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INVARIANT SUBSPACES IN HALF-PLANE

A.S. KRIVOSHEEV, O.A. KRIVOSHEEVA

Abstract. We study subspaces of functions analytic in a half-plane and invariant with
respect to the differentiation operator. A particular case of an invariant subspace is a
space of solutions a linear homogeneous differential equation with constant coefficients. It
is known that each solution of such equations is a linear combination of primitive solu-
tions, which are exponential monomials with exponents being possibly multiple zeroes of a
characteristic polynomial. The existence of such representation is called Euler fundamental
principle. Other particular cases of invariant subspaces are spaces of solutions of linear
homogeneous differential, difference and differential-difference equations with constant co-
efficients of both finite and infinite orders as well as of more general convolution equations
and the systems of them. In the work we study the issue on fundamental principle for
arbitrary invariant subspaces for arbitrary invariant subspaces of analytic functions in a
half-plane. In other words, we study representation of all functions in an invariant subspace
by the series of exponential monomials. These exponential monomials are eigenfunctions
and adjoint functions for the differentiation operator in an invariant subspace. In the work
we obtain a decomposition of an arbitrary invariant subspace of analytic functions into a
sum of two invariant subspaces. We prove that the invariant subspace in an unbounded
domain can be represented as a sum of two invariant subspaces. Their spectra correspond
to a bounded and unbounded parts of a convex domain. On the base of this result we
obtain a simple geometric criterion of the fundamental principle for an invariant subspace
of analytic functions in a half-plane. It is formulated just in terms of the Krisvosheev
condensation index for the sequence of exponents of the mentioned exponential monomials.

Keywords: invariant subspace, fundamental principle, exponential monomial, entire func-
tion, series of exponentials.
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1. Introduction

Let Λ = {𝜆𝑘, 𝑛𝑘}∞𝑘=1 be a sequence of different complex number 𝜆𝑘 and of their multiplicities
𝑛𝑘. We assume that |𝜆𝑘| are non-decreasing and |𝜆𝑘| → ∞, 𝑘 → ∞. By Ξ(Λ) we denote the
set of limits of converging sequences of form {𝜆̄𝑘𝑗/|𝜆𝑘𝑗 |}∞𝑗=1, where 𝜆̄ stands for the complex
conjugation. The set Ξ(Λ) is closed and is a subset of the unit circumference 𝑆(0, 1). We
introduce a family of exponential monomials

ℰ(Λ) = {𝑧𝑛𝑒𝜆𝑘𝑧}∞,𝑛𝑘−1
𝑘=1,𝑛=0.

Let 𝐷 ⊂ C be a convex domain and

𝐻𝐷(𝜙) = sup
𝑧∈𝐷

Re(𝑧𝑒−𝑖𝜙), 𝜙 ∈ [0, 2𝜋]
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be its support function. We let

𝐽(𝐷) = {𝑒𝑖𝜙 ∈ 𝑆(0, 1) : 𝐻𝐷(𝜙) = +∞}.
If 𝐷 is a bounded domain, then 𝐽(𝐷) = ∅. In the case of an unbounded domain the following
situations are possible:

1) 𝐽(𝐷) = 𝑆(0, 1), that is, 𝐷 = C,
2) 𝐷 is a half-plane {𝑧 ∈ C : Re(𝑧𝑒−𝑖𝜙) < 𝑎} and 𝐽(𝐷) = 𝑆(0, 1) ∖ {𝑒𝑖𝜙},
3) 𝐷 is a strip-{𝑧 ∈ C : 𝑏 < Re(𝑧𝑒−𝑖𝜙) < 𝑎} and 𝐽(𝐷) = 𝑆(0, 1) ∖ {𝑒𝑖𝜙, 𝑒𝑖𝜙+𝜋},
4) in other case 𝐽(𝐷) is an arc on the unit circle leaning on an angle of opening at least 𝜋.

By the symbol int 𝐽(𝐷) we denote the interior of the set 𝐽(𝐷) in the topology of the circum-
ference 𝑆(0, 1).

Let 𝐻(𝐷) be the space of functions analytic in a domain 𝐷 with the topology of uniform
convergence on compact sets 𝐾 ⊂ 𝐷, and let 𝑊 ⊂ 𝐻(𝐷) be a non-trivial, that is, 𝑊 ̸=
{0}, 𝑊 ̸= 𝐻(𝐷), closed subspace invariant with respect to the differentiation operator. The
spectrum of this operator in the subspace 𝑊 is an at most countable set {𝜆𝑘} [1, Ch. II, Sect.
7]. Let Λ = {𝜆𝑘, 𝑛𝑘} be a multiple spectrum of the differentiation operator in the subspace 𝑊 .
Then ℰ(Λ) is the family of its eigenfunctions and adjoint functions in 𝑊 . The subspace 𝑊
is said to admit the spectral synthesis if it coincides with the closure of linear span 𝑊 (Λ, 𝐷)
of the system ℰ(Λ) in the space 𝐻(𝐷). We mention that the problem of spectral synthesis
was complete solved in works [2] and [3]. If 𝐷 is an unbounded convex domain, then identity
𝑊 = 𝑊 (Λ, 𝐷) holds, that is, 𝑊 admits the spectral synthesis [3, Thm 8.2].

Particular cases of invariant subspaces are the spaces of solutions of linear homogeneous
differential, difference and differential-difference equations both of finite and infinite orders, as
well as of more general convolution equations and their systems.

A main problem in the theory of invariant subspace is the fundamental principle problem,
that is, representing each function from 𝑊 by means of the series over the elements of the
system ℰ(Λ). The fundamental principle is said to hold in a subspace 𝑊 with the spectrum
{𝜆𝑘, 𝑛𝑘} if for each function 𝑔 ∈ 𝑊 the representation holds:

𝑔(𝑧) =

∞,𝑛𝑘−1∑︁
𝑘=1,𝑛=0

𝑑𝑘,𝑛𝑧
𝑛𝑒𝜆𝑘𝑧, 𝑧 ∈ 𝐷, (1.1)

and this series converges uniformly on compact sets in 𝐷. This issue is called fundamental
principle problem. The name “fundamental principle” arisen in relation with a particular case
of the invariant subspace, namely, the space of solutions to a linear homogeneous differential
equation with constant coefficients. It is known that each solution to such equation is a linear
combination of elementary solutions, exponential monomials 𝑧𝑛𝑒𝜆𝑘𝑧, with exponents being ze-
roes, probably, multiple, of a characteristic polynomial. The presence of such representation is
called Euler fundamental principle.

By means of Laplace transform, the fundamental principle problem is reduced to a dual
problem of multiple interpolation in the space of entire functions of exponential type. The study
of both problems made first independently have a rich history. Its main milestones are reflected
in works [4] and [5]. In the case of a bounded convex domain the fundamental principle problem
was completely solved in works [5]–[8]. There was obtained a simple geometric criterion of the
fundamental principle [8, Thm. 3.2] for invariant subspaces admitting the spectral synthesis,
which was formulated only in terms of the Krivosheed condensation index 𝑆Λ, which will be
introduced below, of the maximal angular density of the sequence Λ and of the length of the
boundary of the domain 𝐷.

The situation with unbounded convex domains is much worse. In work [5], there was obtained
a criterion of the fundamental principle for arbitrary convex domains. It however has two
disadvantages. It involves some restriction for the multiplicity 𝑛𝑘 of the points 𝜆𝑘. Moreover, it
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involves the following condition, which is equivalent to the validity of the fundamental principle.
Namely, it requires the existence of a family of entire functions vanishing at the points 𝜆𝑘 with
the multiplicities at least 𝑛𝑘, the growth of which is close to a regular one and is related with 𝐷.
There remained an open question under which conditions for Λ and 𝐷 such family exists. The
problem on constructing such family is rather complicated. Concerning unbounded domains,
mostly only two particular cases were studied, namely, when 𝐷 was the plane or a half-plane.

A complete solution of the fundamental principle problem for non-trivial invariant subspaces
of entire functions was obtained in work [9]. It was proved that the validity of the fundamental
principle in each such subspace is equivalent to the finiteness of the condensation index 𝑆Λ.

Invariant subspaces in a half-plane were studied in the case of a simple positive spectrum
possessing a density. In work [10] this problem was solved completely for an arbitrary convex
domain 𝐷. The solution was given in terms of simple geometric characteristics of the sequence
Λ and the domain 𝐷. It involves a principally new aspect. It turned out that in the case
of a vertical half-plane, for the validity of the fundamental principle, the measurability of the
sequence Λ is not needed, and even the finiteness of its maximal density is not needed despite
the support function of the half-plane is bounded in the positive direction. A necessary and
sufficient condition in this situation is the vanishing of the characteristics 𝑆Λ. In work [11] this
result was extended for the case of invariant subspaces with an almost real spectrum Λ, that is,
as Ξ(Λ) = {1}. We note that the result of work [11] is easily extended for the case of invariant
subspaces with the spectrum Λ, for which Ξ(Λ) is a one-point set.

The present work is devoted to studying nontrivial invariant subspaces with an arbitrary
spectrum in a half-plane.

The work consists of four sections. In the second section we provide some preliminaries. In
the third section we study the problem on decomposition of an invariant subspace into the sum
of two invariant subspaces. We prove that an invariant subspace in each unbounded domain
can be represented as a sum of two invariant subspaces. Their spectra correspond to a bounded
and an unbounded parts of the convex domain.

In the last section we solve completely the fundamental principle problem for invariant sub-
spaces in a half-plane. We obtain a simple geometric criterion for the fundamental principle,
which is based only on the notion of the condensation index of a sequence forming the spectrum
of an invariant subspace.

2. Preliminaries

We begin with recalling some notions and facts related with an interpolating Leontiev func-
tion. Let Λ = {𝜆𝑘, 𝑛𝑘} and 𝑓 be an entire function of exponential type, that is,

ln |𝑓(𝜆)| 6 𝐴 + 𝐵|𝜆|, 𝜆 ∈ C, 𝐴,𝐵 > 0.

We write 𝑓(Λ) = 0 if 𝑓 vanishes at the points 𝜆𝑘 with multiplicity at least 𝑛𝑘. An indicator of
𝑓 is the function

ℎ𝑓 (𝜙) = lim
𝑡→∞

ln |𝑓(𝑡𝑒𝑖𝜙)|
𝑡

, 𝜙 ∈ [0, 2𝜋].

It coincides with the support function of some convex set 𝑇 ⊂ C called an indicator diagram
of 𝑓 . By 𝛾(𝑡, 𝑓) we denote the function associated with 𝑓 in the Borel sense [1, Ch. I, Sect. 5].
An adjoint diagram 𝐾 of the function 𝑓 is a convex hull of the set of singular points of 𝛾(𝑡, 𝑓).
Thus, 𝛾(𝑡, 𝑓) is analytic outside some compact set 𝐾. By Polya theorem [1, Ch. I, Sect. 5,
Thm. 5.4],

ℎ𝑓 (𝜙) = 𝐻𝑇 (𝜙) = 𝐻𝐾(−𝜙), 𝜙 ∈ [0, 2𝜋]. (2.1)

Therefore, 𝐾 is a compact set complex conjugate with the compact set 𝑇 .
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Let 𝐷 be a convex domain, 𝑔 ∈ 𝐻(𝐷), 0 ∈ 𝐾, and 𝜎 ∈ C be such that the shift 𝐾 + 𝜎 of
the adjoint diagram 𝐾 of the function 𝑓 lies in the domain 𝐷. An interpolating function for a
function 𝑔 is [12, Ch. I, Sect. 2]

𝜔𝑓 (𝜆, 𝜎, 𝑔) = 𝑒−𝜎𝜆 1

2𝜋𝑖

∫︁
Ω

𝛾(𝑡, 𝑓)

⎛⎝ 𝑡∫︁
0

𝑔(𝑡 + 𝜎 − 𝜂)𝑒𝜆𝜂𝑑𝜂

⎞⎠ 𝑑𝑡, (2.2)

where Ω is a contour, that is, a simple closed continuous rectifiable curve enveloping the compact
set 𝐾 and is located in the domain 𝐷 − 𝜎.

We are going to omit the restriction 0 ∈ 𝐾. We choose an arbitrary point 𝑤 ∈ 𝐾. An
adjoint diagram of the function 𝑓𝑤(𝑧) = 𝑓(𝑧)𝑒−𝑤𝑧 coincides with the compact set 𝐾𝑤 = 𝐾 −𝑤
containing the origin. Then by formula (2.2) we define the function 𝜔𝑓𝑤(𝜆, 𝜎, 𝑔) for all 𝜎 ∈ C
such that the compact set 𝐾𝑤 + 𝜎 lies in the domain 𝐷.

Let us mention some properties of the function 𝜔𝑓𝑤(𝜆, 𝜎, 𝑔). It follows from (2.2) that this
function is entire and linear in the third independent variable. Let 𝐾(𝜀) = 𝐾 + 𝐵(0, 𝜀) be an
𝜀-swelling of the compact set 𝐾, Ω(𝜀) = 𝜕(𝐾(𝜀)) − 𝑤 and Ω𝜎(𝜀) = Ω(𝜀) + 𝜎 ⊂ 𝐺. By (2.2) we
have:

|𝜔𝑓𝑤(𝜆, 𝜎, 𝑔)| 6 1

2𝜋
|𝑒−𝜎𝜆| max

𝑧∈Ω(𝜀)
|𝑒𝜆𝑧| max

𝑧∈Ω𝜎(𝜀)
|𝑔(𝑧)|

∫︁
Ω(𝜀)

|𝛾(𝑡, 𝑓𝑤)||𝑡||𝑑𝑡|

6𝜏𝜀 exp(𝑟𝐻Ω(𝜀)(−𝜙) − Re(𝜎𝜆)) max
𝑧∈Ω𝜎(𝜀)

|𝑔(𝑧)|
∫︁

𝜕𝐾(𝜀)

|𝛾(𝑡, 𝑓)||𝑑𝑡|

=𝐴(𝑓, 𝜀) exp(𝑟𝐻𝐾(−𝜙) + 𝜀𝑟 − Re(𝑤𝜆) − Re(𝜎𝜆)) sup
𝑧∈Ω𝜎(𝜀)

|𝑔(𝑧)|, 𝜆 = 𝑟𝑒𝑖𝜙,

where 𝐴(𝑓, 𝜀) = (2𝜋)−1𝜏𝜀(𝑓)𝑑𝜀, 𝑑𝜀 is the diameter of the domain 𝐾(𝜀) and 𝜏𝜀(𝑓) is the latter
integral. In view of identity (2.1), this implies that

|𝜔𝑓𝑤(𝜆, 𝜎, 𝑔)| 6 𝐴(𝑓, 𝜀) exp((ℎ𝑓 (𝜙) + 𝜀)𝑟 − Re((𝑤 + 𝜎)𝜆)) max
𝑧∈Ω𝜎(𝜀)

|𝑔(𝑧)|. (2.3)

for all 𝜆 ∈ C.
Let us mention a main property of the interpolating function. Let Λ = {𝜆𝑘, 𝑛𝑘} be a multiple

zero set of the function 𝑓 and

𝑃 (𝑧) =

𝑝∑︁
𝑘=1

𝑛𝑘−1∑︁
𝑛=0

𝑎𝑘,𝑛𝑧
𝑛𝑒𝜆𝑘𝑧.

Then the identities hold [12, Ch. I, Sect. 2, Thm. 1.2.4]:

1

2𝜋𝑖

∫︁
𝜕𝐵(𝜆𝑘,𝑏𝑘)

𝜔𝑓𝑤(𝜆, 𝜎, 𝑃 )

𝑓𝑤(𝜆)
𝑒𝜆𝑧𝑑𝜆 =

𝑛𝑘−1∑︁
𝑛=0

𝑎𝑘,𝑛𝑧
𝑛𝑒𝜆𝑘𝑧, 𝜎 ∈ C, 𝑘 = 1, 𝑝, (2.4)

where 𝜕𝐵(𝜆𝑘, 𝑏𝑘) is a circumference containing no points 𝜆𝑠, 𝑠 ̸= 𝑘. The following statements
are particular cases of respectively Theorems 2.1.1 and 2.1.2 from book [12].

Lemma 2.1. Let Λ = {𝜆𝑘, 𝑛𝑘}, 𝐷 be a convex domain and the system ℰ(Λ) be incomplete
in the space 𝐻(𝐷). Assume that

𝑔(𝑧) = lim
𝜇→∞

𝑃𝜇(𝑧), 𝑃𝜇(𝑧) =

𝜇∑︁
𝑘=1

𝑛𝑘−1∑︁
𝑛=0

𝑎𝑘,𝑛,𝜇𝑧
𝑛𝑒𝜆𝑘𝑧, (2.5)
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where the convergence is uniform on compact sets in the domain 𝐷. Then there exist the limits

𝑎𝑘,𝑛 = lim
𝜇→∞

𝑎𝑘,𝑛,𝜇, 𝑛 = 0, 𝑛𝑘 − 1, 𝑘 > 1.

Lemma 2.2. Let Λ = {𝜆𝑘, 𝑛𝑘}, 𝐷 be a convex domain and the system ℰ(Λ) be incomplete
in the space 𝐻(𝐷). Assume that (2.5) holds and

𝑔(𝑧) =) = lim
𝜇→∞

𝑄𝜇(𝑧), 𝑄𝜇(𝑧) =

𝜇∑︁
𝑘=1

𝑛𝑘−1∑︁
𝑛=0

𝑏𝑘,𝑛,𝜇𝑧
𝑛𝑒𝜆𝑘𝑧,

where the convergence is uniform on compact sets in the domain 𝐷. Then

lim
𝜇→∞

𝑎𝑘,𝑛,𝜇 = lim
𝜇→∞

𝑏𝑘,𝑛,𝜇, 𝑛 = 0, 𝑛𝑘 − 1, 𝑘 > 1.

We introduce some more notions and notations. Let Λ = {𝜆𝑘, 𝑛𝑘}, 𝑛(𝑟,Λ) be the number of
the points 𝜆𝑘 (taken according their multiplicities 𝑛𝑘) located in an open ball 𝐵(0, 𝑟) and

𝑛̄(Λ) = lim
𝑟→+∞

𝑛(𝑟,Λ)

𝑟

be the upper density of the sequence Λ. According the well-known Lindelöf theorem [13, Ch.
I, Sect. 11, Thm. 15], one has 𝑛̄(Λ) < +∞ if and only if there exists an entire function 𝑓 of
exponential type such that 𝑓(Λ) = 0.

Let 𝑈 = {𝑈𝑚}∞𝑚=1 be a partition of the sequence {𝜆𝑘} into finite subgroups, that is, 𝑈𝑚

consists in finitely many points 𝜆𝑘, 𝑈𝑚 ∩ 𝑈𝑙 = ∅, 𝑙 ̸= 𝑚, and ∪𝑚𝑈𝑚 = {𝜆𝑘}. We let

𝑑Λ(𝑈) = lim
𝑚→∞

max
𝜆𝑘,𝜆𝑣 ,𝜆𝑗∈𝑈𝑚

|𝜆𝑘 − 𝜆𝑣|
|𝜆𝑗|

.

Following [7], we introduce the condensation index:

𝑆Λ(𝑈) = lim
𝛿→0

lim
𝑚→∞

min
𝜆𝑘∈𝑈𝑚

ln |𝑞𝑚,𝑘
Λ,𝑈 (𝜆𝑘, 𝛿)|
|𝜆𝑘|

, 𝑞𝑚,𝑘
Λ,𝑈 (𝑧, 𝛿) =

∏︁
𝜆𝑣∈𝐵(𝜆𝑘,𝛿|𝜆𝑘|)∖𝑈𝑚

(︂
𝑧 − 𝜆𝑣

3𝛿|𝜆𝑣|

)︂𝑛𝑣

.

First the condensation index was introduced in work [5] for the trivial partition, that is, when
each group 𝑈𝑚 consists in one point. In the case when the partition 𝑈 is trivial, the quantity
𝑆Λ(𝑈) coincides with the quantity 𝑆Λ introduced in [5]. This is why in this case we write 𝑆Λ

instead of 𝑆Λ(𝑈).
The next two statements were proved in work [9], see Theorems 2.1 and 5.1 in the cited work.

In the second statement the main idea of introducing quantity 𝑆Λ(𝑈) is clarified.

Theorem 2.3. Let Λ = {𝜆𝑘, 𝑛𝑘} and 𝑛̄(Λ) < +∞. Then for each 𝑑 > 0 there exists a
partition 𝑈 of the sequence Λ such that 𝑆Λ(𝑈) > −∞ and 𝑑Λ(𝑈) < 𝑑.

Theorem 2.4. Let 𝑓 be an entire function of exponential type, Λ = {𝜆𝑘, 𝑛𝑘} be its multiple
zero set, 𝑈 = {𝑈𝑚} be the partition of Λ, for which 𝑆Λ(𝑈) > −∞ and 𝑑Λ(𝑈) < +∞. Then
there exist positive numbers {𝛾𝑘}∞𝑘 such that

lim
𝑚→∞

max
𝜆𝑘,𝜆𝑣∈𝑈𝑚

𝛾𝑘
|𝜆𝑣|

< +∞, (2.6)

the sets 𝐵𝑚 =
⋃︀

𝜆𝑘∈𝑈𝑚
𝐵(𝜆𝑘, 𝛾𝑘), 𝑚 > 1, are mutually disjoint and for each 𝛽 ∈ (0, 1) there

exist 𝑎, 𝑎1 > 0 such that

ln |𝑓(𝑧)| > −𝑎1 − 𝑎|𝑧|, 𝑧 ∈ 𝜕𝐵𝑚(𝛽), 𝑚 > 1, 𝐵𝑚(𝛽) =
⋃︁

𝜆𝑘∈𝑈𝑚

𝐵(𝜆𝑘, 𝛽𝛾𝑘). (2.7)
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3. Decomposition of invariant subspaces

Let 𝐷 be an unbounded convex domain and 𝑊 be a nontrivial closed subspace in 𝐻(𝐷)
invariant with respect to the differentiation. As it has been mentioned above, in this case the
space 𝑊 admits the spectral synthesis, that is, the identity 𝑊 = 𝑊 (Λ, 𝐷) holds, where Λ is
the multiple spectrum of the differentiation operator in the subspace 𝑊 .

The non-triviality of the subspace 𝑊 (Λ, 𝐷) means that the system ℰ(Λ) is incomplete in the
space 𝐻(𝐷). In view of this, in order to study invariant subspaces 𝑊 ⊂ 𝐻(𝐷) in an unbounded
convex domain, it is sufficient to consider the case when 𝑊 = 𝑊 (Λ, 𝐷) and ℰ(Λ) is incomplete
𝐻(𝐷).

The system ℰ(Λ) is incomplete in the space 𝐻(𝐷) if and only if [1, Ch. I, Sect. 7, Thm.
7.2; Sect. 5, Thm. 5.2] there there exists an entire function 𝑓 of exponential type such that
𝑓(Λ) = 0 and some shift 𝐾 + 𝜎 of its adjoint diagram 𝐾 is located in the domain 𝐷.

The issue on completeness of the system ℰ(Λ) in the space 𝐻(𝐷) is resolved easily only in
the case, when the domain 𝐷 can not be moved into any strip. This is a so-called large convex
domain. It contains some shift of each convex set. Therefore, in view of the Lindelöf theorem,
for a large convex domain, the system ℰ(Λ) is incomplete in 𝐻(𝐷) if and only if 𝑛̄(Λ) < +∞.

In the case when 𝐷 is located in some strip, a simple criterion of the completeness of the
system ℰ(Λ) was obtained in works [14], [15]. It is formulated in terms of a logarithmic block-
density of the sequence Λ.

Let 𝐷 be an unbounded convex domain. By 𝐽0(𝐷) we denote the subset of the set 𝐽(𝐷)
consisting of all points 𝑒𝑖𝜙 such that

{𝑒𝑖𝛼 : 𝛼 ∈ (𝜙− 𝜋/2, 𝜙 + 𝜋/2)} ⊂ 𝐽(𝐷).

By definition, 𝐽0(𝐷) is a closed subset of the unit circumference 𝑆(0, 1). If 𝐷 = C, then
𝐽0(𝐷) = 𝑆(0, 1). If 𝐷 is a half-plane {𝑧 ∈ C : Re(𝑧𝑒−𝑖𝜙) < 𝑎}, then 𝐽0(𝐷) = {𝑒𝑖𝛼 : 𝛼 ∈
[−𝜙 − 𝜋/2,−𝜙 + 𝜋/2]}. If 𝐷 is located in the strip {𝑧 ∈ C : 𝑏 < Re(𝑧𝑒−𝑖𝜙) < 𝑎}, then either
𝐽0(𝐷) consists of two points {𝑒𝑖(𝜙−𝜋/2), 𝑒𝑖(𝜙+𝜋/2)} (if 𝐷 coincides with this or a smaller strip) or
coincides with one of these points (otherwise). In other cases 𝐽0(𝐷) is an arc {𝑒𝑖𝛼 : 𝛼 ∈ [𝜙1, 𝜙2]}
on the unit circumference leaning on an angle of opening strictly less than 𝜋.

Thus, if the domain 𝐷 is not a strip, then for some 𝜙1, 𝜙2 such that 𝜋 6 𝜙2 − 𝜙1 6 2𝜋 the
identities hold:

𝐽(𝐷) = {𝑒𝑖𝜙 : 𝜙 ∈ 𝐼}, 𝐽0(𝐷) = {𝑒𝑖𝜙 : 𝜙 ∈ [𝜙1 + 𝜋/2, 𝜙2 − 𝜋/2]},

where 𝐼 is a segment, an interval or a semi-interval with the end-points at 𝜙1, 𝜙2. If 𝜙2−𝜙1 = 𝜋,
then the segment [𝜙1 +𝜋/2, 𝜙2−𝜋/2] degenerates into a point. For instance, this happens if 𝐷
is a domain enveloped by the parabola or if 𝐷 is located inside a strip but does not coincides
with it. The identity 𝜙2 − 𝜙1 = 2𝜋 is realized only in the case when 𝐷 is a half-plane.

Lemma 3.1. Let 𝐷 be an unbounded convex domain and 𝑀 be a subset of 𝐷. Then for each
𝑒𝑖𝜙 ∈ 𝐽0(𝐷) and 𝑡 > 0 the shift 𝑀 + 𝑡𝑒𝑖𝜙 is located in 𝐷.

Proof. Let 𝑒𝑖𝜙 ∈ 𝐽0(𝐷), 𝑡 > 0 and 𝑧 ∈ 𝑀 . According the definition of 𝐽0(𝐷), we have

Re((𝑧 + 𝑡𝑒𝑖𝜙)𝑒−𝑖𝛼) < +∞ = 𝐻𝐷(𝛼), 𝛼 ∈ (𝜙− 𝜋/2, 𝜙 + 𝜋/2).

Moreover, for each 𝛼 ∈ [𝜙 + 𝜋/2, 𝜙 + 3𝜋/2] we get:

Re((𝑧 + 𝑡𝑒𝑖𝜙)𝑒−𝑖𝛼) = Re(𝑧𝑒−𝑖𝛼) + Re(𝑡𝑒𝑖𝜙𝑒−𝑖𝛼) 6 Re(𝑧𝑒−𝑖𝛼) < 𝐻𝐷(𝛼).

Thus,

Re((𝑧 + 𝑡𝑒𝑖𝜙)𝑒−𝑖𝛼) < 𝐻𝐷(𝛼), 𝛼 ∈ [0, 2𝜋].

This means that 𝑧 + 𝑡𝑒𝑖𝜙 ∈ 𝐷. The proof is complete.



36 A.S. KRIVOSHEEV, O.A. KRIVOSHEEVA

Lemma 3.2. Let 𝐷 be an unbounded convex domain, 0 < 𝛼2 − 𝛼1 < 𝜋 and

Ξ0 = {𝑒𝑖𝜙 : 𝜙 ∈ [𝛼1, 𝛼2]} ⊆ int 𝐽(𝐷).

Then there exists 𝑒𝑖𝜙0 ∈ 𝐽0(𝐷) such that for all 𝑅, 𝐶 > 0 there exists 𝑡0 > 0 satisfying the
condition

Re((𝑡𝑒𝑖𝜙0 − 𝑧)𝑒𝑖𝛼) > 𝐶, 𝑒−𝑖𝛼 ∈ Ξ0, |𝑧| 6 𝑅, 𝑡 > 𝑡0.

Proof. Since Ξ0 ∈ int 𝐽(𝐷) and 0 < 𝛼2 − 𝛼1 < 𝜋, according to the definition of the set 𝐽0(𝐷)
there exists 𝑒𝑖𝜙0 ∈ 𝐽0(𝐷) such that Ξ0 ⊂ {𝑒𝑖𝛼 : 𝛼 ∈ (𝜙0−𝜋/2, 𝜙0 +𝜋/2)}. Then for some 𝛿0 > 0
the embedding holds:

Ξ0 ⊂ {𝑒𝑖𝛼 : 𝛼 ∈ [𝜙0 − 𝜋/2 + 𝛿0, 𝜙0 + 𝜋/2 − 𝛿0]}. (3.1)

Let 𝑅, 𝐶 > 0. By (3.1) there exists 𝑐 > 0 such that

Re((𝑡𝑒𝑖𝜙0 − 𝑧)𝑒𝑖𝛼) > Re(𝑡𝑒𝑖𝜙0𝑒𝑖𝛼) −𝑅 > 𝑡𝑐−𝑅, 𝑒−𝑖𝛼 ∈ Ξ0, |𝑧| 6 𝑅.

For 𝑡0 = (𝑅 + 𝐶)𝑐−1 this implies the desired inequality. The proof is complete.

Now we are in position to formulate the results on decomposition of invariant subspaces.

Lemma 3.3. Let Λ = {𝜆𝑘, 𝑛𝑘}, 𝐷 be a convex domain and the system ℰ(Λ) be incomplete
in 𝐻(𝐷). For each 𝑚 > 1 and each function 𝑔 ∈ 𝑊 (Λ, 𝐷) the representation holds 𝑔 = 𝑔1 + 𝑔2,
where 𝑔1 ∈ 𝑊 (Λ1,C) and 𝑔2 ∈ 𝑊 (Λ2, 𝐷),

Λ1 = {𝜆𝑘, 𝑛𝑘}𝑚𝑘=1, Λ2 = {𝜆𝑘, 𝑛𝑘}∞𝑘=𝑚+1,

and 𝑊 (Λ1,C) is the space of exponential polynomials

𝑃 (𝑧) =
𝑚∑︁
𝑘=1

𝑛𝑘−1∑︁
𝑛=0

𝑎𝑘,𝑛𝑧
𝑛𝑒𝜆𝑘𝑧, 𝑎𝑘,𝑛 ∈ C, 𝑛 = 0, 𝑛𝑘 − 1, 𝑘 = 1,𝑚.

Proof. Let 𝑚 > 1. Since 𝑔 ∈ 𝑊 (Λ, 𝐷), then

𝑔(𝑧) = lim
𝜇→∞

𝑃𝜇(𝑧), 𝑃𝜇(𝑧) =

𝜇∑︁
𝑘=1

𝑛𝑘−1∑︁
𝑛=0

𝑎𝑘,𝑛,𝜇𝑧
𝑛𝑒𝜆𝑘𝑧, (3.2)

and the convergence is uniform on compact sets in 𝐷. By Lemma 2.1 there exist the limits

𝑎𝑘,𝑛 = lim
𝜇→∞

𝑎𝑘,𝑛,𝜇, 𝑛 = 0, 𝑛𝑘 − 1, 𝑘 > 1.

Therefore, the sequence of polynomials

𝑃𝜇,1(𝑧) =
𝑚∑︁
𝑘=1

𝑛𝑘−1∑︁
𝑛=0

𝑎𝑘,𝑛,𝜇𝑧
𝑛𝑒𝜆𝑘𝑧, 𝜇 > 1,

converge uniformly on compact sets in the plane to a polynomial

𝑔1(𝑧) =
𝑚∑︁
𝑘=1

𝑛𝑘−1∑︁
𝑛=0

𝑎𝑘,𝑛𝑧
𝑛𝑒𝜆𝑘𝑧.

Then by (3.2) the sequence of polynomials

𝑃𝜇,2(𝑧) =

𝜇∑︁
𝑘=𝑚+1

𝑛𝑘−1∑︁
𝑛=0

𝑎𝑘,𝑛,𝜇𝑧
𝑛𝑒𝜆𝑘𝑧, 𝜇 > 𝑚 + 1,

converges to the function 𝑔2 = 𝑔− 𝑔1 uniformly on compact sets in the domain 𝐷. This is why
𝑔2 ∈ 𝑊 (Λ2, 𝐷). The proof is complete.
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Let Λ = {𝜆𝑘, 𝑛𝑘}, Λ1 = {𝜉𝑝,𝑚𝑝} and Λ2 = {𝜍𝑗, 𝑙𝑗}. We write Λ = Λ1 ∪ Λ2 if for each 𝑘 > 1
there exists 𝑝 > 1 such that 𝜆𝑘 = 𝜉𝑝 and 𝑛𝑘 = 𝑚𝑝 or there exists 𝑗 > 1 such that 𝜆𝑘 = 𝜍𝑗 and
𝑛𝑘 = 𝑙𝑗.

Theorem 3.4. Let Λ = {𝜆𝑘, 𝑛𝑘}, 𝐷 be a convex domain and the system ℰ(Λ) is incomplete
in 𝐻(𝐷). Then there exist sequences Λ1 and Λ2 such that

Λ = Λ1 ∪ Λ2, Ξ(Λ2) ⊂ 𝑆(0, 1) ∖ int 𝐽(𝐷),

and for each function 𝑔 ∈ 𝑊 (Λ, 𝐷) the representation 𝑔 = 𝑔1 + 𝑔2 holds, where 𝑔1 ∈ 𝑊 (Λ1,C)
and 𝑔2 ∈ 𝑊 (Λ2, 𝐷). In particular, Λ1 = ∅ and 𝑔1 = 0 if Ξ(Λ) ∩ int 𝐽(𝐷) = ∅ and Λ2 = ∅ and
𝑔2 = 0 if Ξ(Λ) ⊂ int 𝐽(𝐷).

Proof. Let 𝑔 ∈ 𝑊 (Λ, 𝐷). First we consider the case

Ξ(Λ) ∩ int 𝐽(𝐷) = ∅.

We let Λ1 = ∅, 𝑔1 = 0, Λ2 = Λ and 𝑔2 = 𝑔. Then 𝑔2 ∈ 𝑊 (Λ2, 𝐷) = 𝑊 (Λ, 𝐷). Hence, in this
case the statement of theorem holds true.

Suppose that Ξ(Λ) ∩ int 𝐽(𝐷) ̸= ∅. We choose sequences {𝛼𝑠
1,𝑙}, {𝛼𝑠

2,𝑙}, 𝑠 = 1, 2, such that

𝛼𝑠
2,𝑙 − 𝛼𝑠

1,𝑙 < 𝜋, 𝛼𝑠
1,𝑙+1 < 𝛼𝑠

1,𝑙 < 𝛼𝑠
2,𝑙 < 𝛼𝑠

2,𝑙+1, 𝑙 > 1,

Ξ𝑠,𝑙 = {𝑒𝑖𝜙 : 𝜙 ∈ [𝛼𝑠
1,𝑙, 𝛼

𝑠
2,𝑙]} ⊂ int 𝐽(𝐷), 𝑠 = 1, 2,

∞⋃︁
𝑙=1

(Ξ1,𝑙 ∪ Ξ2,𝑙) = int 𝐽(𝐷).

By our assumptions, the system ℰ(Λ) is incomplete in the space 𝐻(𝐷). Then there exists an
entire function 𝑓 of exponential type such that 𝑓(Λ) = 0 and some shift 𝐾 + 𝑤0 of its adjoint
diagram 𝐾 is located in the domain 𝐷.

Let Λ1 be a multiple zero set of the function 𝑓 . Since 𝑓 is of exponential type, then by Lindelöf
theorem we have: 𝑛̄(Λ1) < +∞. Then by Theorem 2.3 for each 𝑑 > 0 there exists a partition
𝑈(𝑑) = {𝑈𝑚(𝑑)} of the sequence Λ1 such that inequalities 𝑆Λ1(𝑈(𝑑)) > −∞, 𝑑Λ1(𝑈(𝑑)) < 𝑑
hold.

We fix 𝑙 > 1. We form a subsequence {𝑈𝑚(1,𝑙,𝑗)(𝑑)} of all groups 𝑈𝑚(𝑑), each of them contains
a point 𝜆𝑘 = 𝑟𝑘𝑒

𝑖𝜙𝑘 such that 𝑒−𝑖𝜙𝑘 ∈ Ξ1,𝑙, and also a subsequence {𝑈𝑚(2,𝑙,𝑗)(𝑑)} of all groups
𝑈𝑚(𝑑), each of them contains a point 𝜆𝑘 = 𝑟𝑘𝑒

𝑖𝜙𝑘 such that 𝑒−𝑖𝜙𝑘 ∈ Ξ2,𝑙 and 𝑒−𝑖𝜙𝑝 ∈ Ξ1,𝑙 for
all 𝜆𝑝 = 𝑟𝑝𝑒

𝑖𝜙𝑝 ∈ 𝑈𝑚(2,𝑙,𝑗)(𝑑); in some case the set {𝑈𝑚(2,𝑙,𝑗)(𝑑)} can be empty. We choose
𝑑𝑙 ∈ (0, 1/2) and 𝑗𝑙 so that 𝑒−𝑖𝜙𝑘 ∈ Ξ𝑠,𝑙+1 for all 𝜆𝑘 ∈ 𝑈𝑚(𝑠,,𝑙,𝑗)(𝑑𝑙), 𝑗 > 𝑗𝑙 and 𝑠 = 1, 2.

By Theorem 2.4 we find positive numbers 𝛾𝑘 = 𝛾𝑘,𝑙, 𝑘 > 1, such that (2.6) holds and the sets
𝐵𝑚,𝑙 = ∪𝜆𝑘∈𝑈𝑚(𝑑𝑙)𝐵(𝜆𝑘, 𝛾𝑘,𝑙), 𝑚 > 1, are mutually disjoint and also for each number 𝛽 ∈ (0, 1)
we find 𝑎 = 𝑎(𝛽), 𝑎1 = 𝑎1(𝛽) > 0 such that (2.7) holds true.

Increasing the index 𝑗𝑙 if needed, we find 𝛽𝑙 ∈ (0, 1/2) such that for all 𝑗 > 𝑗𝑙 and 𝑧 = 𝑟𝑒𝑖𝜙 ∈
𝐵𝑚(𝑠,𝑙,𝑗)(𝛽𝑙) the belonging holds: 𝑒−𝑖𝜙 ∈ Ξ𝑠,𝑙+2, 𝑠 = 1, 2.

Let us define the sets 𝐵𝑠,𝑙,𝑝. As 𝐵𝑠,1,𝑝 we take all sets 𝐵𝑚(𝑠,1,𝑗)(𝛽1). Let 𝑙 > 1. As 𝐵𝑠,𝑙,𝑝 we
take all sets

𝐵𝑚(𝑠,𝑙,𝑗)(𝛽𝑙) ∖

(︃
2⋃︁

𝜂=1

𝑙−1⋃︁
𝜈=1

⋃︁
𝜇>1

𝐵𝜂,𝜈,𝜇

)︃
,

each of them contains at least one point 𝜆𝑘.
We observe that the sets 𝐵𝑠,𝑙,𝑝 are mutually disjoint and each of them contains at least one

point 𝜆𝑘, and each point 𝜆𝑘 = 𝑟𝑘𝑒
𝑖𝜙𝑘 is such that 𝑒−𝑖𝜙𝑘 ∈ int 𝐽(𝐷) and belongs just to one of

the sets 𝐵𝑠,𝑙,𝑝.
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We let
𝐴𝑙 = max

16𝜈6𝑙
𝑎(𝛽𝜈), 𝐴1,𝑙 = max

16𝜈6𝑙
𝑎1(𝛽𝜈).

By (2.7) we have

ln |𝑓(𝑧)| > −𝐴1,𝑙 − 𝐴𝑙|𝑧|, 𝑧 ∈ 𝜕𝐵𝑠,𝑙,𝑝, 𝑝, 𝑙 > 1, 𝑠 = 1, 2. (3.3)

Since 𝑔 ∈ 𝑊 (Λ, 𝐷), then

𝑔(𝑧) = lim
𝜇→∞

𝑃𝜇(𝑧), 𝑃𝜇(𝑧) =

𝜇∑︁
𝑘=1

𝑛𝑘−1∑︁
𝑛=0

𝑎𝑘,𝑛,𝜇𝑧
𝑛𝑒𝜆𝑘𝑧,

and the convergence is uniform on compact sets in the domain 𝐷. Let 𝑤 ∈ 𝐾. By formula (2.2)
we define an interpolating function 𝜔𝑓𝑤(𝜆, 𝜎, 𝑃𝜇) for all 𝜇 > 1 and 𝜎 ∈ C. We let 𝑎𝑘,𝑛,𝜇 = 0,
𝑘 > 𝜇. It follows from (2.4) that

1

2𝜋𝑖

∫︁
𝜕𝐵(𝜆𝑘,𝑏𝑘)

𝜔𝑓𝑤(𝜆, 𝜎, 𝑃𝜇)

𝑓𝑤(𝜆)
𝑒𝜆𝑧𝑑𝜆 =

𝑛𝑘−1∑︁
𝑛=0

𝑎𝑘,𝑛,𝜇𝑧
𝑛𝑒𝜆𝑘𝑧, 𝜎 ∈ C, 𝑘 > 1.

We fix 𝑙 > 1. By the theorem on residues we obtain:∫︁
𝜕𝐵𝑠,𝑙,𝑝

𝜔𝑓𝑤(𝜆, 𝜎, 𝑃𝜇)

𝑓𝑤(𝜆)
𝑒𝜆𝑧𝑑𝜆 =

∑︁
𝜆𝑘∈𝐵𝑠,𝑙,𝑝

𝑎𝑘,𝑛,𝜇𝑧
𝑛𝑒𝜆𝑘𝑧, 𝑝 > 1, 𝑠 = 1, 2. (3.4)

Let
ℎ− 1 = max

𝜙∈[0,2𝜋]
ℎ𝑓 (𝜙),

𝑠 = 1, 2, and 𝜀 > 0. Since 𝑃𝜇 is an entire function, by (2.3), (3.3) and the definition of 𝑓𝑤 we
get:⃒⃒⃒⃒
⃒⃒⃒ ∫︁
𝜕𝐵𝑠,𝑙,𝑝

𝜔𝑓𝑤(𝜆, 𝜎, 𝑃𝜇)

𝑓𝑤(𝜆)
𝑒𝜆𝑧𝑑𝜆

⃒⃒⃒⃒
⃒⃒⃒ 6𝐴(𝑓, 𝜀)𝑏𝑠,𝑙,𝑝 max

𝜆∈𝜕𝐵𝑠,𝑙,𝑝

(︂
exp(|𝜆|ℎ− Re((𝑤 + 𝜎 − 𝑧)𝜆))

exp(−𝐴1,𝑙 − 𝐴𝑙|𝜆| − Re𝑤)

)︂
max

𝑥∈Ω𝜎(𝜀)
|𝑃𝜇(𝑥)|

=𝐴(𝑓, 𝜀)𝑏𝑠,𝑙,𝑝𝑒
𝐴1,𝑙 max

𝑥∈Ω𝜎(𝜀)
|𝑃𝜇(𝑥)|

· max
𝜆∈𝜕𝐵𝑠,𝑙,𝑝

exp(|𝜆|(ℎ + 𝐴𝑙) − Re((𝜎 − 𝑧)𝜆)),

where 𝑏𝑠,𝑙,𝑝 is the length of the boundary 𝜕𝐵𝑠,𝑙,𝑝, 𝜎 ∈ C and 𝑝 > 1.
For each 𝑝 > 1 we choose a point 𝜆𝑘(𝑠,𝑙,𝑝) ∈ 𝐵𝑠,𝑙,𝑝. We note that the boundary 𝜕𝐵𝑠,𝑙,𝑝

consists of two arcs on the circumferences 𝑆(𝜆𝑘, 𝛽𝜈𝛾𝑘), 𝜆𝑘 ∈ 𝐵𝑠,𝜈,𝑝, 𝜈 6 𝑙, which have non-
empty intersection with the circumferences 𝑆(𝜆𝑘, 𝛽𝑙𝛾𝑘), 𝜆𝑘 ∈ 𝐵𝑠,𝑙,𝑝. This is why in view of the
inequalities 𝑛̄(Λ1) < +∞, 𝑑Λ1(𝑈1(𝑑0)) < +∞ and (2.6) there exist numbers 𝑐𝑙, 𝑐0,𝑙 > 0 such
that

𝑏𝑠,𝑙,𝑝 6 𝑐0,𝑙|𝜆𝑘(𝑠,𝑙,𝑝)|2 6 𝑐𝑙𝑒
|𝜆𝑘(𝑠,𝑙,𝑝)|, 𝑝 > 1, 𝑠 = 1, 2. (3.5)

Let 𝑙 > 1. According the definition of the number 𝛽𝑙, there exists a number 𝑝𝑙 such that for all
𝑝 > 𝑝𝑙, 𝑠 = 1, 2 and 𝑧 = 𝑟𝑒𝑖𝜙 ∈ 𝐵𝑠,𝑙,𝑝 the belonging holds: 𝑒−𝑖𝜙 ∈ Ξ𝑠,𝑙+2. By Lemma 3.2, there
exists 𝑒𝑖𝜙0 ∈ 𝐽0(𝐷) such that for each 𝑅 > 0 there exists 𝑡𝑙 > 0 satisfying the condition:

Re((𝑡𝑙𝑒
𝑖𝜙𝑠,𝑙 − 𝑧)𝜆) > (ℎ + 𝐴𝑙 + |𝑤| + |𝑤0| + 4)|𝜆|, 𝜆 ∈ 𝜕𝐵𝑠,𝑙,𝑝, 𝑝 > 𝑝𝑙, |𝑧| 6 𝑅.

We let 𝜎𝑠,𝑙 = 𝑤 + 𝑤0 + 𝑡𝑙𝑒
𝑖𝜙𝑠,𝑙 and take 𝑝 > 𝑝𝑙 and |𝑧| 6 𝑅. Then by (3.5) we have:⃒⃒⃒⃒

⃒⃒⃒ ∫︁
𝜕𝐵𝑠,𝑙,𝑝

𝜔𝑓𝑤(𝜆, 𝜎𝑠,𝑙, 𝑃𝜇)

𝑓𝑤(𝜆)
𝑒𝜆𝑧𝑑𝜆

⃒⃒⃒⃒
⃒⃒⃒ 6 𝐴(𝑓, 𝜀)𝑒𝐴1,𝑙 max

𝜇∈Ω𝜎𝑠,𝑙

(𝜀)|𝑃𝜇(𝜇)|𝑏𝑠,𝑙,𝑝 max
𝜆∈𝜕𝐵𝑠,𝑙,𝑝

exp(−4|𝜆|).
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Since 𝑑𝑙, 𝛽𝑙 ∈ (0, 1/2), then increasing the index 𝑝𝑙 if needed, we can suppose that

−4|𝜆| 6 −2|𝜆𝑘(𝑠,𝑙,𝑝)|, 𝜆 ∈ 𝜕𝐵𝑠,𝑙,𝑝, 𝑝 > 𝑝𝑙.

This is why in view of (3.5) we obtain:⃒⃒⃒⃒
⃒⃒⃒ ∫︁
𝜕𝐵𝑠,𝑙,𝑝

𝜔𝑓𝑤(𝜆, 𝜎𝑠,𝑙, 𝑃𝜇)

𝑓𝑤(𝜆)
𝑒𝜆𝑧𝑑𝜆

⃒⃒⃒⃒
⃒⃒⃒ 6 𝐴(𝜀, 𝑙) max

𝜇∈Ω𝜎𝑠,𝑙

(𝜀)|𝑃𝜇(𝜇)|𝑒−|𝜆𝑘(𝑠,𝑙,𝑝)|, 𝑝 > 𝑝𝑙, |𝑧| 6 𝑅,

where 𝐴(𝜀, 𝑙) = 𝐴(𝑓, 𝜀)𝑒𝐴1,𝑙𝑐𝑙. We have:

Ω𝜎𝑠,𝑙
(𝜀) = Ω(𝜀) + 𝜎𝑠,𝑙 = 𝜕(𝐾(𝜀)) − 𝑤 + 𝜎𝑠,𝑙 = 𝜕(𝐾(𝜀)) + 𝑤0 + 𝑡𝑙𝑒

𝑖𝜙𝑠,𝑙 .

The compact set 𝐾 + 𝑤0 is located in the domain 𝐷. This is why according Lemma 3.1, for
some number 𝜀𝑙 > 0, the compact set Ω𝜎𝑠,𝑙

(𝜀𝑙) is also located in the domain 𝐷. The sequence
𝑃𝜇 converges uniformly on this compact set. Therefore,⃒⃒⃒⃒

⃒⃒⃒ ∫︁
𝜕𝐵𝑠,𝑙,𝑝

𝜔𝑓𝑤(𝜆, 𝜎𝑠,𝑙, 𝑃𝜇)

𝑓𝑤(𝜆)
𝑒𝜆𝑧𝑑𝜆

⃒⃒⃒⃒
⃒⃒⃒ 6 𝐴(𝜀𝑙, 𝑙)𝐵(𝑅, 𝑙)𝑒−|𝜆𝑘(𝑠,𝑙,𝑝)|, 𝑝 > 𝑝𝑙, |𝑧| 6 𝑅, (3.6)

We choose a number 𝑝𝑙(𝑅) such that⃒⃒⃒⃒
⃒⃒⃒ ∫︁
𝜕𝐵𝑠,𝑙,𝑝

𝜔𝑓𝑤(𝜆, 𝜎𝑠,𝑙, 𝑃𝜇)

𝑓𝑤(𝜆)
𝑒𝜆𝑧𝑑𝜆

⃒⃒⃒⃒
⃒⃒⃒ 6 𝑒−|𝜆𝑘(𝑠,𝑙,𝑝)|/2, 𝑝 > 𝑝𝑙(𝑅), |𝑧| 6 𝑅. (3.7)

We can suppose that the function 𝑝𝑙(𝑅) is non-decreasing.
Let 𝜇 > 1. We represent polynomials 𝑃𝜇 as

𝑃𝜇(𝑧) = 𝑃𝜇,1(𝑧) + 𝑃𝜇,2(𝑧), 𝜇 > 1, 𝑃𝜇,1(𝑧) =

𝜇∑︁
𝑘=1

𝑛𝑘−1∑︁
𝑛=0

𝑎𝑘,𝑛,𝜇,1𝑧
𝑛𝑒𝜆𝑘𝑧,

𝑎𝑘,𝑛,𝜇,1 = 𝑎𝑘,𝑛,𝜇, 𝑛 = 0, 𝑛𝑘 − 1, 𝜆𝑘 ∈ 𝐵𝑠,𝑙,𝑝, 𝑠 = 1, 2, 𝑙 > 1, 𝑝 > 𝑝𝑙(𝑙),

𝑎𝑘,𝑛,𝜇,1 = 0, 𝑛 = 0, 𝑛𝑘 − 1, 𝜆𝑘 ∈ 𝐵𝑠,𝑙,𝑝, 𝑠 = 1, 2, 𝑙 > 1, 𝑝 > 𝑝𝑙(𝑙).

In view of (3.4), the definition of the polynomial 𝑃𝜇,1 and of the sets 𝐵𝑠,𝑙,𝑝 and since the latter
are mutually disjoint, we obtain:

𝑃𝜇,1(𝑧) =
∞∑︁
𝑙=1

∞∑︁
𝑝=𝑝𝑙(𝑙)

1

2𝜋𝑖

∫︁
𝜕𝐵𝑠,𝑙,𝑝

𝜔𝑓𝑤(𝜆, 𝜎𝑠,𝑙, 𝑃𝜇)

𝑓𝑤(𝜆)
𝑒𝜆𝑧𝑑𝜆, 𝜇 > 1.

We note that the latter sums contain only finitely many non-zero terms. Let 𝑚 > 1. By (3.6)
and (3.7) we have:

|𝑃𝜇,1(𝑧)| 6
𝑚−1∑︁
𝑙=1

𝑝𝑙(𝑚)−1∑︁
𝑝=𝑝𝑙(𝑙)

𝐴(𝜀𝑙, 𝑙)𝐵(𝑚, 𝑙) +
∞∑︁
𝑘=1

𝑒−|𝜆𝑘|/2, |𝑧| 6 𝑚, 𝜇 > 1.

Since 𝑛̄(Λ1) < +∞, the latter series converges. Thus, the sequence of the functions {|𝑃𝜇,1|} is
uniformly bounded on each compact set in the plane. Applying the Montel’s theorem, we find
a subsequence {𝑃𝜇𝑗 ,1}∞𝑗=1 converging uniformly on each compact set in the plane. Let

𝑔1, 0(𝑧) = lim
𝑗→∞

𝑃𝜇𝑗 ,1(𝑧), 𝑧 ∈ C.

Since the sequence {𝑃𝜇} converges uniformly on compact sets in 𝐷, then 𝑃𝜇𝑗 ,2 = 𝑃𝜇𝑗
−𝑃𝜇𝑗 ,1 also

converges uniformly on compact sets in 𝐷 to some function 𝑔2,0. It is obvious that 𝑔 = 𝑔1,0+𝑔2,0.
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By construction, 𝑔1,0 ∈ 𝑊 (Λ1,0,C), where Λ1,0 is a sequence of all pairs 𝜆𝑘, 𝑛𝑘 such that
𝜆𝑘 ∈ 𝐵𝑠,𝑙,𝑝, 𝑠 = 1, 2, 𝑙 > 1, 𝑝 > 𝑝𝑙(𝑙). Let Λ2,0 be a sequence completing Λ1,0 to Λ, that is,
Λ = Λ1,0 ∪ Λ2,0. Then 𝑔2 ∈ 𝑊 (Λ2,0, 𝐷).

We observe that each of the sets

{𝑡𝜔 : 𝜔 ∈ Ξ1,𝑙 ∪ Ξ2,𝑙, 𝑡 > 0}, 𝑙 > 1,

contains just finitely many points 𝜆̄𝑘 such that (𝜆𝑘, 𝑛𝑘) ∈ Λ2,0. This is why the embedding
Ξ(Λ2,0) ⊆ 𝑆(0, 1) ∖ int 𝐽(𝐷) holds.

Let Ξ(Λ) ⊆ int 𝐽(𝐷). Then Λ2,0 is a finite set. In this case 𝑔2,0 is a polynomial. This is why
𝑔2,0 ∈ 𝑊 (Λ2, 0,C). We let 𝑔1 = 𝑔1,0 + 𝑔2,0, Λ1 = Λ1,0 ∪ Λ2,0, Λ2 = ∅ and 𝑔2 = 0.

Suppose now that Ξ(Λ) ∖ int 𝐽(𝐷) ̸= ∅. In this case we let Λ1 = Λ1,0, Λ2 = Λ2,0, 𝑔1 = 𝑔1,0
and 𝑔2 = 𝑔2,0. The proof is complete.

4. Fundamental principle

In this concluding section we formulate and prove the main result of the work. First we
provide some known results, which will be employed below.

Let 𝑎, 𝜙 ∈ R. We consider a half-plane

Π(𝑎, 𝜙) = {𝑧 ∈ C : Re(𝑧𝑒−𝑖𝜙) < 𝑎}.

We let

𝑆Λ(𝜙) = min
{𝜆𝑘(𝑗)}

lim
𝛿→0

lim
𝑗→∞

ln |𝑞𝑘(𝑗)Λ (𝜆𝑘(𝑗), 𝛿)|
|𝜆𝑘(𝑗)|

, 𝑞𝑘Λ(𝑧, 𝛿) =
∏︁

𝜆𝜈∈𝐵(𝜆𝑘,𝛿|𝜆𝑘|),𝜈 ̸=𝑘

(︂
𝑧 − 𝜆𝜈

3𝛿|𝜆𝜈 |

)︂𝑛𝜈

,

where the minimum is taken over all subsequences {𝜆𝑘(𝑗)} of the sequence {𝜆𝑘} such that
𝜆𝑘(𝑗)/|𝜆𝑘(𝑗)| → 𝑒−𝑖𝜙, 𝑗 → ∞.

The sequence Λ = {𝜆𝑘, 𝑛𝑘} is called almost real if Ξ(Λ) = {1} and Re𝜆𝑘 > 0, 𝑘 > 1.
The following result was proved in Theorem 3.5 in work [11].

Theorem 4.1. Let 𝑎 ∈ R, 𝑊 be a closed non-trivial invariant subspace in 𝐻(Π(𝑎, 0)) with
an almost real spectrum Λ = {𝜆𝑘, 𝑛𝑘}. The following statements are equivalent.
1) Each function 𝑔 ∈ 𝑊 is expanded into series (1.1) converging uniformly on compact sets

in Π(𝑎, 0).
2) 𝑆Λ = 0.

We formulate also a result from work [9], see Corollary from Theorem 9.5, which resolves the
fundamental principle problem for invariant subspaces of entire functions.

Theorem 4.2. Let Λ = {𝜆𝑘, 𝑛𝑘}, 𝑛̄(Λ) < +∞. The following statements are equivalent:
1) 𝑆Λ > −∞;
2) Each function 𝑔 ∈ 𝑊 (Λ,C) is represented by series (1.1), which converges uniformly on

compact sets in the plane.

We are going to prove an auxiliary result, which is of an independent interest.

Theorem 4.3. Let Λ = {𝜆𝑘, 𝑛𝑘}, 𝑆Λ = −∞. Then there exist numbers {𝑑𝑘,𝑛} and numbers
𝑘𝑠, 1 = 𝑘1 < 𝑘2 < . . ., such that the series

∞∑︁
𝑠=1

(︃
𝑘𝑠+1−1∑︁
𝑘=𝑘𝑠

𝑛𝑘−1∑︁
𝑛=0

𝑑𝑘,𝑛𝑧
𝑛𝑒𝜆𝑘𝑧

)︃
(4.1)

converges uniformly on compact sets in the plane and series (1.1) diverges at each point in the
plane.
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Proof. According the assumptions and the definition of 𝑆Λ, we find a subsequence of natural
numbers {𝑘(𝑝)}∞𝑝=1 such that

ln |𝑞𝑘(𝑝)Λ (𝜆𝑘(𝑝), 𝛿𝑝)|
|𝜆𝑘(𝑝)|

6 −𝑝, (4.2)

where (0, 1/4) ∋ 𝛿1 > . . . > 𝛿𝑝 → 0, and

|𝜆𝑘(𝑝+1)| > 2|𝜆𝑘(𝑝)|, 𝑝 > 1. (4.3)

We let

𝜆𝑘(𝑝) = 𝑟𝑝𝑒
𝑖𝜙𝑝 , 𝐵𝑝(𝑐) = 𝐵(𝜆𝑘(𝑝), 𝑐𝛿𝑝𝑟𝑝),

𝑐𝑝 =

√︁
|𝑞𝑘(𝑝)Λ (𝜆𝑘(𝑝), 𝛿𝑝)|, (4.4)

𝑔𝑝(𝑧) =
1

2𝜋𝑖

∫︁
𝜕𝐵𝑝(5)

𝑒𝜆𝑧𝑑𝜆

(𝜆− 𝜆𝑘(𝑝))𝑞
𝑘(𝑝)
Λ (𝜆, 𝛿𝑝)

, 𝑝 > 1. (4.5)

We have:
|𝑞𝑘(𝑝)Λ (𝜆, 𝛿𝑝)| > 1, 𝜆 ∈ 𝜕𝐵𝑝(5).

Therefore,
|𝑔𝑝(𝑧)| 6 sup

𝜆∈𝜕𝐵𝑝(5)

|𝑒𝜆𝑧| 6 exp(Re(𝜆𝑘(𝑝)𝑧) + 5𝛿𝑝𝑟𝑝|𝑧|), 𝑧 ∈ C. (4.6)

Let 𝐾 be an arbitrary compact set. By (4.6)

|𝑔𝑝(𝑧)| 6 𝑒𝐴𝑟𝑝 , 𝑧 ∈ 𝐾, 𝑝 > 1,

for some 𝐴 > 0. In view of (4.2)–(4.4) this implies:
∞∑︁

𝑝=𝑝0

|𝑐𝑝𝑔𝑝(𝑧)| 6
∞∑︁

𝑝=𝑝0

exp(𝑟𝑝(−𝑝/2 + 𝐴)) 6
∞∑︁

𝑝=𝑝0

𝑒−𝑟𝑝 < ∞, 𝑧 ∈ 𝐾.

where 𝑝0 > 2(𝐴 + 1). Thus, the series

𝑔(𝑧) =
∞∑︁
𝑝=1

𝑐𝑝𝑔𝑝(𝑧)

converges uniformly on each compact set in the plane. Employing the residues and the defintion

of the function 𝑞
𝑘(𝑝)
Λ (𝜆, 𝛿𝑝) and (4.4) for each 𝑝 > 1, we obtain:

𝑐𝑝𝑔𝑝(𝑧) = 𝑑𝑘(𝑝),0𝑒
𝜆𝑘(𝑝)𝑧 +

∑︁
𝜆𝑘∈𝐵𝑝(1),𝑘 ̸=𝑘(𝑝)

𝑛𝑘−1∑︁
𝑛=0

𝑑𝑘,𝑛𝑧
𝑛𝑒𝜆𝑘𝑧, 𝑑𝑘(𝑝),0 =

𝑐𝑝

𝑞
𝑘(𝑝)
Λ (𝜆, 𝛿𝑝)

.

We also let 𝑑𝑘(𝑝),𝑛 = 0, 𝑛 = 1, 𝑛𝑘(𝑝) − 1,

𝑑𝑘,𝑛 = 0, 𝑛 = 0, 𝑛𝑘(𝑝) − 1, 𝜆𝑘 ∈ 𝐵𝑝(1), 𝑝 > 1.

Since 𝛿𝑝 ∈ (0, 1/4), 𝑝 > 1, by (4.3) there exist indices 𝑘𝑠, 1 = 𝑘1 < 𝑘2 < . . ., such that

𝑚∑︁
𝑠=1

(︃
𝑘𝑠+1−1∑︁
𝑘=𝑘𝑠

𝑛𝑘−1∑︁
𝑛=0

𝑑𝑘,𝑛𝑧
𝑛𝑒𝜆𝜆𝑘𝑧

)︃
=

𝑚∑︁
𝑝=1

𝑐𝑝𝑔𝑝(𝑧), 𝑚 > 1.

Thus, series (4.1) converges uniformly on compact sets in the plane.
By (4.4) and (4.2) we have:

|𝑑𝑘(𝑝),0𝑒𝜆𝑘(𝑝)𝑧| =
1√︁

|𝑞𝑘(𝑝)Λ (𝜆𝑘(𝑝), 𝛿𝑝)|
|𝑒𝜆𝑘(𝑝)𝑧| > exp((𝑝/2 − |𝑧|)𝑟𝑝) → ∞, 𝑝 → ∞.
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Therefore, series (1.1) diverges at each point in the plane. The proof is complete.

Now we are in position to formulate and prove the main result of the work.

Theorem 4.4. Let 𝑎, 𝜙 ∈ R, 𝑊 be a closed invariant subspace in 𝐻(Π(𝑎, 𝜙)) with the
spectrum Λ = {𝜆𝑘, 𝑛𝑘}, 𝑛̄(Λ) < +∞. The following statements are equivalent.

1) Each function 𝑔 ∈ 𝑊 is expanded into series (1.1) converging uniformly on compact sets
in Π(𝑎, 𝜙).

2) 𝑆Λ(𝜙) = 0 and 𝑆Λ > −∞.

Proof. By the assumptions, 𝑛̄(Λ) < +∞. Therefore, the system ℰ(Λ) is incomplete in
𝐻(Π(𝑎, 𝜙)) and 𝑊 is a closed non-trivial invariant subspace in 𝐻(Π(𝑎, 0)).

Assume that 1) holds. Suppose that 𝑆Λ = −∞. Then by Theorem 4.3 there exist numbers
{𝑑𝑘,𝑛} and indices 𝑘𝑠, 1 = 𝑘1 < 𝑘2 < . . . such that series (4.1) converges uniformly on compact
sets in the plane and series (1.1) diverges at each point in the plane. Let 𝑔 be the sum of
series (4.1). Then 𝑔 ∈ 𝑊 (Λ,C) ⊂ 𝑊 (Λ,Π(𝑎, 𝜙)). It has been mentioned above that 𝑊
admits the spectral synthesis. This is why 𝑊 = 𝑊 (Λ,Π(𝑎, 𝜙)). According Statement 1), the
representation holds:

𝑔(𝑧) =

∞,𝑛𝑘−1∑︁
𝑘=1,𝑛=0

𝑎𝑘,𝑛𝑧
𝑛𝑒𝜆𝑘𝑧, 𝑧 ∈ Π(𝑎, 𝜙),

and the series converges uniformly on compact sets in the half-plane Π(𝑎, 𝜙). Then it follows
from Lemma 2.2 that

𝑑𝑘,𝑛 = 𝑎𝑘,𝑛, 𝑛 = 0, 𝑛𝑘 − 1, 𝑘 > 1.

This contradicts to the fact that series (1.1) diverges at each point in the plane. Thus, 𝑆Λ >
−∞.

Let {𝜆𝑘(𝑗)} be a subsequence {𝜆𝑘} such that 𝜆𝑘(𝑗)/|𝜆𝑘(𝑗)| → 𝑒−𝑖𝜙, 𝑗 → ∞. We let
Λ0 = {𝑒𝑖𝜙𝜆𝑘(𝑗), 𝑛𝑘(𝑗)}. Then Ξ(Λ0) = {1}. This is why there exists an index 𝑚 such that
Λ0,0 = {𝑒𝑖𝜙𝜆𝑘(𝑗), 𝑛𝑘(𝑗)}∞𝑗=𝑚 is an almost real sequence. Let Λ0,1 = {𝜆𝑘(𝑗), 𝑛𝑘(𝑗)}∞𝑗=𝑚. According
Statement 1), each function in the subspace 𝑊 (Λ0,1,Π(𝑎, 𝜙)) ⊂ 𝑊 (Λ,Π(𝑎, 𝜙)) is expanded
into series (1.1) converging uniformly on compact sets in Π(𝑎, 𝜙). Therefore, each function in
the subspace 𝑊 (Λ0,0,Π(𝑎, 0)) possesses the same property, but already on the compact sets in
Π(𝑎, 0). Then by Theorem 4.1 the identity 𝑆Λ0,0 = 0 holds. This implies that 𝑆Λ1 = 0, where
Λ1 = {𝜆𝑘(𝑗), 𝑛𝑘(𝑗)}. Thus, 𝑆Λ(𝜙) = 0.

Assume now that Statement 2) holds and 𝑔 ∈ 𝑊 (Λ,Π(𝑎, 𝜙)). Since 𝑛̄(Λ) < +∞, the system
ℰ(Λ) is incomplete in 𝐻(Π(𝑎, 𝜙)). By Theorem 3.4, there exist sequences Λ1 and Λ2 such that
Λ = Λ1 ∪ Λ2, Ξ(Λ2) ⊂ 𝑆(0, 1) ∖ int 𝐽(Π(𝑎, 𝜙)) and the representation 𝑔 = 𝑔1 + 𝑔2 holds, where
𝑔1 ∈ 𝑊 (Λ1,C) and 𝑔2 ∈ 𝑊 (Λ2,Π(𝑎, 𝜙)).

Since 𝑆Λ > −∞, then 𝑆Λ1 > −∞. Then by Theorem 4.1, the function 𝑔1 is represented by
series (1.1), which converges uniformly on compact sets in the plane.

The set 𝑆(0, 1) ∖ int 𝐽(Π(𝑎, 𝜙)) coincides with the point 𝑒𝑖𝜙. This is why Ξ(Λ2) ⊆ {𝑒𝑖𝜙}. Let
Λ2 = {𝜆𝑘(𝑗), 𝑛𝑘(𝑗)}. If Λ2 is a finite sequence, then 𝑔2 is an exponential polynomial and this
completes the proof. Otherwise there exists an index 𝑚 such that Λ2,0 = {𝑒𝑖𝜙𝜆𝑘(𝑗), 𝑛𝑘(𝑗)}∞𝑗=𝑚

is an almost real sequence. Let Λ2,1 = {𝑒𝑖𝜙𝜆𝑘(𝑗), 𝑛𝑘(𝑗)}𝑚−1
𝑗=1 and Λ2,2 = {𝜆𝑘(𝑗), 𝑛𝑘(𝑗)}∞𝑗=𝑚. By

Lemma 3.3 the representation 𝑔2 = 𝑔2,1 + 𝑔2,2 holds, where 𝑔2,1 is an exponential polynomial
in the space 𝑊 (Λ2,1,C) and 𝑔2,2 ∈ 𝑊 (Λ2,2,Π(𝑎, 𝜙)). Since 𝑆Λ(𝜙) = 0, then 𝑆Λ2,0 = 0. Then
by Theorem 4.1, each function in 𝑊 (Λ2,0,Π(𝑎, 0)) is expanded into series (1.1) converging
uniformly on compact sets in Π(𝑎, 0). Therefore, the function 𝑔2,2 is expanded into series (1.1)
converging uniformly on compact sets in Π(𝑎, 𝜙). The proof is complete.
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