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ON APPROACH FOR STUDYING STOCHASTIC

LEONTIEF TYPE EQUATIONS WITH IMPULSE ACTIONS

E.YU. MASHKOV

Abstract. We study a system of Itô stochastic differential equations having a degenerating
constant linear operator in the left hand side. The right hand side of the system contains
a constant linear operator and a deterministic term depending on the time only as well
as impulse actions. We assume that the diffusion coefficient of this system is described
by a square matrix depending on time only. These systems of equations arise in many
applications. The system we study can be reduced to a canonical form by applying a
transformation of a regular matrix pencil to a generalized real Schur form. The study
of the obtained canonical equations requires considering the derivatives of rather higher
orders for free terms including the Wiener process. Because of this, in order to differentiate
the Wiener process, we apply the Nelson mean derivatives for random processes and this
allows us to avoid using the theory of generalized functions. As a result we obtain analytic
formulae for solutions of equations in terms of mean derivatives for random processes.

Keywords: mean derivative, current velocity, Wiener process, stochastic equations of
Leontief type

Mathematics Subject Classification: 60H30, 60H10

1. Introduction

We consider a degenerate Itô stochastic differential equations of form

𝑑𝐴𝜉(𝑡) = �̃�𝜉(𝑡)𝑑𝑡 + 𝑓(𝑡)𝑑𝑡 + 𝑑𝑆𝜁(𝑡) + 𝑃 (𝑡)𝑑𝑤(𝑡), 0 6 𝑡 6 𝑇,

where �̃� + 𝜆𝐴 is a regular pencil of real constant matrices of size 𝑛 × 𝑛, the matrix 𝐴 is
degenerate, 𝜉(𝑡) is an unknown random process, 𝑤(𝑡) is a Wiener process in R𝑛, 𝑃 (𝑡) is a
sufficiently smooth matrix of size 𝑛 × 𝑛, 𝑓(𝑡) is a sufficiently smooth 𝑛-dimensional vector
function, 𝜁(𝑡) is an 𝑛-dimensional jump process, 𝑆 is an 𝑛 × 𝑛-matrix. In literature, the
following names are used for these systems: algebraic-differential, descriptor, Leontief type
systems. These equations arose in works by L.A. Vlasenko, Yu.G. Lysenko, S.L. Lyashko,
A.G. Rutkas [1], [2] in mathematical modelling of enterprise corporation dynamics under an
investing. In works by O. Schein, G. Denk [3], T. Sickenberger, R. Winkler [4], [5] such system
arose in mathematical modeling of oscillations and electric chains. In works by A.L. Shestakov,
G.A. Sviridyuk [6], Leontief type systems were used to study a dynamical distortion of signals in
radio devices. We also mention a work by A.A. Belov, A.P. Kurdyukov [7], in which numerous
applications of Leontief type equations were described.

A starting point for our paper was work [8], in which this equation was studied by means
of Weierstrass canonical form for a regular matrix pencil. Since in the general case we can
not stably calculate the Weierstrass form, see [9], this motivates the studying of the system by
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applying the generalized Schur form for regular pencils. As it is known, see [9], the Schur form
is calculated in a stable way.

A specific nature of Leontief type equations suggests to consider higher order derivatives of
the right hand side, including that for the Wiener process. As it is known, see, for instance, [10],
the derivatives of the Wiener process are well-defined only in the sense of generalized functions,
which are extremely troublesome for applications in studying of particular equations. This fact
makes very difficult a direct studying of our equation.

As in [8], [11], an approach proposed in the present work for studying this equation is based
on employing the theory of Nelson mean derivatives of random processes; these derivatives are
described with involving no generalized functions. Namely, we use symmetric mean derivatives
(current velocities) of the Wiener process. According a general idea of the theory of Nelson mean
derivatives, the current velocities are natural analogues of the physical velocity of deterministic
processes. As a result, for the studied equation, we obtain formulae for solutions in terms of
symmetric mean derivatives of random processes with a physical meaning.

2. Mean derivatives

We consider a stochastic process 𝜉(𝑡) in R𝑛, 𝑡 ∈ [0, 𝑙], defined on some probabilistic space
(Ω, 𝐹, 𝑃 ) such that 𝜉(𝑡) is a 𝐿1-random variable for all 𝑡. It is known that each such process gen-

erates a family of 𝜎-subalgebras of 𝜎-algebra 𝐹 a “true” 𝑁 𝜉
𝑡 , which is assumed to be complete,

that is, to be completed by all sets of zero probability.
For the sake of convenience we denote 𝐸𝜉

𝑡 by a conditional expectation 𝐸( · |𝑁 𝜉
𝑡 ) with respect

to the “true” 𝑁 𝜉
𝑡 for 𝜉(𝑡). The usual mathematical expectation is denoted by 𝐸.

Generally speaking, almost all sample trajectories of the process 𝜉(𝑡) are non-differentiable
and its derivatives exist only in the sense of generalized functions. In order to avoid usage of
generalized functions, according Nelson [12], [13], [14], we give the following definition:

Definition 2.1 ([10]). (i) A right mean derivative 𝐷𝜉(𝑡) of a process 𝜉(𝑡) at time 𝑡 is a
𝐿1-random variable of form

𝐷𝜉(𝑡) = lim
△𝑡→+0

𝐸𝜉
𝑡 (
𝜉(𝑡 + △𝑡) − 𝜉(𝑡)

△𝑡
),

where the limit is assumed to exist in 𝐿1(Ω, 𝐹, 𝑃 ) and △𝑡 → +0 means that △𝑡 tends to zero
0 and △𝑡 > 0.
(ii) A left mean derivative 𝐷*𝜉(𝑡) of a process 𝜉(𝑡) at time 𝑡 is a 𝐿1-random variable

𝐷*𝜉(𝑡) = lim
△𝑡→+0

𝐸𝜉
𝑡 (
𝜉(𝑡) − 𝜉(𝑡−△𝑡)

△𝑡
),

where, as in (i), the limit is assumed to exist in 𝐿1(Ω, 𝐹, 𝑃 ) and △𝑡 → +0 means that △𝑡 tends
to 0 and △𝑡 > 0.

It should be stressed that generally speaking, 𝐷𝜉(𝑡) ̸= 𝐷*𝜉(𝑡), but, if, for instance, 𝜉(𝑡)
almost sure has smooth sample paths, these derivatives obviously coincide.

It follows from the properties of the conditional mathematical expectation, see [15], that
𝐷𝜉(𝑡) and 𝐷*𝜉(𝑡) can be represented as superposition of 𝜉(𝑡) and Borel vector fields (regressions)

𝑌 0(𝑡, 𝑥) = lim
△𝑡→+0

𝐸𝜉
𝑡 (
𝜉(𝑡 + △𝑡) − 𝜉(𝑡)

△𝑡
|𝜉(𝑡) = 𝑥)

𝑌 0
* (𝑡, 𝑥) = lim

△𝑡→+0
𝐸𝜉

𝑡 (
𝜉(𝑡) − 𝜉(𝑡−△𝑡)

△𝑡
|𝜉(𝑡) = 𝑥)

on R𝑛, that is, 𝐷𝜉(𝑡) = 𝑌 0(𝑡, 𝜉(𝑡)) and 𝐷*𝜉(𝑡) = 𝑌 0
* (𝑡, 𝜉(𝑡)).
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Definition 2.2 ([10]). A derivative 𝐷𝑆 = 1
2
(𝐷+𝐷*) is called a symmetric mean derivative.

The derivative 𝐷𝐴 = 1
2
(𝐷 −𝐷*) is called antisymmetric mean derivative.

We consider vector fields

𝑣𝜉(𝑡, 𝑥) =
1

2
(𝑌 0(𝑡, 𝑥) + 𝑌 0

* (𝑡, 𝑥)), 𝑢𝜉(𝑡, 𝑥) =
1

2
(𝑌 0(𝑡, 𝑥) − 𝑌 0

* (𝑡, 𝑥)).

Definition 2.3 ([10]). The quantity 𝑣𝜉(𝑡) = 𝑣𝜉(𝑡, 𝜉(𝑡)) = 𝐷𝑆𝜉(𝑡) is called a current velocity
of a process 𝜉(𝑡) and 𝑢𝜉(𝑡) = 𝑢𝜉(𝑡, 𝜉(𝑡)) = 𝐷𝐴𝜉(𝑡) is called an osmotic velocity of process 𝜉(𝑡).

The current velocity for random process is a direct analogue of a usual physical velocity of
deterministic processes, see [10]. The osmotic velocity measures how fast the randomness of
the process increases.

A determinative role in our construction is played by the Wiener process [10], which we
denote by the symbol 𝑤(𝑡). The following lemmata hold.

Lemma 2.1 ([16]). Let 𝑤(𝑡) be an 𝑛-dimensional Wiener process, 𝑃 (𝑡) be a sufficiently
smooth 𝑘 × 𝑛-matrix and 𝑡 ∈ (0, 𝑇 ). Then the formula

𝐷𝑤
𝑆

𝑡∫︁
0

𝑃 (𝑠)𝑑𝑤(𝑠) = 𝑃 (𝑡)
𝑤(𝑡)

2𝑡

holds for each 𝑡.

Lemma 2.2 ([10], [11]). For 𝑡 ∈ (0, 𝑇 ), the identities

𝐷𝑤(𝑡) = 0, 𝐷*𝑤(𝑡) =
𝑤(𝑡)

𝑡
, 𝐷𝑆𝑤(𝑡) =

𝑤(𝑡)

2𝑡
hold. For an integer 𝑘 > 2, the identity

𝐷𝑘
𝑆𝑤(𝑡) = (−1)𝑘−1

𝑘−1∏︀
𝑖=1

(2𝑖− 1)

2𝑘

𝑤(𝑡)

𝑡𝑘

is satisfied.

3. Main result

As it has been said in the Introduction, we consider the stochastic differential equation in
R𝑛 of form

𝑑𝐴𝜉(𝑡) = �̃�𝜉(𝑡)𝑑𝑡 + 𝑓(𝑡)𝑑𝑡 + 𝑑𝑆𝜁(𝑡) + 𝑃 (𝑡)𝑑𝑤(𝑡), 0 6 𝑡 6 𝑇,

which is in an integral form reads as

𝐴𝜉(𝑡) = �̃�

𝑡∫︁
0

𝜉(𝑠)𝑑𝑠 +

𝑡∫︁
0

𝑓(𝑠)𝑑𝑠 + 𝑆𝜁(𝑡) +

𝑡∫︁
0

𝑃 (𝑠)𝑑𝑤(𝑠), 0 6 𝑡 6 𝑇, (3.1)

where 𝐴 and �̃� are real constant matrices of size 𝑛 × 𝑛, the matrix 𝐴 is degenerate, �̃� + 𝜆𝐴
is a regular matrix pencil, 𝜆 ∈ R, 𝑆 is a scalar matrix of size 𝑛 × 𝑛, 𝜁(𝑡) is an 𝑛-dimensional
jump process, 𝑃 (𝑡) is a sufficiently smooth matrix of size 𝑛 × 𝑛, 𝑓(𝑡) is a sufficiently smooth
deterministic vector function depending on time, 𝑤(𝑡) is a Wiener process, 𝜉(𝑡) is a sought
random process.

The jump process 𝜁(𝑡) = 𝜁(𝑡, 𝜔) is defined as follows

𝜁(𝑡, 𝜔) =
𝑁∑︁
𝑟=1

𝜁𝑟(𝜔)𝜒(𝑡− 𝑡𝑟), 0 < 𝑡1 < · · · < 𝑡𝑁 < 𝑇,
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where 𝜒 is the Heaviside function vanishing for negative values of its variable and equalling to
one for non-negative values, 𝜁𝑟(𝜔) are random variables with values in R𝑛.

In view of (3.1) it is clear that, for simplicity, an initial condition for solution of (3.1) is
supposed to be

𝜉(0, 𝜔) = 0. (3.2)

We say from the very beginning that the solutions we construct do not satisfy this condition.
This is why we approximate the solutions by processes satisfying this initial conditions but
becoming solutions only from some, prescribed and arbitrary small, time 𝑡0 > 0.

As in work [2], we seek solutions for problems (3.1), (3.2) among random processes 𝜉(𝑡, 𝜔)
satisfying the equations

𝐴𝜉(𝑡) − 𝐴𝜉(0) = �̃�

𝑡∫︁
0

𝜉(𝑠)𝑑𝑠 +

𝑡∫︁
0

𝑓(𝑠)𝑑𝑠 +

𝑡∫︁
0

𝑃 (𝑠)𝑑𝑤(𝑠), 0 6 𝑡 6 𝑡1,

𝐴𝜉(𝑡) − 𝐴𝜉(𝑡𝑟) = �̃�

𝑡∫︁
𝑡𝑟

𝜉(𝑠)𝑑𝑠 +

𝑡∫︁
𝑡𝑟

𝑓(𝑠)𝑑𝑠 +

𝑡∫︁
𝑡𝑟

𝑃 (𝑠)𝑑𝑤(𝑠), 𝑡𝑟 6 𝑡 6 𝑡𝑟+1,

𝐴𝜉(𝑡) − 𝐴𝜉(𝑡𝑁) = �̃�

𝑡∫︁
𝑡𝑁

𝜉(𝑠)𝑑𝑠 +

𝑡∫︁
𝑡𝑁

𝑓(𝑠)𝑑𝑠 +

𝑡∫︁
𝑡𝑁

𝑃 (𝑠)𝑑𝑤(𝑠), 𝑡𝑁 6 𝑡 6 𝑇,

in the sense we describe below for all 𝑟 = 1, 2, . . . , 𝑁 − 1, satisfying the identities

𝐴𝜉(𝑡𝑟 + 0, 𝜔) − 𝐴𝜉(𝑡𝑟 − 0, 𝜔) = 𝑆𝜁𝑟(𝜔), 𝑟 = 1, 2, . . . , 𝑁,

and satisfying initial condition (3.2) at the initial time 𝑡 = 0.
Thus, the process 𝜉(𝑡) for solution of problem (3.1), (3.2) is determined successively for

𝑟 = 0, 1, . . . , 𝑁 via random processes 𝜉𝑟(𝑡) satisfying the equations

𝐴𝜉0(𝑡) − 𝐴𝜉0(0) = �̃�

𝑡∫︁
0

𝜉0(𝑠)𝑑𝑠 +

𝑡∫︁
0

𝑓(𝑠)𝑑𝑠 +

𝑡∫︁
0

𝑃 (𝑠)𝑑𝑤(𝑠), 0 6 𝑡 6 𝑡1, 𝑟 = 0,

𝐴𝜉𝑟(𝑡) − 𝐴𝜉𝑟(𝑡𝑟) = �̃�

𝑡∫︁
𝑡𝑟

𝜉𝑟(𝑠)𝑑𝑠 +

𝑡∫︁
𝑡𝑟

𝑓(𝑠)𝑑𝑠 +

𝑡∫︁
𝑡𝑟

𝑃 (𝑠)𝑑𝑤(𝑠), 𝑡𝑟 6 𝑡 6 𝑡𝑟+1,

𝐴𝜉𝑁(𝑡) − 𝐴𝜉𝑁(𝑡𝑁) = �̃�

𝑡∫︁
𝑡𝑁

𝜉𝑁(𝑠)𝑑𝑠 +

𝑡∫︁
𝑡𝑁

𝑓(𝑠)𝑑𝑠 +

𝑡∫︁
𝑡𝑁

𝑃 (𝑠)𝑑𝑤(𝑠), 𝑡𝑁 6 𝑡 6 𝑇,

𝑟 = 1, 2, . . . , 𝑁 − 1, where

𝜉0(0) = 0, 𝐴𝜉𝑟(𝑡𝑟) = 𝐴𝜉𝑟−1(𝑡𝑟, 𝜔) + 𝑆𝜁𝑟(𝜔), 𝑟 = 1, . . . , 𝑁.

In what follows we shall make use of the following theorem.

Theorem 3.1 (Generalized real Schur form [9]). Given a regular pencil 𝜆𝐴+𝐵 of real con-
stant matrices 𝐴 and 𝐵 of size 𝑛×𝑛, there exist real orthogonal matrices 𝑄𝐿 and 𝑄𝑅 such that
the matrix 𝑄𝐿𝐴𝑄𝑅 is upper quasi-triangle, that is, an upper block-triangle matrix with diagonal
blocks of size 1 × 1 and 2 × 2, the blocks of size 1 × 1 correspond to real eigenvalues and the
blocks of size 2 × 2 do to conjugate pairs of complex eigenvalues. The matrix 𝑄𝐿𝐵𝑄𝑅 is upper
triangle.
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It is easy to see that equation (3.1) in general form is inconvenient for studying and this is
why we reduce it to some canonical form. For the regular matrix pencil 𝜆𝐴 + �̃�, 𝜆 ∈ R we
make Shur transform, which is described by a pair of non-degenerate matrices 𝑄𝐿 and 𝑄𝑅.
Then equation (3.1) is transformed as follows:

𝑄𝐿𝐴𝑄𝑅𝑄
−1
R 𝜉(𝑡) =𝑄𝐿�̃�𝑄𝑅

𝑡∫︁
0

𝑄−1
R 𝜉(𝑠)𝑑𝑠 +

𝑡∫︁
0

𝑄𝐿𝑓(𝑠)𝑑𝑠

+ 𝑄𝐿𝑆𝜁(𝑡) +

𝑡∫︁
0

𝑄𝐿𝑃 (𝑠)𝑑𝑤(𝑠), 0 6 𝑡 6 𝑇,

and in new notations it becomes

𝐴𝜂(𝑡) =

𝑡∫︁
0

𝐵𝜂(𝑠)𝑑𝑠 +

𝑡∫︁
0

𝑔(𝑠)𝑑𝑠 + 𝑀𝜁(𝑡) +

𝑡∫︁
0

𝐶(𝑠)𝑑𝑤(𝑠), (3.3)

𝜂(0) = 0, (3.4)

where 𝐶(𝑡) = 𝑄𝐿𝑃 (𝑡), 𝜂(𝑡) = 𝑄−1
R 𝜉(𝑡), 𝑀 = 𝑄𝐿𝑆, 𝐴 = 𝑄𝐿𝐴𝑄𝑅 is an upper quasi-triangle

matrix, 𝐵 = 𝑄𝐿�̃�𝑄𝑅 is an upper-triangle matrix, 𝑄𝐿𝑓(𝑡) = 𝑔(𝑡). Indexing appropriately the
vectors in a basis, in 𝐴, along the main diagonal, first the blocks of size 2× 2 are located, then
there are non-degenerate blocks of size 1 × 1, and then degenerate blocks of size 1 × 1 follow.

Then, in view of the said above, the formulae for solutions 𝜂(𝑡) to problem (3.3), (3.4) are
determined successively for 𝑟 = 0, 1, . . . , 𝑁 via random processes 𝜂𝑟(𝑡) satisfying the equations

𝐴𝜂0(𝑡) − 𝐴𝜂0(0) =

𝑡∫︁
0

𝐵𝜂0(𝑠)𝑑𝑠 +

𝑡∫︁
0

𝑔(𝑠)𝑑𝑠 +

𝑡∫︁
0

𝐶(𝑠)𝑑𝑤(𝑠), 0 6 𝑡 6 𝑡1, (3.5)

𝐴𝜂𝑟(𝑡) − 𝐴𝜂𝑟(𝑡𝑟) =

𝑡∫︁
𝑡𝑟

𝐵𝜂𝑟(𝑠)𝑑𝑠 +

𝑡∫︁
𝑡𝑟

𝑔(𝑠)𝑑𝑠 +

𝑡∫︁
𝑡𝑟

𝐶(𝑠)𝑑𝑤(𝑠),

𝑡𝑟 6 𝑡 6 𝑡𝑟+1, 𝑟 = 1, . . . , 𝑁 − 1,

(3.6)

𝐴𝜂𝑁(𝑡) − 𝐴𝜂𝑁(𝑡𝑁) =

𝑡∫︁
𝑡𝑁

𝐵𝜂𝑁(𝑠)𝑑𝑠 +

𝑡∫︁
𝑡𝑁

𝑔(𝑠)𝑑𝑠 +

𝑡∫︁
𝑡𝑁

𝐶(𝑠)𝑑𝑤(𝑠), 𝑡𝑁 6 𝑡 6 𝑇, (3.7)

𝜂0(0) = 0, 𝐴𝜂𝑟(𝑡𝑟) = 𝐴𝜂𝑟−1(𝑡𝑟, 𝜔) + 𝑀𝜁𝑟(𝜔), 𝑟 = 1, . . . , 𝑁. (3.8)

Remark 3.1. As it was mentioned above, to construct a process describing the model defined
by equations (3.5), (3.6) and (3.7), we need the derivatives of free terms including the Wiener
process. The derivatives of Wiener process exist only in the sense of generalized functions. This
is why to avoid usage of generalized functions, to construct the process describing model defined
by (3.5), (3.6) and (3.7), we shall employ symmetric mean derivatives (current velocities) 𝐷𝑤

𝑆

for random processes. In this work, to calculate symmetric higher order derivatives, we shall
employ the 𝜎-algebra of “true” Wiener process. We note that for calculating mean derivatives
one can use another 𝜎-algebra, but this will change the formulae for calculating symmetric
higher order derivatives of the Wiener process.

Taking into consideration the structure of matrices 𝐴 and 𝐵, it is easy to see that problems
(3.3), (3.4) and (3.5), (3.6), (3.7), (3.8) split into several equations and systems of equations.
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We collect the last 𝑛 − 𝑝 + 1 components of the process 𝜂𝑟 corresponding to the rows in 𝐴
with degenerate diagonal blocks of size 1 × 1 into a single matrix equation:⎛⎜⎜⎜⎝

0 𝑎𝑝𝑝+1 𝑎𝑝𝑝+2 . . . 𝑎𝑝𝑛
0 0 𝑎𝑝+1

𝑝+2 . . . 𝑎𝑝+1
𝑛

...
...

...
. . .

...
0 0 0 . . . 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

𝜂𝑝𝑟 (𝑡)
𝜂𝑝+1
𝑟 (𝑡)

...
𝜂𝑛𝑟 (𝑡)

⎞⎟⎟⎠−

⎛⎜⎜⎜⎝
0 𝑎𝑝𝑝+1 𝑎𝑝𝑝+2 . . . 𝑎𝑝𝑛
0 0 𝑎𝑝+1

𝑝+2 . . . 𝑎𝑝+1
𝑛

...
...

...
. . .

...
0 0 0 . . . 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

𝜂𝑝𝑟 (𝑡𝑟)
𝜂𝑝+1
𝑟 (𝑡𝑟)

...
𝜂𝑛𝑟 (𝑡𝑟)

⎞⎟⎟⎠

=

𝑡∫︁
𝑡𝑟

⎛⎜⎜⎜⎝
𝑏𝑝𝑝 𝑏𝑝𝑝+1 . . . 𝑏𝑝𝑛
0 𝑏𝑝+1

𝑝+1 . . . 𝑏𝑝+1
𝑛

...
... . . .

...
0 0 . . . 𝑏𝑛𝑛

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

𝜂𝑝𝑟 (𝑠)
𝜂𝑝+1
𝑟 (𝑠)

...
𝜂𝑛𝑟 (𝑠)

⎞⎟⎟⎠ 𝑑𝑠 +

𝑡∫︁
𝑡𝑟

⎛⎜⎜⎝
𝑔𝑝(𝑠)
𝑔𝑝+1(𝑠)

...
𝑔𝑛(𝑠)

⎞⎟⎟⎠ 𝑑𝑠

+

𝑡∫︁
𝑡𝑟

⎛⎜⎜⎜⎜⎝
𝑐𝑝1(𝑠) 𝑐𝑝2(𝑠) . . . 𝑐𝑝𝑛−1(𝑠) 𝑐𝑝𝑛(𝑠)

𝑐𝑝+1
1 (𝑠) 𝑐𝑝+1

2 (𝑠) . . . 𝑐𝑝+1
𝑛−1(𝑠) 𝑐𝑝+1

𝑛 (𝑠)
...

... · · · ...
...

𝑐𝑛−1
1 (𝑠) 𝑐𝑛−1

2 (𝑠) . . . 𝑐𝑛−1
𝑛−1(𝑠) 𝑐𝑛−1

𝑛 (𝑠)
𝑐𝑛1 (𝑠) 𝑐𝑛2 (𝑠) . . . 𝑐𝑛𝑛−1(𝑠) 𝑐𝑛𝑛(𝑠)

⎞⎟⎟⎟⎟⎠ 𝑑

⎛⎜⎜⎜⎜⎝
𝑤1(𝑠)
𝑤2(𝑠)

...
𝑤𝑛−1(𝑠)
𝑤𝑛(𝑠)

⎞⎟⎟⎟⎟⎠ ,

𝑡𝑟 6 𝑡 6 𝑡𝑟+1, 𝑟 = 1, 2, . . . , 𝑁 − 1.

(3.9)

By the last equation in system (3.9) we obtain that

𝑏𝑛𝑛

𝑡∫︁
𝑡𝑟

𝜂𝑛𝑟 (𝑠)𝑑𝑠 = −
𝑡∫︁

𝑡𝑟

𝑔𝑛(𝑠)𝑑𝑠−
𝑛∑︁

𝑗=1

𝑡∫︁
𝑡𝑟

𝑐𝑛𝑗 (𝑠)𝑑𝑤𝑗(𝑠)

Since exactly the current velocity (symmetric mean derivative) corresponds to the physical
velocity, from this equation we find 𝜂𝑛𝑟 (𝑡) by applying the derivative 𝐷𝑤

𝑆 to both sides of the
identity, see Remark 3.1. It is easy to see that applying the mean derivatives 𝐷𝑤 and 𝐷𝑤

* , and,
therefore, 𝐷𝑤

𝑆 , to the Riemann integrals in the left and right hand sides give the same results
𝜂𝑛𝑟 (𝑡) and 𝑔𝑛(𝑡). Thus, by applying Lemma 2.1 we obtain that

𝜂𝑛𝑟 (𝑡) = − 1

𝑏𝑛𝑛
𝑔𝑛(𝑡) − 1

𝑏𝑛𝑛

𝑛∑︁
𝑗=1

𝑐𝑛𝑗 (𝑡)
𝑤𝑗

2𝑡
, 𝑟 = 1, 2, . . . , 𝑁 − 1. (3.10)

By the pre-last equation in system (3.9) we obtain that

𝑎𝑛−1
𝑛 𝜂𝑛𝑟 (𝑡) − 𝑎𝑛−1

𝑛 𝜂𝑛𝑟 (𝑡𝑟) =

𝑡∫︁
𝑡𝑟

(︀
𝑏𝑛−1
𝑛−1𝜂

𝑛−1(𝑠) + 𝑏𝑛−1
𝑛 𝜂𝑛(𝑠)

)︀
𝑑𝑠

+

𝑡∫︁
𝑡𝑟

𝑔𝑛−1(𝑠)𝑑𝑠 +
𝑛∑︁

𝑗=1

𝑡∫︁
𝑡𝑟

𝑐𝑛−1
𝑗 (𝑠)𝑑𝑤𝑗(𝑠).

Arguing now as above and employing Lemma 2.2, we find that

𝜂𝑛−1
𝑟 (𝑡) = − 𝑎𝑛−1

𝑛

𝑏𝑛−1
𝑛−1 · 𝑏𝑛𝑛

· 𝑑𝑔
𝑛(𝑡)

𝑑𝑡
+

𝑏𝑛−1
𝑛

𝑏𝑛−1
𝑛−1 · 𝑏𝑛𝑛

· 𝑔𝑛(𝑡) − 1

𝑏𝑛−1
𝑛−1

· 𝑔𝑛−1(𝑡)

+
𝑎𝑛−1
𝑛

𝑏𝑛−1
𝑛−1 · 𝑏𝑛𝑛

·
𝑛∑︁

𝑗=1

𝑐𝑛𝑗 (𝑡) · 𝑤
𝑗

4𝑡2
− 𝑎𝑛−1

𝑛

𝑏𝑛−1
𝑛−1 · 𝑏𝑛𝑛

·
𝑛∑︁

𝑗=1

𝑤𝑗

2𝑡
·
𝑑𝑐𝑛𝑗 (𝑡)

𝑑𝑡

+
𝑏𝑛−1
𝑛

𝑏𝑛−1
𝑛−1 · 𝑏𝑛𝑛

·
𝑛∑︁

𝑗=1

𝑐𝑛𝑗 (𝑡) · 𝑤
𝑗

2𝑡
− 1

𝑏𝑛−1
𝑛−1

·
𝑛∑︁

𝑗=1

𝑐𝑛−1
𝑗 (𝑡) · 𝑤

𝑗

2𝑡

(3.11)
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Exactly in the same way, for 𝑝 6 𝑖 6 𝑛− 1 we obtain a recurrent formula:

𝐷𝑆

(︃
𝑛∑︁

𝑗=𝑖+1

𝑎𝑖𝑗 · 𝜂𝑗𝑟(𝑡)

)︃
=

𝑛∑︁
𝑗=𝑖

𝑏𝑖𝑗 · 𝜂𝑗𝑟(𝑡) + 𝑔𝑖(𝑡) +
𝑛∑︁

𝑗=1

𝑐𝑖𝑗(𝑡) ·
𝑤𝑗

2𝑡
. (3.12)

We note that for systems of form (3.9) defined on segments [0, 𝑡1] and [𝑡𝑁 , 𝑇 ], similar formulae for
solutions hold for 0 < 𝑡 6 𝑡1 and 𝑡𝑁 6 𝑡 < 𝑇 . And the found processes satisfy conditions (3.8)

if the components of the random variable 𝑀𝜁𝑟(𝜔) corresponding to zero 1 × 1 blocks in the

main diagonal in 𝐴 vanish, that is,
(︁

(𝑀𝜁𝑟(𝜔))𝑗
)︁𝑛
𝑗=𝑝

= 0.

Thus, in view of the said above, as 0 < 𝑡 < 𝑇 , we obtain formulae for 𝜂𝑖(𝑡):

𝜂𝑛(𝑡) = − 1

𝑏𝑛𝑛
𝑔𝑛(𝑡) − 1

𝑏𝑛𝑛

𝑛∑︁
𝑗=1

𝑐𝑛𝑗 (𝑡)
𝑤𝑗

2𝑡
, (3.13)

𝐷𝑆

(︃
𝑛∑︁

𝑗=𝑖+1

𝑎𝑖𝑗 · 𝜂𝑗(𝑡)

)︃
=

𝑛∑︁
𝑗=𝑖

𝑏𝑖𝑗 · 𝜂𝑗(𝑡) + 𝑔𝑖(𝑡) +
𝑛∑︁

𝑗=1

𝑐𝑖𝑗(𝑡) ·
𝑤𝑗

2𝑡
, 𝑝 6 𝑖 6 𝑛− 1. (3.14)

We proceed to the issue on zero initial conditions for solutions of system (3.9) as 𝑟 = 0. Taking
into consideration the definition of mean symmetric derivatives it is easy to see that they are
well-defined only on open time intervals since their constructions involve both increments to the
left and to the right. Then by formulae (3.10), (3.11) and (3.12) we see that the solutions 𝜂𝑙(𝑡)

are described as sums in which each terms involves a factor of form 𝑤𝑗(𝑡)
𝑡𝑘

, 𝑘 > 1. Therefore,
the solutions tend to infinite as 𝑡 → 0, that is, the values of solutions do not exist at 𝑡 = 0. As
in [11], one of the ways of resolving this situation is as follows. We fix an arbitrary small time
𝑡0 ∈ (0, 𝑇 ) and defined a function 𝑡0(𝑡) by the formula

𝑡0(𝑡) =

{︃
𝑡0 if 0 6 𝑡 6 𝑡0,

𝑡 if 𝑡0 6 𝑡.
(3.15)

We replace the elements 𝑤𝑗(𝑡)
𝑡𝑘

in formulae (3.10), (3.11) and (3.12) by 𝑤𝑗(𝑡)
(𝑡0(𝑡))𝑘

. The obtained

process vanish at the time 𝑡 = 0, but they become solutions only for 𝑡0 6 𝑡 < 𝑇 . We note

that for two different times 𝑡
(1)
0 and 𝑡

(2)
0 with 𝑡 > max(𝑡

(1)
0 , 𝑡

(2)
0 ) the values of the corresponding

processes coincide almost surely.
For the rows of 𝐴 with non-degenerate blocks of size 1 × 1 we obtain the equations

𝑎𝑗𝑗𝜂
𝑗
𝑟(𝑡) + 𝑎𝑗𝑗+1𝜂

𝑗+1(𝑡) + . . . + 𝑎𝑗𝑛𝜂
𝑛(𝑡) − 𝑎𝑗𝑗𝜂

𝑗(𝑡𝑟) − 𝑎𝑗𝑗+1𝜂
𝑗+1(𝑡𝑟) − . . .− 𝑎𝑗𝑛𝜂

𝑛(𝑡𝑟)

=

𝑡∫︁
𝑡𝑟

(𝑏𝑗𝑗𝜂
𝑗
𝑟(𝑠) + 𝑏𝑗𝑗+1𝜂

𝑗+1(𝑠) + . . . + 𝑏𝑗𝑛𝜂
𝑛(𝑠))𝑑𝑠 +

𝑡∫︁
𝑡𝑟

𝑔𝑗(𝑠)𝑑𝑠 +

𝑡∫︁
𝑡𝑟

𝑐𝑗1(𝑠)𝑑𝑤
1(𝑠)

+

𝑡∫︁
𝑡𝑟

𝑐𝑗2(𝑠)𝑑𝑤
2(𝑠) + · · · +

𝑡∫︁
𝑡𝑟

𝑐𝑗𝑛(𝑠)𝑑𝑤𝑛(𝑠), 𝑡𝑟 6 𝑡 6 𝑡𝑟+1, 𝑟 = 1, . . . , 𝑁 − 1.

(3.16)
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There exists an analytic formula for solutions of such equations, see [17]:

𝜂𝑗𝑟(𝑡) =𝑒

𝑏
𝑗
𝑗

𝑎
𝑗
𝑗

(𝑡−𝑡𝑟)

𝜂𝑗𝑟(𝑡𝑟) +
𝑎𝑗𝑗+1

𝑎𝑗𝑗
𝑒

𝑏
𝑗
𝑗

𝑎
𝑗
𝑗

(𝑡−𝑡𝑟)

𝜂𝑗+1(𝑡𝑟) + · · · +
𝑎𝑗𝑛
𝑎𝑗𝑗

𝑒

𝑏
𝑗
𝑗

𝑎
𝑗
𝑗

(𝑡−𝑡𝑟)

𝜂𝑛(𝑡𝑟) +

𝑡∫︁
𝑡𝑟

𝑒

𝑏
𝑗
𝑗

𝑎
𝑗
𝑗

(𝑡−𝑢) 𝑐𝑗1(𝑢)

𝑎𝑗𝑗
𝑑𝑤1

𝑢

+

𝑡∫︁
𝑡𝑟

𝑒

𝑏
𝑗
𝑗

𝑎
𝑗
𝑗

(𝑡−𝑢) 𝑐𝑗2(𝑢)

𝑎𝑗𝑗
𝑑𝑤2

𝑢 + · · · +

𝑡∫︁
𝑡𝑟

𝑒

𝑏
𝑗
𝑗

𝑎
𝑗
𝑗

(𝑡−𝑢) 𝑐𝑗𝑛(𝑢)

𝑎𝑗𝑗
𝑑𝑤𝑛

𝑢 +

𝑡∫︁
𝑡𝑟

𝑒

𝑏
𝑗
𝑗

𝑎
𝑗
𝑗

(𝑡−𝑢)
[︂

1

𝑎𝑗𝑗
𝑔𝑗(𝑢) +

𝑏𝑗𝑗+1

𝑎𝑗𝑗
𝜂𝑗+1(𝑢)

+ . . . +
𝑏𝑗𝑛
𝑎𝑗𝑗
𝜂𝑛(𝑢) −

𝑏𝑗𝑗

(𝑎𝑗𝑗)
2
(𝑎𝑗𝑗+1𝜂

𝑗+1(𝑢) + . . . + 𝑎𝑗𝑛𝜂
𝑛(𝑢))

]︂
𝑑𝑢−

𝑎𝑗𝑗+1

𝑎𝑗𝑗
𝜂𝑗+1 − . . .− 𝑎𝑗𝑛

𝑎𝑗𝑗
𝜂𝑛.

We note that for equations of form (3.16) defined on segments [0, 𝑡1] and [𝑡𝑁 , 𝑇 ], similar formulae
hold for their solutions. Taking into consideration all 𝜂𝑗𝑟(𝑡), we obtain the expressions for 𝜂𝑗(𝑡):

𝜂𝑗(𝑡) =
𝑁∑︁
𝑟=1

𝑒

𝑏
𝑗
𝑗

𝑎
𝑗
𝑗

(𝑡−𝑡𝑟)

·

(︃
𝑚𝑗

1𝜁
1
𝑟

𝑎𝑗𝑗
+ · · · +

𝑚𝑗
𝑛𝜁

𝑛
𝑟

𝑎𝑗𝑗

)︃
· 𝜒(𝑡− 𝑡𝑟) +

𝑡∫︁
0

𝑒

𝑏
𝑗
𝑗

𝑎
𝑗
𝑗

(𝑡−𝑢) 𝑐𝑗1(𝑢)

𝑎𝑗𝑗
𝑑𝑤1

𝑢

+

𝑡∫︁
0

𝑒

𝑏
𝑗
𝑗

𝑎
𝑗
𝑗

(𝑡−𝑢) 𝑐𝑗2(𝑢)

𝑎𝑗𝑗
𝑑𝑤2

𝑢 + · · · +

𝑡∫︁
0

𝑒

𝑏
𝑗
𝑗

𝑎
𝑗
𝑗

(𝑡−𝑢) 𝑐𝑗𝑛(𝑢)

𝑎𝑗𝑗
𝑑𝑤𝑛

𝑢 +

𝑡∫︁
0

𝑒

𝑏
𝑗
𝑗

𝑎
𝑗
𝑗

(𝑡−𝑢)
[︂

1

𝑎𝑗𝑗
𝑔𝑗(𝑢)

+
𝑏𝑗𝑗+1

𝑎𝑗𝑗
𝜂𝑗+1(𝑢) + . . . +

𝑏𝑗𝑛
𝑎𝑗𝑗
𝜂𝑛(𝑢) −

𝑏𝑗𝑗

(𝑎𝑗𝑗)
2
(𝑎𝑗𝑗+1𝜂

𝑗+1(𝑢) + . . . + 𝑎𝑗𝑛𝜂
𝑛(𝑢))

]︂
𝑑𝑢

−
𝑎𝑗𝑗+1

𝑎𝑗𝑗
𝜂𝑗+1 − . . .− 𝑎𝑗𝑛

𝑎𝑗𝑗
𝜂𝑛.

(3.17)

For the rows of 𝐴 with blocks of size 2 × 2 we obtain subsystems of the pairs of equations:

𝑎𝑖𝑖𝜂
𝑖
𝑟(𝑡) + 𝑎𝑖𝑖+1𝜂

𝑖+1
𝑟 (𝑡) + 𝑎𝑖𝑖+2𝜂

𝑖+2(𝑡) + . . . + 𝑎𝑖𝑛𝜂
𝑛(𝑡) − 𝑎𝑖𝑖𝜂

𝑖
𝑟(𝑡𝑟) − 𝑎𝑖𝑖+1𝜂

𝑖+1
𝑟 (𝑡𝑟) − 𝑎𝑖𝑖+2𝜂

𝑖+2(𝑡𝑟)

− . . .− 𝑎𝑖𝑛𝜂
𝑛(𝑡𝑟) =

𝑡∫︁
𝑡𝑟

(𝑏𝑖𝑖𝜂
𝑖
𝑟(𝑠) + 𝑏𝑖𝑖+1𝜂

𝑖+1
𝑟 (𝑠) + 𝑏𝑖𝑖+2𝜂

𝑖+2(𝑠) + . . . + 𝑏𝑖𝑛𝜂
𝑛(𝑠))𝑑𝑠

+

𝑡∫︁
𝑡𝑟

𝑔𝑖(𝑠)𝑑𝑠 +

𝑡∫︁
𝑡𝑟

𝑐𝑖1(𝑠)𝑑𝑤
1(𝑠) +

𝑡∫︁
𝑡𝑟

𝑐𝑖2(𝑠)𝑑𝑤
2(𝑠) + . . . +

𝑡∫︁
𝑡𝑟

𝑐𝑖𝑛(𝑠)𝑑𝑤𝑛(𝑠),

𝑎𝑖+1
𝑖 𝜂𝑖𝑟(𝑡) + 𝑎𝑖+1

𝑖+1𝜂
𝑖+1
𝑟 (𝑡) + 𝑎𝑖+1

𝑖+2𝜂
𝑖+2(𝑡) + . . . + 𝑎𝑖+1

𝑛 𝜂𝑛(𝑡) − 𝑎𝑖+1
𝑖 𝜂𝑖𝑟(𝑡𝑟) − 𝑎𝑖+1

𝑖+1𝜂
𝑖+1
𝑟 (𝑡𝑟)

− 𝑎𝑖+1
𝑖+2𝜂

𝑖+2(𝑡𝑟) − . . .− 𝑎𝑖+1
𝑛 𝜂𝑛(𝑡𝑟) =

𝑡∫︁
𝑡𝑟

(𝑏𝑖+1
𝑖+1𝜂

𝑖+1
𝑟 (𝑠) + 𝑏𝑖+1

𝑖+2𝜂
𝑖+2(𝑠) + . . . + 𝑏𝑖+1

𝑛 𝜂𝑛(𝑠))𝑑𝑠

+

𝑡∫︁
𝑡𝑟

𝑔𝑖+1(𝑠)𝑑𝑠 +

𝑡∫︁
𝑡𝑟

𝑐𝑖+1
1 (𝑠)𝑑𝑤1(𝑠) +

𝑡∫︁
𝑡𝑟

𝑐𝑖+1
2 (𝑠)𝑑𝑤2(𝑠) + . . . +

𝑡∫︁
𝑡𝑟

𝑐𝑖+1
𝑛 (𝑠)𝑑𝑤𝑛(𝑠),

𝑡𝑟 6 𝑡 6 𝑡𝑟+1, 𝑟 = 1, . . . , 𝑁 − 1.

In a matrix form, in terms of new notations, this subsystem of equations becomes

𝜂𝑟(𝑡) − 𝜂𝑟(𝑡𝑟) + 𝜗(𝑡) − 𝜗(𝑡𝑟) =

𝑡∫︁
𝑡𝑟

𝐾𝜂𝑟(𝑠)𝑑𝑠 +

𝑡∫︁
𝑡𝑟

𝜃(𝑠)𝑑𝑠 +

𝑡∫︁
𝑡𝑟

𝑔(𝑠)𝑑𝑠 +

𝑡∫︁
𝑡𝑟

ΛΘ(𝑠)𝑑𝑤(𝑠) (3.18)
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where

𝜂𝑟 =

(︂
𝜂𝑖𝑟
𝜂𝑖+1
𝑟

)︂
, Ξ =

(︂
𝑏𝑖𝑖 𝑏𝑖𝑖+1

0 𝑏𝑖+1
𝑖+1

)︂
, Λ =

(︂
𝑎𝑖𝑖 𝑎𝑖𝑖+1

𝑎𝑖+1
𝑖 𝑎𝑖+1

𝑖+1

)︂−1

,

𝜗(𝑡) = Λ

(︂
𝑎𝑖𝑖+2 · · · 𝑎𝑖𝑛
𝑎𝑖+1
𝑖+2 · · · 𝑎𝑖+1

𝑛

)︂(︀
𝜂𝑖+2 . . . 𝜂𝑛

)︀𝑇
, 𝜃(𝑡) = Λ

(︂
𝑏𝑖𝑖+2 · · · 𝑏𝑖𝑛
𝑏𝑖+1
𝑖+2 · · · 𝑏𝑖+1

𝑛

)︂(︀
𝜂𝑖+2 . . . 𝜂𝑛

)︀𝑇
,

𝑔 = Λ

(︂
𝑔𝑖

𝑔𝑖+1

)︂
, 𝐾 = ΛΞ, Θ(𝑡) =

(︂
𝑐𝑖1(𝑡) · · · 𝑐𝑖𝑛(𝑡)
𝑐𝑖+1
1 (𝑡) · · · 𝑐𝑖+1

𝑛 (𝑡)

)︂
For this subsystem of equations, the solutions can be found analytically, see [17]:

𝜂𝑟(𝑡) =𝑒𝐾(𝑡−𝑡𝑟)𝜂𝑟(𝑡𝑟) + 𝑒𝐾(𝑡−𝑡𝑟)𝜗(𝑡𝑟) +

𝑡∫︁
𝑡𝑟

𝑒𝐾(𝑡−𝜏)ΛΘ(𝜏)𝑑𝑤𝜏

+

𝑡∫︁
𝑡𝑟

𝑒𝐾(𝑡−𝜏) (𝜃(𝜏) + 𝑔(𝜏) −𝐾𝜗(𝜏)) 𝑑𝜏 − 𝜗(𝑡).

We note that similar formulae hold for solutions to equations of form (3.18) defined on segments
[0, 𝑡1] and [𝑡𝑁 , 𝑇 ]. Taking into consideration all 𝜂𝑟(𝑡), we obtain an expression for 𝜂(𝑡):

𝜂(𝑡) =
𝑁∑︁
𝑟=1

𝑒𝐾(𝑡−𝑡𝑟)Λ
(︁

(𝑀𝜁𝑟(𝜔))𝑗
)︁𝑖+1

𝑗=𝑖
· 𝜒(𝑡− 𝑡𝑟) +

𝑡∫︁
0

𝑒𝐾(𝑡−𝜏) (𝜃(𝜏) + 𝑔(𝜏) −𝐾𝜗(𝜏)) 𝑑𝜏

+

𝑡∫︁
0

𝑒𝐾(𝑡−𝜏)ΛΘ(𝜏)𝑑𝑤(𝜏) − 𝜗(𝑡),

(3.19)

where
(︁

(𝑀𝜁𝑟(𝜔))𝑗
)︁𝑖+1

𝑗=𝑖
is a 2-dimensional vector formed by the 𝑖th and (𝑖+ 1)th coordinates of

the vector 𝑀𝜁𝑟(𝜔).
Thus, summarizing the said above, we arrive at the following statement.

Theorem 3.2. Let 𝜆𝐴 + �̃� be a regular pencil of constant matrices of size 𝑛 × 𝑛, 𝑆 be a
matrix of size 𝑛×𝑛, and 𝑓(𝑡) be a sufficiently smooth 𝑛-dimensional vector function, 0 6 𝑡 6 𝑇 ,
0 < 𝑡1 < · · · < 𝑡𝑁 < 𝑇 , 𝑄𝐿 and 𝑄𝑅 be non-degenerate matrices of size 𝑛 × 𝑛 reducing the
pencil 𝜆𝐴 + �̃� to a canonical generalized Shur form, 𝐴 = 𝑄𝐿𝐴𝑄𝑅, 𝐵 = 𝑄𝐿�̃�𝑄𝑅. Let 𝜁𝑟(𝜔)
be random variables taking values in R𝑛 such that the components of the random variable
𝑄𝐿𝑆𝜁𝑟(𝜔) corresponding to degenerate blocks of size 1 × 1 on the main diagonal in 𝐴 vanish,

𝑟 = 1, 2, . . . , 𝑁 . Let 𝜁(𝑡, 𝜔) =
𝑁∑︀
𝑟=1

𝜁𝑟(𝜔)𝜒(𝑡 − 𝑡𝑟), where 𝜒 is the Heaviside function vanishing

for negative values of its independent variable and equalling to one for positive values. Then
1) equation (3.1) is reduced to canonical equation (3.3), which splits into separate equations

and subsystems of equations;
2) for the subsystem corresponding to the rows of 𝐴 with degenerate blocks of size 1 × 1,

recurrent formula (3.13), (3.14) for solutions hold as 0 < 𝑡 < 𝑇 ;
3) fixing arbitrary small time 𝑡0 > 0, in the denominators of the processes satisfying recurrent

relations given in Statement 2, we replace 𝑡 by 𝑡0(𝑡) defined in (3.15) and we obtain the processes
vanishing at 𝑡 = 0 but being solutions only as 𝑡0 6 𝑡 < 𝑇 ;
4) the solutions of the equations corresponding to rows of 𝐴 with non-degenerate blocks of

size 1 × 1 satisfy analytic formula (3.17);
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5) the solutions of subsystems corresponding to rows of 𝐴 with non-degenerate blocks of size
2 × 2 satisfy analytic formula (3.19).
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