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EXPONENTIAL ROSENTHAL AND

MARCINKIEWICZ-ZYGMUND INEQUALITIES

KWOK-PUN HO

Abstract. We extend the Rosenthal inequalities and the Marcinkiewicz-Zygmund

inequalities to some exponential Orlicz spaces.The Rosenthal inequalities and the

Marcinkiewicz-Zygmund inequalities are fundamental estimates on the moment of

random variables on Lebesgue spaces. The proofs of the Rosenthal inequalities and the

Marcinkiewicz-Zygmund inequalities on the exponential Orlicz spaces rely on two results

from theory of function spaces and probability theory. The first one is an extrapolation

property of the exponential Orlicz spaces. This property guarantees that the norms of some

exponential Orlicz spaces can be obtained by taking the supremum over the weighted norms

of Lebesgue spaces. The second one is the sharp estimates for the constants involved in the

Rosenthal inequalities and the Marcinkiewicz-Zygmund inequalities on Lebesgue spaces.

Our results are applications of the extrapolation property of the exponential Orlicz spaces

and the sharp estimates for the constants involved in the Rosenthal inequalities and the

Marcinkiewicz-Zygmund inequalities on Lebesgue spaces. In addition, the sharp estimates

for the constants involved in the Rosenthal inequalities and the Marcinkiewicz-Zygmund

inequalities on Lebesgue spaces provide not only some sharpened inequalities in probability,

but also yield some substantial contributions on extending those probability inequalities to

the exponential Orlicz spaces.

Keywords: Rosenthal inequality, Marcinkiewicz-Zygmund inequalities, martingale,

exponential spaces, Orlicz spaces.
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1. Introduction

This paper aims to extend Rosenthal inequalities and Marcinkiewicz-Zygmund inequalities
to exponential Orlicz spaces. The Rosenthal inequalities and the Marcinkiewicz-Zygmund
inequalities provide some fundamental estimates on the moment of random variables on
Lebesgue spaces. These inequalities have a vast amount of applications on probability and
statistics.
Our main result is based on employing a well known extrapolation property of exponential

Orlicz spaces. Roughly speaking, the extrapolation states that the norms of some exponential
Orlicz space can be bounded by the suprema of the weighted norms in Lebesgue spaces, see
Proposition 2.1. To be able to apply the extrapolation property, we need a precise estimate
for the best constants involved in the Rosenthal inequalities and the Marcinkiewicz-Zygmund
inequalities on Lebesgue spaces. There were a huge amount of efforts paid for estimating the
best constants in the Rosenthal inequalities, the Marcinkiewicz-Zygmund inequalities and some
other inequalities in probability on Lebesgue spaces, see [1, 5, 6, 10, 11, 12, 16, 20, 24].
The main results of this paper are applications of the best constants obtained for the

Rosenthal inequalities and the Marcinkiewicz-Zygmund inequalities. We establish them by
comdininig the techniques from the theory of function spaces and the sharp inequalities in
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probability. It should be said that the results in [1, 5, 6, 10, 11, 12, 16, 20, 24] do not just
give some sharpened inequalities in probability, but they also provide substantial contributions
on extending those probability inequalities to exponential Orlicz spaces. This method was also
used in [2, 17].
This paper is organized as follows. The classical Rosenthal inequalities and some preliminaries

on the theory of function spaces, especially, the characterizations of exponential Orlicz spaces
are presented in Section 2. Section 3 is devoted to establishing the exponential Rosenthal
inequalities. The martingale version of the Rosenthal inequalities on exponential Orlicz spaces
is given in Section 4. Finally, in Section 5, we obtain the exponential Marcinkiewicz-Zygmund
inequalities.

2. Preliminaries

Let (Ω,Σ, 𝑃 ) be a probability space and let E denote the expectation operator. Given a
random variable 𝑋, for any 0 < 𝑝 < ∞ we denote

‖𝑋‖𝑝 = (E|𝑋|𝑝)
1
𝑝 , ‖𝑋‖∞ = sup |𝑋|.

Let 2 < 𝑝 < ∞. The celebrated Rosenthal inequalities state that for any independent
symmetric random variables {𝑋𝑖} with finite 𝑝𝑡ℎ moment, we have

max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
,
(︁ 𝑛∑︁

𝑖=1

‖𝑋𝑖‖𝑝𝑝
)︁ 1

𝑝

}︃
6
⃦⃦⃦ 𝑛∑︁

𝑖=1

𝑋𝑖

⃦⃦⃦
𝑝

6𝐵𝑝 max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
,
(︁ 𝑛∑︁

𝑖=1

‖𝑋𝑖‖𝑝𝑝
)︁ 1

𝑝

}︃ (2.1)

for some 𝐵𝑝 > 0.
The main result in [16] stated that the growth rate of 𝐵𝑝 as 𝑝 → ∞ is 𝑝/ log 𝑝 as {𝑋𝑖}𝑛𝑖=1 are

nonnegative independent random variables. That is, there exists a constant 𝐾 independent of
𝑝 such that

𝐵𝑝 6
𝐾𝑝

log 𝑝
. (2.2)

We now turn to some definitions and preliminary results on the theory of function spaces.
We begin with the definitions of exponential Orlicz spaces.

Definition 2.1. Let 𝛼 > 0 and 𝜃 ∈ R. The function space 𝐸𝛼 consists of Σ-measurable

functions 𝑓 satisfying

‖𝑓‖𝐸𝛼 = inf

⎧⎨⎩𝜆 > 0 :

∫︁
Ω

(𝑒(
|𝑓 |
𝜆 )

𝛼

− 1) 𝑑𝑃 < 1

⎫⎬⎭ < ∞.

The function space ℰ𝛼 consists of Σ-measurable functions 𝑓 satisfying

‖𝑓‖ℰ𝛼 = inf

⎧⎨⎩𝜆 > 0 :

∫︁
Ω

(︂
𝑒𝑒

( |𝑓 |
𝜆 )

𝛼

− 𝑒

)︂
𝑑𝑃 < 1

⎫⎬⎭ < ∞.

The function space 𝐸𝐿𝛼,𝜃 consists of Σ-measurable functions 𝑓 satisfying

‖𝑓‖𝐸𝐿𝛼,𝜃
= inf

⎧⎨⎩𝜆 > 0 :

∫︁
Ω

(︂
𝑒(

|𝑓 |
𝜆 )

𝛼
(1+|log |𝑓 |

𝜆 |)
𝛼/𝜃

− 1

)︂
𝑑𝑃 < 1

⎫⎬⎭ < ∞.
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The following proposition gives extrapolation properties of exponential Orlicz spaces.
Namely, it provides some equivalent norms of 𝐸𝛼, ℰ𝛼 and 𝐸𝐿𝛼,𝜃 in terms of the norms from 𝐿𝑘,
𝑘 ∈ N.

Proposition 2.1. Let 𝛼 > 0, 𝜃 ∈ R and 𝑘0 ∈ N.

1. There exist constants 𝐶,𝐵 > 0 such that for all 𝑓 ∈ 𝐸𝛼, we have

𝐵‖𝑓‖𝐸𝛼 6 sup
𝑘∈N,𝑘>𝑘0

𝑘− 1
𝛼‖𝑓‖𝐿𝑘

6 𝐶‖𝑓‖𝐸𝛼 . (2.3)

2. There exist constants 𝐶,𝐵 > 0 such that for all 𝑓 ∈ ℰ𝛼, we have

𝐵‖𝑓‖ℰ𝛼 6 sup
𝑘∈N,𝑘>𝑘0

(𝑒 + log 𝑘)−
1
𝛼‖𝑓‖𝐿𝑘

6 𝐶‖𝑓‖ℰ𝛼 . (2.4)

3. There exist constants 𝐶,𝐵 > 0 such that for all 𝑓 ∈ 𝐸𝐿𝛼, we have

𝐵‖𝑓‖𝐸𝐿𝛼,𝜃
6 sup

𝑘∈N,𝑘>𝑘0

(𝑒 + log 𝑘)
1
𝜃

𝑘− 1
𝛼

‖𝑓‖𝐿𝑘
6 𝐶‖𝑓‖𝐸𝐿𝛼,𝜃

. (2.5)

This proposition was proved in [7, Cor. 3.2], [8, Sect. 3.4] and [23, Cor. 2.2.4]. These results
show that the exponential function spaces 𝐸𝛼, ℰ𝛼 and 𝐸𝐿𝛼,𝜃 can be characterization by the
norms of Lebesgue spaces. The characterizations (2.3) and (2.4) appeared in [9, 23] and [7],
respectively.
Although the proofs in [7, 23] are given for Lebesgue spaces on R𝑛, we note that the proofs in

[7, 23] rely on the estimates for the decreasing rearrangement of a Lebesgue measurable function.
It can be extended to Lebesgue spaces on measure spaces with some minor modifications in
notations only. Therefore, for brevity, we do not repeat the proofs here and refer the reader to
[7, 23] for details.
Let 𝛼, 𝜃 > 0 and 1 6 𝑝 < ∞. In view of Proposition 2.1, we have the embedding

𝐿∞ →˓ ℰ𝛼 →˓ 𝐸𝐿𝛼,𝜃 →˓ 𝐸𝛼 →˓ 𝐸𝐿𝛼,−𝜃 →˓ 𝐿𝑝. (2.6)

3. Exponential Rosenthal inequalities

The first main result of this paper, the exponential Rosenthal inequalities, is established in
this section.
Whenever sup16𝑖6𝑛 ‖𝑋𝑖‖∞ < ∞,, the classical Rosenthal inequalities and (2.6) assure that⃦⃦⃦ 𝑛∑︁

𝑖=1

𝑋𝑖

⃦⃦⃦
𝑝
6 𝐶

𝑝

log 𝑝
max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
, 𝑛

1
𝑝 sup
16𝑖6𝑛

‖𝑋𝑖‖∞

}︃
. (3.1)

The best constant for the classical Rosenthal inequalities and Proposition 2.1 sharpen the
above estimates by replacing the norm ‖ · ‖𝐿𝑝 on the left hand side in the above inequality with
the norm ‖ · ‖𝐸𝐿1,1 .

Theorem 3.1. Let 𝑛 ∈ N. For any 𝑚 ∈ N, there exits a constant 𝐶 > 0 such that for each

nonnegative independent random variables {𝑋𝑖}𝑛𝑖=1 with

sup
16𝑖6𝑛

‖𝑋𝑖‖∞ < ∞,

we have ⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
𝐸𝐿1,1

6 𝐶 max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
, 𝑛

1
𝑚 sup

16𝑖6𝑛
‖𝑋𝑖‖∞

}︃
(3.2)

for some 𝐶 > 0.
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Proof. As

sup
16𝑖6𝑛

‖𝑋𝑖‖∞ < ∞,

for each 1 < 𝑝 < ∞, embedding (2.6) implies that sup16𝑖6𝑛 ‖𝑋𝑖‖𝑝 < ∞. Then (2.1) and the
embedding 𝐿∞ →˓ 𝐿𝑝 guarantee that⃦⃦⃦ 𝑛∑︁

𝑖=1

𝑋𝑖

⃦⃦⃦
𝑝
6 𝐶

𝑝

log 𝑝
max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
,
(︁ 𝑛∑︁

𝑖=1

‖𝑋𝑖‖𝑝𝑝
)︁ 1

𝑝

}︃

6 𝐶
𝑝

log 𝑝
max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
,
(︁ 𝑛∑︁

𝑖=1

‖𝑋𝑖‖𝑝∞
)︁ 1

𝑝

}︃

6 𝐶
𝑝

log 𝑝
max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
, 𝑛

1
𝑝 sup
16𝑖6𝑛

‖𝑋𝑖‖∞

}︃
for some 𝐶 > 0 independent of 1 < 𝑝 < ∞. That is, for any 𝑘 ∈ N,

𝑒 + log 𝑘

𝑘

⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
𝑘
6 𝐶 max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
, 𝑛

1
𝑘 sup
16𝑖6𝑛

‖𝑋𝑖‖∞

}︃
where 𝐶 is a constant independent of 𝑘 ∈ N.
Since sup𝑘>𝑚 𝑛

1
𝑘 = 𝑛

1
𝑚 , by taking supremum over 𝑘 ∈ N with 𝑘 > 𝑚 of both sides of the

above inequality, in view of (2.5) we get⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
𝐸𝐿1,1

6 𝐶 max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
, 𝑛

1
𝑚 sup

16𝑖6𝑛
‖𝑋𝑖‖∞

}︃
.

According to (2.6), for each 1 6 𝑝 < ∞ we have 𝐸𝐿1,1 →˓ 𝐿𝑝. Therefore, (3.2) improves the
estimate given in (3.1).
Next, we extend the Rosenthal inequalities to the random variables {𝑋𝑖}𝑛𝑖=1 ⊂ 𝐸𝛼.

Theorem 3.2. Let 𝑛 ∈ N and 𝛼 > 0. For each 𝑚 ∈ N, there exits a constant 𝐶 > 0 such

that for all nonnegative independent random variables {𝑋𝑖}𝑛𝑖=1 with

sup
16𝑖6𝑛

‖𝑋𝑖‖𝐸𝛼 < ∞,

we have ⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
𝐸𝐿 𝛼

1+𝛼 ,1

6 𝐶 max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
, 𝑛

1
𝑚 sup

16𝑖6𝑛
‖𝑋𝑖‖𝐸𝛼

}︃
(3.3)

for some 𝐶 > 0.

Proof. Since

sup
16𝑖6𝑛

‖𝑋𝑖‖𝐸𝛼 < ∞,

embedding (2.6) guarantees that for all 1 < 𝑝 < ∞ we have sup16𝑖6𝑛 ‖𝑋𝑖‖𝑝 < ∞. The Rosenthal
inequalities, (2.3) and (2.6) yield⃦⃦⃦ 𝑛∑︁

𝑖=1

𝑋𝑖

⃦⃦⃦
𝑝
6 𝐶

𝑝

log 𝑝
max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
,
(︁ 𝑛∑︁

𝑖=1

‖𝑋𝑖‖𝑝𝑝
)︁ 1

𝑝

}︃

6 𝐶
𝑝

log 𝑝
max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
, 𝑝

1
𝛼

(︁ 𝑛∑︁
𝑖=1

‖𝑋𝑖‖𝑝𝐸𝛼

)︁ 1
𝑝

}︃
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where 𝐶 is independent of 𝑝. As 𝑝
1
𝛼 > 1, we have⃦⃦⃦ 𝑛∑︁

𝑖=1

𝑋𝑖

⃦⃦⃦
𝑝
6 𝐶

𝑝
1+𝛼
𝛼

log 𝑝
max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
, 𝑛

1
𝑝 sup
16𝑖6𝑛

‖𝑋𝑖‖𝐸𝛼

}︃
.

Therefore, for each 𝑘 ∈ N we have

𝑒 + log 𝑘

𝑘
1+𝛼
𝛼

⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
𝑘
6 𝐶 max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
, 𝑛

1
𝑘 sup
16𝑖6𝑛

‖𝑋𝑖‖𝐸𝛼

}︃
for some 𝐶 > 0.
Since sup𝑘∈N,𝑘>𝑚 𝑛

1
𝑘 = 𝑛

1
𝑚 , we take supremum over 𝑘 > 𝑚 in both sides of the above

inequality and by (2.5) we arrive at (3.3).

The last main result of this section gives an extension of the Rosenthal inequalities to the
exponential Orlicz spaces ℰ𝛼.

Theorem 3.3. Let 𝑛 ∈ N and 𝛼 > 0. For any 𝑚 ∈ N, there exits a constant 𝐶 > 0 such

that for any nonnegative independent random variables {𝑋𝑖}𝑛𝑖=1 with

sup
16𝑖6𝑛

‖𝑋𝑖‖ℰ𝛼 < ∞,

as 𝛼 ̸= 1, we have⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
𝐸𝐿1, 𝛼

𝛼−1

6 𝐶 max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
, 𝑛

1
𝑚 sup

16𝑖6𝑛
‖𝑋𝑖‖ℰ𝛼

}︃
.

As 𝛼 = 1, we have ⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
𝐸1

6 𝐶 max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
, 𝑛

1
𝑚 sup

16𝑖6𝑛
‖𝑋𝑖‖ℰ1

}︃
for some 𝐶 > 0.

Proof. As 𝛼 ̸= 1, similar to the proofs of (3.2) and (3.3), we find that⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
𝑝
6 𝐶

𝑝

log 𝑝
max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
,
(︁ 𝑛∑︁

𝑖=1

‖𝑋𝑖‖𝑝𝑝
)︁ 1

𝑝

}︃

6 𝐶
𝑝

log 𝑝
max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
, (𝑒 + log 𝑝)

1
𝛼

(︁ 𝑛∑︁
𝑖=1

‖𝑋𝑖‖𝑝ℰ𝛼
)︁ 1

𝑝

}︃

6 𝐶
𝑝

(𝑒 + log 𝑝)
𝛼−1
𝛼

max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
, 𝑛

1
𝑝 sup
16𝑖6𝑛

‖𝑋𝑖‖ℰ𝛼

}︃
where 𝐶 is independent of 𝑝. Hence, for each 𝑘 ∈ N, we have

(𝑒 + log 𝑘)
𝛼−1
𝛼

𝑘

⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
𝑘
6 𝐶 max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
, 𝑛

1
𝑘 sup
16𝑖6𝑛

‖𝑋𝑖‖ℰ𝛼

}︃
.

Moreover, as 𝛼 = 1, we see that

1

𝑘

⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
𝑘
6 𝐶 max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
2
, 𝑛

1
𝑘 sup
16𝑖6𝑛

‖𝑋𝑖‖ℰ1

}︃
.

Now the desired results follow (2.3) and (2.5).



102 KWOK-PUN HO

In [16], there is a number of estimates for the best constants of some generalizations of the
Rosenthal inequalities. For instance, we have⃦⃦⃦ 𝑛∑︁

𝑖=1

𝑋𝑖

⃦⃦⃦
𝑝
6 𝐶

𝑝

log 𝑝
max

{︃⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
1
,
(︁ 𝑛∑︁

𝑖=1

‖𝑋𝑖‖𝑝𝑝
)︁ 1

𝑝

}︃
for some 𝐶 > 0 independent of 𝑝. As a result, the corresponding exponential type inequalities
hold as well. We note that further exponential Rosenthal inequalities can be found in [3] and
[4, Chapter II, Theorem 9]. We also note that the results in [3, 4] do not use the extrapola-
tion properties of exponential Orlicz spaces and the best constants in the classical Rosenthal
inequalities.

4. Martingale inequalities

The main result of this section is the martingale version of exponential Rosenthal inequalities.
We begin with the definition of some notations used in the martingale theory.
Let ℱ = (ℱ𝑛)𝑛>0 be a filtration on (Ω,Σ, 𝑃 ). That is, (ℱ𝑛)𝑛>0 is a nondecreasing sequence

of sub-𝜎-algebras of Σ with Σ = 𝜎(∪𝑛>0ℱ𝑛). Let ℱ−1 = ℱ0. For each sequence of random
variables 𝑋 = (𝑋𝑖) we denote

𝑋*
𝑛 = sup

06𝑖6𝑛
|𝑋𝑖|, 𝑋* = sup

𝑖>0
|𝑋𝑖|.

The conditional expectation operator related to ℱ𝑛 is denoted by E𝑛. For each martingale
𝑓 = (𝑓𝑛)𝑛>0 on Ω, write 𝑑𝑖𝑓 = 𝑓𝑖 − 𝑓𝑖−1, 𝑖 > 0 and 𝑑0𝑓 = 0. The conditional square function
(conditional quadratic variation) of 𝑓 is defined as

𝑠𝑛(𝑓) =

(︃
𝑛∑︁

𝑖=0

E𝑖−1|𝑑𝑖𝑓 |2
)︃ 1

2

, 𝑠(𝑓) =

(︃
∞∑︁
𝑖=0

E𝑖−1|𝑑𝑖𝑓 |2
)︃ 1

2

.

For each 1 6 𝑝 < ∞, the 𝑝-variation of 𝑓 is defined by

𝑠𝑝(𝑓) =
(︀ ∞∑︁

𝑖=0

E𝑖−1|𝑑𝑖𝑓 |𝑝
)︀ 1

𝑝 .

The following theorem is a variant of Rosenthal inequalities. Roughly speaking, it gives an
estimate of 𝑓 * in terms of the 𝑝-variation 𝑠𝑝(𝑓).

Theorem 4.1. Let 1 6 𝑝 6 2 and 𝑝 6 𝑟 < ∞. There exists a constant 𝐶𝑝 such that for

each martingale 𝑓 and for each predictable sequence of random variables 𝜔 = {𝜔𝑛}𝑛>1 which

dominates {|𝑑𝑛|}𝑛>1 the estimate

‖𝑓 *‖𝑟 6 𝐶𝑝
𝑟

log 𝑟
(‖𝑠𝑝(𝑓)‖𝑟 + ‖𝜔*‖𝑟) (4.1)

holds true.

The proof of the above result was given in [10, Thm. 3.2].
We observe that as 𝑟 → ∞, the constant in (4.1) is the same as (2.2). Hence, we also have

the following exponential Rosenthal inequalities for martingale.

Theorem 4.2. Let 1 6 𝑝 6 2 and 𝛼 > 0. There exists a constant 𝐶𝑝 such that for any mar-

tingale 𝑓 and for any predictable sequence of random variables 𝜔 = {𝜔𝑛}𝑛>1 which dominates

{|𝑑𝑛|}𝑛>1, we have the following estimates.

1. As 𝑠𝑝(𝑓), 𝜔* ∈ 𝐿∞, the estimate

‖𝑓 *‖𝐸𝐿1,1 6 𝐶𝑝(‖𝑠𝑝(𝑓)‖∞ + ‖𝜔*‖∞)

holds.
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2. As 𝑠𝑝(𝑓), 𝜔* ∈ 𝐸𝛼, the estimate

‖𝑓 *‖𝐸𝐿 𝛼
1+𝛼 ,1

6 𝐶𝑝(‖𝑠𝑝(𝑓)‖𝐸𝛼 + ‖𝜔*‖𝐸𝛼)

holds.

3. As 𝛼 ̸= 1 and 𝑠𝑝(𝑓), 𝜔* ∈ ℰ𝛼, the estimate

‖𝑓 *‖𝐸𝐿1, 𝛼
𝛼−1

6 𝐶𝑝(‖𝑠𝑝(𝑓)‖ℰ𝛼 + ‖𝜔*‖ℰ𝛼)

holds.

4. As 𝛼 = 1 and 𝑠𝑝(𝑓), 𝜔* ∈ ℰ1, the estimate

‖𝑓 *‖𝐸1 6 𝐶𝑝(‖𝑠𝑝(𝑓)‖ℰ1 + ‖𝜔*‖ℰ1)
holds.

The proof of the above theorem follows from the proofs of Theorems 3.1, 3.2 and 3.3.
As 𝑝 = 2, that is, 𝑠𝑝(𝑓) = 𝑠(𝑓), we have a sharper estimate on the constants appeared in

(4.1).

Theorem 4.3. Let 2 6 𝑟 < ∞. There exists a constant independent of 𝑟 such that for each

martingale 𝑓 = (𝑓𝑛)𝑛>0 with 𝑑𝑖𝑓 = 𝑓𝑖 − 𝑓𝑖−1, the estimate

‖𝑓 *‖𝑟 6 𝐵(
√
𝑟‖𝑠(𝑓)‖𝑟 + 𝑟‖𝑑*‖𝑟) (4.2)

holds.

For the proof of the above result, the reader is referred to [12, Theorem 2].
Theorem 4.3 yields a sharpened exponential martingale inequality for the conditional square

function 𝑠(𝑓).

Theorem 4.4. Let 𝑓 = (𝑓𝑛)𝑛>0 be a martingale with 𝑑𝑖𝑓 = 𝑓𝑖 − 𝑓𝑖−1.

1. If 𝑑* ∈ 𝐿∞ and 𝑠(𝑓) ∈ 𝐸2, then 𝑓 ∈ 𝐸1 and

‖𝑓 *‖𝐸1 6 𝐵(‖𝑠(𝑓)‖𝐸2 + ‖𝑑*‖∞) (4.3)

for some constant 𝐵 > 0.
2. If 𝑑* ∈ 𝐸𝛼 and 𝑠(𝑓) ∈ 𝐸 2𝛼

2+𝛼
, then 𝑓 ∈ 𝐸 𝛼

𝛼+1
and

‖𝑓 *‖𝐸 𝛼
𝛼+1

6 𝐵(‖𝑠(𝑓)‖𝐸 2𝛼
2+𝛼

+ ‖𝑑*‖𝐸𝛼) (4.4)

for some constant 𝐵 > 0.
3. If 𝑑* ∈ ℰ𝛼 and 𝑠(𝑓) ∈ 𝐸𝐿2,−𝛼, then 𝑓 ∈ 𝐸𝐿1,−𝛼 and

‖𝑓 *‖𝐸𝐿1,−𝛼 6 𝐵(‖𝑠(𝑓)‖𝐸𝐿2,−𝛼 + ‖𝑑*‖ℰ𝛼) (4.5)

for some constant 𝐵 > 0.

Proof. In view of Proposition 2.1, as 𝑑* ∈ 𝐿∞ and 𝑠(𝑓) ∈ 𝐸2, we have 𝑑*, 𝑠(𝑓) ∈ 𝐿𝑟 for any
2 6 𝑟 < ∞. Therefore, Theorem 4.3 yields that for each 𝑘 ∈ N, 𝑘 > 2, the estimate

1

𝑘
‖𝑓 *‖𝑘 6 𝐵

(︂
1√
𝑘
‖𝑠(𝑓)‖𝑘 + ‖𝑑*‖𝑘

)︂
is valid. By Proposition 2.1 we get that for each 𝑘 ∈ N, 𝑘 > 2, we have

1

𝑘
‖𝑓 *‖𝑘 6 𝐶(‖𝑠(𝑓)‖𝐸2 + ‖𝑑*‖∞)

for some 𝐶 > 0. By taking supremum over 𝑘 ∈ N, 𝑘 > 2, we find that 𝑓 * ∈ 𝐸1 and

‖𝑓 *‖𝐸1 6 𝐶(‖𝑠(𝑓)‖𝐸2 + ‖𝑑*‖∞)

for some constant 𝐶 > 0. This proves (4.3).
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Similarly, as 𝑑* ∈ 𝐸𝛼 and 𝑠(𝑓) ∈ 𝐸 2𝛼
2+𝛼

, we have

1

𝑘
‖𝑓 *‖𝑘 6 𝐵

(︂
1√
𝑘
‖𝑠(𝑓)‖𝑘 + ‖𝑑*‖𝑘

)︂
.

Hence,

1

𝑘
𝛼+1
𝛼

‖𝑓 *‖𝑘 =
1

𝑘1+ 1
𝛼

‖𝑓 *‖𝑘 6 𝐵

(︂
1

𝑘
1
2
+ 1

𝛼

‖𝑠(𝑓)‖𝑘 +
1

𝑘
1
𝛼

‖𝑑*‖𝑘
)︂

6 𝐵

(︂
1

𝑘
𝛼+2
2𝛼

‖𝑠(𝑓)‖𝑘 +
1

𝑘
1
𝛼

‖𝑑*‖𝑘
)︂
.

Now by Proposition 2.1 we arrive at (4.4).
Finally, as 𝑑* ∈ ℰ𝛼 and 𝑠(𝑓) ∈ 𝐸𝐿2,−𝛼, for each 𝑘 > 𝑘0, we have

1

𝑘(𝑒 + log 𝑘)
1
𝛼

‖𝑓 *‖𝑘 6 𝐵

(︃
1

𝑘
1
2 (𝑒 + log 𝑘)

1
𝛼

‖𝑠(𝑓)‖𝑘 +
1

(𝑒 + log 𝑘)
1
𝛼

‖𝑑*‖𝑘

)︃
.

In view of Proposition 2.1, we obtain (4.5).

We note that in [14], some other exponential inequalities for martingales can be found. Some
exponential probabilistic inequalities such as exponential inequalities for martingale transform,
for decoupling inequalities, for differential subordination and for Stein inequalities, were estab-
lished in [13].
Moreover, our method also applies to the Rosenthal-Burkholder type inequalities for martin-

gales in Banach spaces [18] and [19, Thms. 4.1, 5.1]. In particular, it also yields the exponential
Hoffmann-Jørgensen inequalities [15] and the exponential Talagrand inequalities [22].

5. Marcinkiewicz-Zygmund inequalities

We obtain the exponential Marcinkiewicz-Zygmund inequalities in this section.
In [5], Burkholder obtained the following best constant Marcinkiewicz-Zygmund inequalities.

Theorem 5.1. Let 1 6 𝑝 < ∞ and {𝑋𝑖}∞𝑖=1 be a sequence of independent random variables

with E(𝑋𝑖) = 0. Then ⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
𝑝
6 𝐶(𝑝− 1)E

(︁ 𝑛∑︁
𝑖=1

𝑋2
𝑖

)︁ 1
2

for some 𝐶 > 0 independent of 𝑝.

In view of the above result and Proposition 2.1, we obtain the following exponential
Marcinkiewicz-Zygmund inequalities.

Theorem 5.2. Let {𝑋𝑖}∞𝑖=1 be a sequence of independent random variables with E(𝑋𝑖) = 0.
We have ⃦⃦⃦ 𝑛∑︁

𝑖=1

𝑋𝑖

⃦⃦⃦
𝐸1

6 𝐶E
(︁ 𝑛∑︁

𝑖=1

𝑋2
𝑖

)︁ 1
2
.

In [6, 20], the Marcinkiewicz-Zygmund inequalities was generalized with E
(︁∑︀𝑛

𝑖=1 𝑋
2
𝑖

)︁ 1
2
re-

placed by
(︁∑︀𝑛

𝑖=1 ‖𝑋𝑖‖𝑝𝑝
)︁ 1

𝑝
.

Theorem 5.3. Let {𝑋𝑖}∞𝑖=1 be a sequence of independent random variables with E(𝑋𝑖) = 0.
We have a constant 𝐶 > 0 such that for any 2 6 𝑝 < ∞ and 𝑛 ∈ N, we have⃦⃦⃦ 𝑛∑︁

𝑖=1

𝑋𝑖

⃦⃦⃦
𝑝
6 𝐶𝑝

1
2𝑛

1
2
− 1

𝑝

(︁ 𝑛∑︁
𝑖=1

‖𝑋𝑖‖𝑝𝑝
)︁ 1

𝑝
. (5.1)
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This theorem was proved in [20], see Theorem 2 in this work. For the best constants in the
above Marcinkiewicz-Zygmund inequalities, two were estimates given in [20, Thm. 2]. We use
the estimate given in [20, Ineq. (10)] since it gives a better estimate as 𝑝 → ∞.
Now we extend the Marcinkiewicz-Zygmund inequalities to exponential Orlicz spaces.

Theorem 5.4. Let 𝛼 > 0 and {𝑋𝑖}∞𝑖=1 be a sequence of independent random variables with

E(𝑋𝑖) = 0.

1. There exists a constant 𝐶 > 0 such that for each 𝑛 ∈ N, the inequality⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
𝐸2

6 𝐶𝑛
1
2 sup
16𝑖6𝑛

‖𝑋𝑖‖∞.

holds true.

2. There exists a constant 𝐶 > 0 such that for each 𝑛 ∈ N, the inequality⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
𝐸 2𝛼

𝛼+2

6 𝐶𝑛
1
2 sup
16𝑖6𝑛

‖𝑋𝑖‖𝐸𝛼 (5.2)

holds true.

3. There exists a constant 𝐶 > 0 such that for each 𝑛 ∈ N, the inequality⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
𝐸𝐿2,−𝛼

6 𝐶𝑛
1
2 sup
16𝑖6𝑛

‖𝑋𝑖‖ℰ𝛼 (5.3)

holds true.

Proof. In view of (5.1), for all 𝑘 ∈ N obeying 𝑘 >> 2, we have

1

𝑘
1
2

⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
𝑘
6 𝐶𝑛

1
2
− 1

𝑘𝑛
1
𝑘 sup
16𝑖6𝑛

‖𝑋𝑖‖∞ = 𝐶𝑛
1
2 sup
16𝑖6𝑛

‖𝑋𝑖‖∞.

Therefore, by using (2.3) with 𝑘0 = 2, we obtain⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
𝐸2

6 𝐶𝑛
1
2 sup
16𝑖6𝑛

‖𝑋𝑖‖∞.

Similarly, (2.3) assures that for each 𝑘 ∈ N obeying 𝑘 >> 2, we have

1

𝑘
1
2

⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
𝑘
6 𝐶𝑛

1
2
− 1

𝑘𝑛
1
𝑘𝑘

1
𝛼 sup

16𝑖6𝑛
‖𝑋𝑖‖𝐸𝛼 = 𝐶𝑛

1
2𝑘

1
𝛼 sup

16𝑖6𝑛
‖𝑋𝑖‖𝐸𝛼 .

Hence,

1

𝑘
𝛼+2
2𝛼

⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
𝑘
6 𝐶𝑛

1
2 sup
16𝑖6𝑛

‖𝑋𝑖‖𝐸𝛼 .

Now (5.2) follows (2.3).
Finally, (2.4) assures that for each 𝑘 ∈ N obeying 𝑘 >> 2, we have

1

𝑘
1
2

⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦
𝑘
6 𝐶𝑛

1
2 (𝑒 + log 𝑘)

1
𝛼 sup

16𝑖6𝑛
‖𝑋𝑖‖𝐸𝛼 .

Hence, (5.3) is implied by (2.5).
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