 0, where 𝛾(Φ, 𝑆1
𝜀 (𝑥*1)) is the rotation of the vector field Φ on the sphere

𝑆1
𝜀 (𝑥*1) := {𝑥1 ∈ 𝐸1 : ‖𝑥1 − 𝑥*1‖𝐸1 = 𝜀}.

The following theorem holds true.

Theorem 2.1. Assume that Conditions 1)–7) hold. Then there exists 𝜇1 ∈ (0, 𝜇0) such that
for all 𝜇 ∈ (−𝜇1, 𝜇1) equation (1.1) is solvable on the set

𝑈𝜀(𝑥
*
1) = {𝑥1 + 𝑥2 : 𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸𝐴, ‖𝑥1 − 𝑥*1‖2𝐸1

+ ‖𝑥2 + 𝐴−1
22 𝐴21𝑥

*
1‖2𝐸𝐴

6 𝜀2}.

Remark 2.1. Similar theorem holds for the equation

𝐴𝑥 = ℎ+ 𝜇𝑓(𝑥, 𝜇), 𝑥 ∈ 𝐸, (1.1ℎ),

where ℎ ∈ 𝐴(𝐷𝐴). In particular, as 𝑓(𝑥, 𝜇) = 𝑥 − 𝑥*, 𝑥* ∈ Ker𝐴, we obtain the equation
(𝐴−𝜇𝐼)(𝑥− 𝑥*) = ℎ called a regularized shift. Such equation were studied in monograph [8] in
a finite-dimensional and Hilbert spaces. In the general case, equation (1.1ℎ) can regarded as a
nonlinear regularization of equation 𝐴𝑥 = ℎ.
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Applying Theorem 2.1, we are going to study the solvability of a periodic problem for a
system of ordinary differential equations

𝑦′ = 𝐶𝑦 + 𝜇𝑔(𝑡, 𝑦, 𝜇), 𝑡 ∈ (0, 𝜔), 𝑦 ∈ R𝑛, 𝑦(0) = 𝑦(𝜔), (2.3)

where 𝑛 > 1, 𝜔 > 0, 𝐶 is a real square matrix of order 𝑛. Assume that the following conditions
hold true:

8) the matrix 𝐶 possesses pure imaginary eigenvalues ±𝑖2𝜋/𝜔;
9) the mapping 𝑔 : R𝑛+2 ↦→ R𝑛 is continuous and is 𝜔-periodic in 𝑡;
10) there exists a vector 𝑥*1 ∈ R𝑛 possessing the properties:
a) the vector 𝑥*1 belongs to the subspace

𝐸𝑛
1 =

{︀
𝑥 ∈ R𝑛 : (𝑒−𝜔𝐶 − 𝐼)𝑥 = 0

}︀
;

b) for each vector 𝑥 from some neighbourhood

𝑈𝑟(𝑥
*
1) = {𝑥 ∈ R𝑛 : |𝑥− 𝑥*1| < 𝑟}

of the point 𝑥*1 there exists a unique solution 𝑝(𝑡, 𝑥, 𝜇), 𝑡 ∈ [0, 𝜔], to the Cauchy problem

𝑦′ = 𝐶𝑦 + 𝜇𝑔(𝑡, 𝑦, 𝜇), 𝑦(0) = 𝑥;

c) the vector 𝑥*1 is an isolated zero of the vector field Φ𝑛 : 𝐸𝑛
1 ↦→ 𝐸𝑛

1 , where

Φ𝑛(𝑥1) = 𝐴12𝐴
−1
22 𝑃2

∫︁ 𝜔

0

𝑒−𝜏𝐶𝑔(𝜏, 𝑒𝜏𝐶𝑥1, 0)𝑑𝜏, 𝑥1 ∈ 𝐸𝑛
1 ,

𝐴𝑖𝑗 = 𝑃𝑖𝐴𝑃𝑗, 𝑖, 𝑗 = 1, 2, 𝐴 = (𝑒−𝜔𝐶 − 𝐼), 𝑃𝑖 : R𝑛 ↦→ 𝐸𝑛
𝑖 , 𝑖 = 1, 2, are orthogonal projectors,

𝐸𝑛
2 = (𝐸𝑛

1 )⊥ is an orthogonal complement to 𝐸𝑛
1 ;

d) the rotation 𝛾(Φ𝑛, 𝑆
𝑛
𝜀 (𝑥*1)) of vector field Φ𝑛 on the sphere

𝑆𝑛
𝜀 (𝑥*1) = {𝑥1 ∈ 𝐸𝑛

1 : |𝑥1 − 𝑥*1| = 𝜀}
of a positive radius 𝜀, where 𝜀 < 𝑟, is non-zero.

The following theorem on solvability of periodic problem (2.3) holds true.

Theorem 2.2. If Conditions 8)–10) hold, then there exists 𝜇1 > 0 such that periodic problem
(2.3) is solvable for all 𝜇 ∈ (−𝜇1, 𝜇1).

We consider the solvability of a periodic problem for a nonlinear elliptic equation

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+ (𝑘20 + 𝑙20)𝑢 = 𝜇𝐹 (𝑥, 𝑦, 𝑢, 𝜇), (𝑥, 𝑦) ∈ Π = (0, 2𝜋) × (0, 2𝜋), (2.4)

𝑢(0, 𝑦) = 𝑢(2𝜋, 𝑦), 𝑢(𝑥, 0) = 𝑢(𝑥, 2𝜋), 𝑥, 𝑦 ∈ [0, 2𝜋], (2.5)

where 𝑘0, 𝑙0 are fixed natural numbers, 𝜇 ∈ (−𝜇0, 𝜇0), 𝐹 : Π×C× [−𝜇0, 𝜇0] ↦→ C is a continuous
mapping, C is the complex plane. A solution to problem (2.4), (2.5) is a function 𝑢 ∈ 𝐶(Π),
with second derivatives belonging 𝐿2(Π), satisfying equation (2.4) and conditions (2.5).

We introduce the following notations:

⟨𝑢, 𝑣⟩ =
1

4𝜋2

∫︁ 2𝜋

0

∫︁ 2𝜋

0

𝑢(𝜉, 𝜂)𝑣(𝜉, 𝜂)𝑑𝜉𝑑𝜂, ‖𝑣‖2 = ⟨𝑣, 𝑣⟩,

𝜓𝑘𝑙(𝑥, 𝑦) = 𝑒𝑖(𝑘𝑥+𝑙𝑦), 𝑐𝑘𝑙(𝑣) =< 𝑣, 𝜓𝑘𝑙 >, 𝑘, 𝑙 = 0,±1,±2, . . . ,

𝐽 = {(𝑘, 𝑙) : 𝑘, 𝑙 ∈ Z, 𝑘2 + 𝑙2 = 𝑘20 + 𝑙20}, ̃︀𝐸1 = {𝑣 ∈ 𝐿2(Π) : 𝑐𝑘𝑙(𝑣) = 0, (𝑘, 𝑙) ̸∈ 𝐽},̃︀Φ(𝑣) =
∑︁

(𝑘,𝑙)∈𝐽

⟨𝐹 (·, ·, 𝑣, 0), 𝜓𝑘𝑙⟩𝜓𝑘𝑙.

We assume that there exist 𝑣*1 ∈ ̃︀𝐸1 and 𝜀 > 0 such that
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11) ̃︀Φ(𝑣*1) = 0 and ̃︀Φ(𝑣1) ̸= 0 as 0 < ‖𝑣1 − 𝑣*1‖ 6 𝜀;

12) 𝛾(̃︀Φ, ̃︀𝑆1
𝜀 (𝑣*1)) ̸= 0, where 𝛾(̃︀Φ, ̃︀𝑆1

𝜀 (𝑣*1)) is the rotation of a finite-dimensional vector field̃︀Φ : ̃︀𝐸1 ↦→ ̃︀𝐸1 on the sphere ̃︀𝑆1
𝜀 (𝑣*1) = {𝑣 ∈ ̃︀𝐸1 : ‖𝑣1 − 𝑣*1‖ = 𝜀‖}.

Theorem 2.1 implies one more theorem.

Theorem 2.3. If Conditions 11 and 12) hold, then there exists 𝜇1 > 0 such that for all
𝜇 ∈ (−𝜇1, 𝜇1) problem (2.4), (2.5) is solvable.

3. Proof of Theorem 2.1

We begin with proving Lemmata 2.1 and 2.2.

Proof of Lemma 2.1. Let 𝑥 be a solution of equation (1.1) for some 𝜇 ̸= 0. Then we represent
𝑥 as the sum 𝑥 = 𝑥1 + 𝑥2, where 𝑥1 = 𝑃1𝑥 ∈ 𝐸1, 𝑥2 = 𝑃2𝑥 ∈ 𝐸2, and we have:

𝐴𝑥1 + 𝐴𝑥2 = 𝜇𝑓(𝑥1 + 𝑥2, 𝜇).

Applying 𝑃1 and 𝑃2 to this identity, we obtain:

𝐴11𝑥1 + 𝐴12𝑥2 = 𝜇𝑃1𝑓(𝑥1 + 𝑥2, 𝜇), 𝐴21𝑥1 + 𝐴22𝑥2 = 𝜇𝑃2𝑓(𝑥1 + 𝑥2, 𝜇).

By the second identity we find

𝑥2 = −𝐴−1
22 𝐴21𝑥1 + 𝜇𝐴−1

22 𝑃2𝑓(𝑥1 + 𝑥2, 𝜇)

and we substitute this into the first identity:

𝐴11𝑥1 − 𝐴12𝐴
−1
22 𝐴21𝑥1 + 𝜇𝐴12𝐴

−1
22 𝑃2𝑓(𝑥1 + 𝑥2, 𝜇) = 𝜇𝑃1𝑓(𝑥1 + 𝑥2, 𝜇).

We note that for each 𝑧1 ∈ 𝐸1 the identity 𝐴11𝑧1 = 𝐴12𝐴
−1
22 𝐴21𝑧1 holds. Indeed, according

condition 𝐴(𝐸2∩𝐷𝐴) = 𝐴(𝐷𝐴), for 𝐴𝑧1 ∈ 𝐴(𝐷𝐴) there exists an element 𝑢2 ∈ 𝐸2∩𝐷𝐴 such that
𝐴𝑢2 = 𝐴𝑧1. Applying 𝑃1 and 𝑃2 to this identity, we obtain: 𝐴11𝑧1 = 𝐴12𝑢2, 𝐴21𝑧1 = 𝐴22𝑢2. This
implies that 𝑢2 = 𝐴−1

22 𝐴21𝑧1 and 𝐴11𝑧1 = 𝐴12𝐴
−1
22 𝐴21𝑧1. Taking this identity into consideration

as well as the inequality 𝜇 ̸= 0, we obtain:

𝐴12𝐴
−1
22 𝑃2𝑓(𝑥1 + 𝑥2, 𝜇) = 𝑃1𝑓(𝑥1 + 𝑥2, 𝜇).

Thus, if 𝑥 is a solution of equation (1.1) as 𝜇 ̸= 0, the pair 𝑥1 = 𝑃1𝑥 and 𝑥2 = 𝑃2𝑥 is a solution
to system of equations (2.1). The opposite statement can be confirmed straightforwardly. The
proof is complete.

It 𝑓 ≡ 0, then it follows from Lemma 2.1 that 𝑥 ∈ Ker𝐴 if and only if the projections
𝑥1 = 𝑃1𝑥 and 𝑥2 = 𝑃2𝑥 satisfy the identity 𝑥2 = −𝐴−1

22 𝐴21𝑥1. Taking this into consideration, it
is easy to confirm that (𝐼 − 𝐴−1

22 𝐴21) : 𝐸1 ↦→ Ker𝐴 is an isomorphism.

Proof of Lemma 2.2. Let 𝜇𝑛 → 0, 𝑛→ ∞ and for each 𝜇𝑛, 𝑛 = 1, 2, . . ., there exists a solution
(𝑥1𝑛, 𝑥2𝑛) to system of equation (2.1) in a bounded set 𝑈 ⊂ 𝐸1 × 𝐸𝐴. Then for each 𝑛 = 1, 2, . . .
we have:

𝑥2𝑛 = −𝐴−1
22 𝐴21𝑥1𝑛 + 𝜇𝑛𝐴

−1
22 𝑃2𝑓(𝑥1𝑛 + 𝑥2𝑛, 𝜇𝑛),

𝑃1𝑓(𝑥1𝑛 + 𝑥2𝑛, 𝜇) − 𝐴12𝐴
−1
22 𝑃2𝑓(𝑥1𝑛 + 𝑥2𝑛, 𝜇𝑛) = 0.

By the condition dim𝐸1 <∞ we can assume that 𝑥1𝑛 → 𝑥*1, 𝑛→ ∞. According Condition 5),
the identity implies that the sequence {𝑥2𝑛}∞1 is compact and this is why we can suppose that
𝑥2𝑛 → 𝑥*2, 𝑛→ ∞. Passing to the limit in the identities, we get

𝑥*2 = −𝐴−1
22 𝐴21𝑥

*
1, 𝑃1𝑓(𝑥*1 + 𝑥*2, 0) − 𝐴12𝐴

−1
22 𝑃2𝑓(𝑥*1 + 𝑥*2, 0) = 0.
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The first identity is equivalent to 𝑥* = 𝑥*1 + 𝑥*2 ∈ Ker𝐴, while the second identity implies the
solvability of equation (2.2). The proof is complete.

Proof of Theorem 2.1. As 𝜇 = 0, the solvability of equation (1.1) is obvious. As 𝜇 ̸= 0, ac-
cording to Lemma 2.1, the solvability of equation (1.1) on the set 𝑈𝜀(𝑥

*
1) is equivalent to the

solvability of system of equations (2.1) on the set

𝑊𝜀 = {(𝑥1, 𝑥2) : 𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸𝐴, ‖𝑥1 − 𝑥*1‖2𝐸1
+ ‖𝑥2 + 𝐴−1

22 𝐴21𝑥
*
1‖2𝐸𝐴

6 𝜀2}.

A solution of system of equations (2.1) on the set 𝑊𝜀 can be regarded as a zero of a completely
continuous vector field Φ𝜇 = (Φ1𝜇,Φ2𝜇) : 𝑊𝜀 ↦→ 𝐸1 × 𝐸𝐴, where

Φ1𝜇(𝑥1, 𝑥2) = (𝑃1 − 𝐴12𝐴
−1
22 𝑃2)𝑓(𝑥1 + 𝑥2, 𝜇),

Φ2𝜇(𝑥1, 𝑥2) = 𝑥2 + 𝐴−1
22 (𝐴21𝑥1 − 𝜇𝑃2𝑓(𝑥1 + 𝑥2, 𝜇)).

Let us show for all 𝜇 ∈ (−𝜇1, 𝜇1), where 𝜇1 ∈ (0, 𝜇0), the vector field Φ𝜇 does not vanish on
the boundary 𝜕𝑊𝜀 of the set 𝑊𝜀 and the rotation 𝛾(Φ𝜇, 𝜕𝑊𝜀) of the vector field Φ𝜇 on 𝜕𝑊𝜀

satisfies the formula

𝛾(Φ𝜇, 𝜕𝑊𝜀) = 𝛾(Φ, 𝑆1
𝜀 (𝑥*1)), 𝜇 ∈ (−𝜇1, 𝜇1), (3.1)

where Φ is a finite-dimensional vector field defined by Conditions 6) and 7). Then 𝛾(Φ𝜇, 𝜕𝑊𝜀) ̸=
0, by Condition 7), and according the non-zero rotation principle [5, Ch. 2] on the set 𝑊𝜀, there
exists at least one zero of the vector field Φ𝜇 for all 𝜇 ∈ (−𝜇1, 𝜇1). This will prove Theorem 2.1.

Let we calculate 𝛾(Φ𝜇, 𝜕𝑊𝜀) transforming homotopically the vector field Φ𝜇 to a simple
vector field. In order to do this, we consider a family of completely continuous vector fields
Ψ𝜆,𝜇 = (Ψ𝜆,1𝜇,Ψ𝜆,2𝜇), 𝜆 ∈ [0, 1], 𝜇 ∈ [−𝜇0, 𝜇0], where

Ψ𝜆,1𝜇(𝑥1, 𝑥2) = (𝑃1 − 𝐴12𝐴
−1
22 𝑃2)𝑓(𝑥1 + (1 − 𝜆)𝑥2 − 𝜆𝐴−1

22 𝐴21𝑥1, (1 − 𝜆)𝜇),

Ψ𝜆,2𝜇(𝑥1, 𝑥2) = 𝑥2 + 𝐴−1
22 𝐴21𝑥1 − (1 − 𝜆)𝜇𝐴−1

22 𝑃2𝑓(𝑥1 + 𝑥2, 𝜇).

We are going to check the existence of 𝜇1 ∈ (0, 𝜇0) such that

Ψ𝜆,𝜇(𝑥1, 𝑥2) ̸= 0 for all (𝑥1, 𝑥2) ∈ 𝜕𝑊𝜀, 𝜆 ∈ [0, 1], 𝜇 ∈ (−𝜇1, 𝜇1). (3.2)

If (3.2) fails, then there exist sequences 𝜆𝑛 ∈ [0, 1], 𝜇𝑛 ∈ (−𝜇0, 𝜇0), (𝑥1𝑛, 𝑥2𝑛) ∈ 𝜕𝑊𝜀, 𝑛 =
1, 2, . . . such that 𝜇𝑛 → 0 as 𝑛→ ∞ and

(𝑃1 − 𝐴12𝐴
−1
22 𝑃2)𝑓(𝑥1𝑛 + (1 − 𝜆𝑛)𝑥2𝑛 − 𝜆𝑛𝐴

−1
22 𝐴21𝑥1𝑛, (1 − 𝜆𝑛)𝜇𝑛) = 0,

𝑥2𝑛 + 𝐴−1
22 𝐴21𝑥1𝑛 − (1 − 𝜆𝑛)𝜇𝑛𝐴

−1
22 𝑃2𝑓(𝑥1𝑛 + 𝑥2𝑛, 𝜇𝑛) = 0, 𝑛 = 1, 2, . . .

These identities imply the compactness of the sequence {(𝑥1𝑛, 𝑥2𝑛)}∞1 . This is why we can
assume that 𝑥1𝑛 → 𝑥10, 𝑥2𝑛 → 𝑥20, 𝜆𝑛 → 𝜆0 as 𝑛→ ∞. Passing to the limit in these identities,
we obtain:

(𝑃1 − 𝐴12𝐴
−1
22 𝑃2)𝑓(𝑥10 + (1 − 𝜆0)𝑥20 − 𝜆0𝐴

−1
22 𝐴21𝑥10, 0) = 0,

𝑥20 + 𝐴−1
22 𝐴21𝑥10 = 0, ‖𝑥10 − 𝑥*1‖2𝐸1

+ ‖𝑥20 + 𝐴−1
22 𝐴21𝑥

*
1‖2𝐸2

= 𝜀2.

This implies that 𝑥10 ̸= 𝑥*1 and Φ(𝑥10) = 0, which contradicts Condition 6). Therefore, inequal-
ity (3.2) holds true.

It follows from (3.2) that for all 𝜇 ∈ (−𝜇1, 𝜇1) the vector field Φ𝜇 on 𝜕𝑊𝜀 is homotopic to
the vector field

Ψ(𝑥1, 𝑥2) = (Φ(𝑥1), 𝑥2 + 𝐴−1
22 𝐴21𝑥1).

Hence, according a property of the rotation [5, Ch. 2], we have:

𝛾(Φ𝜇, 𝜕𝑊𝜀) = 𝛾(Ψ, 𝜕𝑊𝜀), 𝜇 ∈ (−𝜇1, 𝜇1). (3.3)
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It is to confirm that the vector field Ψ on 𝜕𝑊𝜀 is linearly homotopic to the vector field̃︀Ψ(𝑥1, 𝑥2) = (Φ(𝑥1), 𝑥2 + 𝐴−1
22 𝐴21𝑥

*
1), and this is why

𝛾(Ψ, 𝜕𝑊𝜀) = 𝛾(̃︀Ψ, 𝜕𝑊𝜀). (3.4)

According a property of the rotation [5, Ch. 2], for the rotation 𝛾(̃︀Ψ, 𝜕𝑊𝜀) of the vector field̃︀Ψ we have:

𝛾(̃︀Ψ, 𝜕𝑊𝜀) = 𝛾(Φ, 𝑆1
𝜀 (𝑥*1)). (3.5)

Formulae (3.3)–(3.5) imply immediately formula (3.1). The proof is complete.

4. Solvability of periodic problems

We begin with proving Theorem 2.2. We consider the equation(︀
𝑒−𝜔𝐶 − 𝐼

)︀
𝑥 = 𝜇

∫︁ 𝜔

0

𝑒−𝜏𝐶𝑔(𝜏, 𝑝(𝜏, 𝑥, 𝜇), 𝜇)𝑑𝜏, 𝑥 ∈ 𝑈𝑟(𝑥
*
1). (4.1)

The following lemma holds true.

Lemma 4.1. If 𝑥 is a solution to equation (4.1), then the vector function 𝑦(𝑡) = 𝑝(𝑡, 𝑥, 𝜇)
is a solution to periodic problem (2.3).

Proof. The vector function 𝑦(𝑡) = 𝑝(𝑡, 𝑥, 𝜇) is the unique solution of the problem

𝑦′ = 𝐶𝑦 + 𝜇𝑔(𝑡, 𝑝(𝑡, 𝑥, 𝜇), 𝜇), 𝑦(0) = 𝑥.

This allows us to find 𝑦(𝑡):

𝑦(𝑡) = 𝑒𝑡𝐶
(︂
𝑥+ 𝜇

∫︁ 𝑡

0

𝑒−𝜏𝐶𝑔(𝜏, 𝑝(𝜏, 𝑥, 𝜇), 𝜇)𝑑𝜏

)︂
.

Let us check 𝜔-periodicity 𝑦(𝑡) using that 𝑥 is a solution of equation (4.1):

𝑦(𝜔) =𝑒𝜔𝐶
(︂
𝑥+ 𝜇

∫︁ 𝜔

0

𝑒−𝜏𝐶𝑔(𝜏, 𝑝(𝜏, 𝑥, 𝜇), 𝜇)𝑑𝜏

)︂
=𝑥+ 𝑒𝜔𝐶

(︂
−
(︀
𝑒−𝜔𝐶 − 𝐼

)︀
𝑥+ 𝜇

∫︁ 𝜔

0

𝑒−𝜏𝐶𝑔(𝜏, 𝑝(𝜏, 𝑥, 𝜇), 𝜇)𝑑𝜏

)︂
= 𝑦(0).

The proof is complete.

According Lemma 4.1, the solvability of periodic problem (2.3) is reduced to the solvability of
equation (4.1). We are going to show the solvability of equation (4.1) by applying Theorem 2.1.

We let

𝐸 = R𝑛, 𝐴 = 𝑒−𝜔𝐶 − 𝐼, 𝑓(𝑥, 𝜇) =

∫︁ 𝜔

0

𝑒−𝜏𝐶𝑔(𝜏, 𝑝(𝜏, 𝑥, 𝜇), 𝜇)𝑑𝜏.

By Condition 8), we have Ker𝐴 ̸= {0}. Conditions 1)–5) are satisfied if we take 𝐸1 = Ker𝐴 and
𝐸2 = 𝐸⊥

1 . It follows from Conditions 10c) and 10d) that the vector 𝑥*1 satisfies Conditions 6)
and 7). By Theorem 2.1 this implies that equation (4.1) is solvable for 𝜇 ∈ (−𝜇1, 𝜇1). This
completes the proof of Theorem 2.2.

As an example we consider the following system of three nonlinear ordinary differential
equations: ⎧⎨⎩𝑧′ = 𝑖

2𝜋

𝜔
𝑧 + 𝜇

(︀
𝑒𝑖6𝜋𝑡/𝜔𝑧2 + 𝜙(𝑡, 𝑧, 𝑦3, 𝜇)

)︀
,

𝑦′3 = 𝑎𝑦3 + 𝜇𝜓(𝑡, 𝑧, 𝑦3, 𝜇),
(4.2)
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where 𝑖 is the imaginary unit, 𝑧 = 𝑦1 + 𝑖𝑦2, 𝑧 = 𝑦1− 𝑖𝑦2, 𝑎 ̸= 0, 𝜙(𝑡, 𝑧, 𝑦3, 0) ≡ 0. The functions
𝜙(𝑡, 𝑧, 𝑦3, 𝜇) and 𝜓(𝑡, 𝑧, 𝑦3, 𝜇) are supposed to be given and continuous in their variables, 𝜔-
periodic in 𝑡 and satisfying the Lipschitz condition in the variable 𝑧, 𝑦3 in some neighbourhood
of the point 𝑥*1 = (0, 0, 0).

Let us check the assumptions of Theorem 2.2:

𝐸3
1 =

{︀
(𝜉1, 𝜉2, 0)⊤ : 𝜉1, 𝜉2 ∈ (−∞,+∞)

}︀
, 𝐸3

2 =
{︀

(0, 0, 𝜉3)
⊤ : 𝜉3 ∈ (−∞,+∞)

}︀
,

𝑒𝑡𝐶𝑥 = 𝑒𝑡𝐶(𝜉1, 𝜉2, 𝜉3)
⊤ =

(︀
𝑒𝑖2𝜋𝑡/𝜔(𝜉1 + 𝑖𝜉2), 𝑒

𝑎𝑡𝜉3
)︀⊤
,

Φ3(𝜉1, 𝜉2, 0) =

(︂∫︁ 𝜔

0

𝑒−𝑖2𝜋𝜏/𝜔
[︁
𝑒𝑖6𝜋𝜏/𝜔(𝑒𝑖2𝜋𝜏/𝜔(𝜉1 + 𝑖𝜉2))

2
]︁
𝑑𝜏, 0

)︂⊤

=
(︁
𝜔(𝜉1 + 𝑖𝜉2)

2
, 0
)︁⊤

,

𝛾
(︀
Φ3, 𝑆

3
𝜀 (𝑥*1)

)︀
= −2.

The latter identity holds by Theorem 9.3 from [9, Ch. 9]. Thus, all assumptions of Theorem 2.2
are satisfied and this is why for small values of the parameter 𝜇 there exists an 𝜔-periodic
solution to system of equations (4.2).

Let us show that Theorem 2.3 is implies from Theorem 2.1. In order to do this, we define

𝐸 = 𝐿2(Π), 𝐴𝑣 =
𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
+ (𝑘20 + 𝑙20)𝑣,

𝐸1 = {𝑣 ∈ 𝐿2(Π) : 𝑐𝑘𝑙(𝑣) = 0, (𝑘, 𝑙) ̸∈ 𝐽}, 𝐸2 = {𝑣 ∈ 𝐿2(Π) : 𝑐𝑘𝑙(𝑣) = 0, (𝑘, 𝑙) ∈ 𝐽},

𝐷𝐴 = {𝑣 ∈ 𝐿2(Π) :
∑︁
(𝑘,𝑙)

(︀
1 + 𝑘2 + 𝑙2

)︀2 |𝑐𝑘𝑙(𝑣)|2 <∞}, 𝐸𝐴 = 𝐸2 ∩𝐷𝐴.

Then we have:

𝐸 = 𝐸1 ⊕ 𝐸2, 𝐸1 = Ker𝐴, 𝐸2 ∩ Ker𝐴 = {0}, 𝐴(𝐸𝐴) = 𝐴(𝐷𝐴) = 𝐸2,

the operator 𝐴 is closed and normally solvable, 𝐸𝐴 is compactly embedded into 𝐸, and the
mapping

𝐹 (·, ·, 𝑣1 + 𝑣2, 𝜇) : 𝐸1 × 𝐸𝐴 × [−𝜇0, 𝜇0] ↦→ 𝐸

is a completely continuous operator. Conditions 1)–5) are satisfied. Conditions 11) and 12)
imply Conditions 6) and 7). Therefore, problem (2.4), (2.5) is solvable as 𝜇 ∈ (−𝜇1, 𝜇1).

As a function 𝐹 satisfying Conditions 11) and 12), we can take, for instance, the following
one:

𝐹 (𝑥, 𝑦, 𝑣, 𝜇) =
(︀
𝑣 − 𝑒𝑖(𝑘0𝑥+𝑙0𝑦)

)︀
+

𝑚∑︁
𝜈=2

𝑑𝜈
(︀
𝑣 − 𝑒𝑖(𝑘0𝑥+𝑙0𝑦)

)︀𝜈
+ 𝐹1(𝑥, 𝑦, 𝑣, 𝜇),

where 𝑑𝜈 , 𝜈 = 2,𝑚, are complex number, the function 𝐹1(𝑥, 𝑦, 𝑣, 𝜇) is continuous in their
variables and 𝐹1(𝑥, 𝑦, 𝑣, 0) ≡ 0. In this case, letting 𝑣*1(𝑥, 𝑦) = exp (𝑖(𝑘0𝑥+ 𝑙0𝑦)) and taking

into consideration the finite dimension of ̃︀𝐸1, it is easy to check that for a small fixed 𝜀 > 0

and all 𝑣1 ∈ ̃︀𝐸1, 0 < ‖𝑣1 − 𝑣*1‖ 6 𝜀, the identity holds:

< ̃︀Φ(𝑣1), 𝑣1 − 𝑣*1 > ≥ 𝛼‖𝑣1 − 𝑣*1‖2,

where 𝛼 > 0 is independent of 𝑣1. This inequality implies that Condition 11) and

𝛾(̃︀Φ, ̃︀𝑆1
𝜀 (𝑣*1)) = 1,

since the vector field ̃︀Φ on the sphere ̃︀𝑆1
𝜀 (𝑣*1) is linear homotopic to the vector field (𝑣1 − 𝑣*1)

and 𝛾(𝑣1 − 𝑣*1,
̃︀𝑆1
𝜀 (𝑣*1)) = 1.
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