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PROPERTIES OF CONVEX HULL GENERATED BY
INHOMOGENEOUS POISSON POINT PROCESS

IM.KHAMDAMOV

Abstract. The paper is devoted to the limit distribution study of the exterior of a
convex hull generated by independent observations of two-dimensional random points having
Poisson distributions above the parabola. Following P. Groeneboom [I], we note that near
the boundary of support, the Binomial point process is almost indistinguishable from the
Poisson point process. Therefore, the approximation of a Binomial point process to a Poisson
process is not considered here; it is believed that it is sufficient to study the functionals of
the convex hull generated by the Poisson point process. Using the modified P. Groeneboom
technique, the so-called strong mixing and martingale properties of the vertex Markovian
jump stationary process, the asymptotic expressions are obtained for the expectation and
variance of the external part of the area of the convex hull inside the parabola. This is a
continuation of results by H. Carnal in [2], where an asymptotic expression was found only
for mean values of basic functionals of a convex hull. The asymptotic expression for the
variance of the area of a convex hull was later obtained by J. Pardon [3] as no regularity
conditions were imposed on the boundary of the support of a uniform distribution. The
asymptotic expressions obtained here are used in the proofs of the central limit theorem for
the area of the convex hull. Similar results were established in the studies by A.J. Cabo and
P. Groeneboom [4] for the case as the initial distribution in a convex polygon is uniform.
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1. INTRODUCTION

Many researchers studied the distribution of boundary functionals of convex hulls. From an
analytical point of view, these functionals have a very complicated nature. For many years, due
to the lack of appropriate research methods, the main progress in this direction was limited
by studying the expectation of a number of vertices, area and perimeter of a random polygon,
see [2], [5], [6], |7l, [8]). A great progress in this direction for the first time was achieved in
[1]. Here the approximation methods for binomial point processes with homogeneous Poisson
point processes were successfully applied. Then the powerful properties were found, namely,
martingality, strong mixing, and stationarity of functionals of the vertex process of a convex
hull generated by the Poisson point process. The limit distribution for a number of vertices of
a convex hull was obtained in the case, when the support of the initial uniform distribution
is either a convex polygon or an ellipse. Then the method was developed for limit theorems
for the area and perimeter of a convex hull in a polygon [4] and for the area in a disk [9].
These methods were applied in [I0] to prove the limit theorems for the number of vertices,
perimeter, and area of the convex hull, for the case when the tails of the initial distribution had
an exponential form, including, in particular, the normal distribution. At the same time, using
the methods given in [I], by the direct probabilistic method [I1] the limiting joint probability
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distribution was obtained for the number of vertices, area and perimeter of a random convex
hull generated by uniformly distributed points inside a polygon. In [12], in a one-dimensional
case, it was proved that the contribution of the extreme terms of the variational series to the
sum was significant when the distribution tail of initial random variable behaved as a regularly
varying function. In a multidimensional case, the convex hull is the most correct generalization
of the extreme terms of variational series and, therefore, the present study can be considered
as a continuation of earlier research by authors.

2. FORMULATION OF PROBLEM AND MAIN RESULTS

Let the distribution support A be the unit disk centered at a point (0,1). Assume that
random points (r;, ;) are given in the polar coordinate system with the origin at (0,1) in a
disk A, where r; and «; are independent and «; is uniformly distributed in [, 7] and

1
IP(n->1—x)—xﬁL(—), O<az<l, p=>1, (2.1)
x

where L(z) is the slowly varying function in sense of Karamata represented in the following
form

u

L(u) = exp /#dt : e(t) — 0, t — 00.

We assume that X; = r;sinay, 1 —Y; = r; cosa; and we denote by C), the convex hull gen-
erated by these random points (X1, Y)); (X2, Y2);...; (X, Ys). The symbols v, s, and [, stand
for the numbers of vertices, area and perimeter of C),, respectively. Under such assumptions,
asymptotic mean values for the functionals of the convex hull were obtained in [2].

In this paper, we study the functional s, as the random points are distributed in the same
way as in (2.1). Following [I],[11], [13]-[15], it is sufficient to study the functionals of the convex
hull in the case when it is generated by the Poisson point process. That is, random points with
distribution are easily approximated by inhomogeneous Poisson point processes II, (),
defined inside a parabola

with intensity

B 22\ b
— y—— L 2 dedy as AC R,
An(A) = 2W_L /éw ( ) — 5

as A¢ R,,

where b, is the least root of equation
(g4l
b P L) =1
For all a € R we define the vertices of process W, (a) = (X,(a), Y,(a)) as points (X;,Y;), for
which Y; — aX; is minimal. In view of the definition of W,,(a), that this is a non-stationary
Markovian jump process.
Before proceeding to the main results of the paper, we need to introduce some notations.
Let 0 =ap < a1 < --- < ax < a be the time of the process jumps {W(c), ¢ < a}, denote by
Ay the area of the domain enveloped by lines y = Y (0), y = %, A; is the area of the domain
enveloped by the lines

y=a;i1(z—X(ai1)) +Y(ai1), y=a;(z — X(a;i-1)) +Y(ai-1), Y=
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for each 1 < i < k.
Let Ala] be the the area of the domain enveloped by the curves

1’2

:E.

If to assume that A(0,a) = Ao + Ay + -+ + A + Ala], then, by from the property of the
independence of increments of the Poisson point process, A(0,a) behaves as the sum of a
random number of independent random variables, see [13].

As P. Groeneboom noted, to simplify the calculations, L(x) = 1 can be taken, since all the
calculations can easily be transferred to the case of an arbitrary slowly varying function. Then

y=ap(r— X(ap) +Y(ar), y=alx—X(a))+Y(ar), vy

L/( _ 2
A4y = { 2mvin ) T 20,
n A

0 as A R,.

B—1
) dedy as ACR,,
(2.2)

2
bn = n,2B8+1
The following theorem holds true.
Theorem 2.1. At n — oo, the identity holds

EA(0,a) = ab AV, DA, a) = ab AV,
where

AD ~ ¢y, AP — Cy(B) + C5(8) + Ca(B),

28+3

_28(B(3:8) +B(5:0)) Vor N (2843
) =T (3(5+1;%>> F(25+1).

asn — oo. Here t )\511) and )\%2) are constants; they coincide with the corresponding constants
given in [2].

Theorem 2.2. Asn — oo,

A(0,a) — ab, A
(0,a) — ab, A :d>N(O,1),

abz AW

where = denotes the convergence in distribution and N(0,1) is a standard normally distributed
random variable.

3. PROPERTIES OF VERTEX PROCESSES OF A CONVEX HULL

In this section we prove a series of preliminary lemmata, which will be employed then in the

proof of Theorems [2.1] and [2.2]

The first lemma provides forms of distributions W, (a) in various situations.

Lemma 3.1. Let
a’b,,
Ss=Yy—axr+ 5

B Tk ( 1) ( 2 )‘“
Y P B(g+1.- ~ ) dud
SE exp Jon B+ '3 Y 5%, ray,

Then

P (W,(0) € (dx,dy)) =
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B3 22\ A1
P (W,(a) € (dz,dy)) = 27??/()_ exp (— \/§7rB (ﬁ +1; %)) (y — E) dxdy,
P(Wa(a) = Wi (0)/Wn(0) = (z,y))

1 2bp s u2 3 V2bny u2 3
_ _ _ ) gu— L R
P o, / (S an) " / (y 2bn> "
x—abn T

Proof. Let v = a(u — x) + y be a straight line passing through points (x,y) with an angular
coefficient a and D(a, z,y) be the domain enveloped by curves v = a(u — x) +y and v = 3 il

b
It is easy to see that if u; and us are the roots of equation

u2

2b,,

then u; o = ab, & /2b,s. Let us find A% (D(a, z,y)); we recall that A® was introduced in (2.2).
We note that

=a(u—x)+vy,

u? a?b,  (u— ab,)” (u — aby)?
y—HL(u—:z:)—ﬁ—y—ayH— > . :S—T
Then
V2bys

u

0 278 1 U2 B
A, (D(a,z,y)) =5 \/_/[quau—x)—ﬁ] du:27r\/E (s—%) du

:\/ijfﬂ/(l—if)ﬁdu Sﬂ\;i (5—1—1' )

0
Let

d= \/(Aa:)2+(Ay)2, v=au+c_, v=au+cyd
be two lines parallel to v = a(u — x) + y and passing at a distance d from above and below,
respectively.
By D (a,z,y) and D] (a,z,y) we denote the domains enveloped respectively by bounded
curves

v =au+c_, V= — and v=au+ cy, V= —.

Assume that
Apy = (z, 2+ Az) x (y,y + Ay).
It follows from the definition of W,,(a) that if the number of points 7(A) in A of inhomogeneous
Poisson point processes I1,, (+) satisfies the inequality

P (Wy(a) € Ayy) <P (F(Ayy) =1, 7 (A (a,z,y)) =0). (3.1)
On the other hand, it is easy to see that
P(Wy(a) € Ayy) 2 P (T(Asy) =1, T (D} (a,2,y) — Ayy) =0). (3.2)

Taking into consideration a Poisson process property, namely, the independence of increments,
using inequalities ([3.1)) and (3.2)) as well as as d — 0, we arrive at the first identity of the
lemma.

We proceed to the proof of the second identity. It is easy to confirm understand that by the
property of the independence of increments, the chain of identities hold:

P (W(a) = W(0)/W(0) = (z,y)) =P (7 (D(a, z,y) — D(0,z,y)) = 0/7 (D(0, ,y)) = 0)
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=P (7 (D(a,z,y) — D(0,z,y)) = 0)
=P (7 (D*(a,2,y))) = 0)
=exp (—Ay (D*(a, 7,y)))

where D*(a, z,y) is a set of points in the domain enveloped by lines

v=alu—=z)+y, v =1y, v=—.

By the definition of a measure of A,(-), we obtain

(abaty/2bos ) V2iy 5
LD o) =y [ Jlumab)T g, / BN
n a7x7y _27T bn S an U y 2bn U
\ xT T
.
] V2by s u2 3 2bny u2 3
R — — — ) du-— —— ) 4
2w/ by, / (S an) " / (y 2bn> !
kxfabn T
This completes the proof. O

Assume that

R, (a) = X, (a) — aby, Sp(a), =Y, (a) — —=

It is obvious that

and therefore
P (T,(0) € (dr,ds)) =P (W, (0) € (dr,ds)) .

Lemma 3.2. T),(a) forms a Markovian jump process and

sBT3 r2 0\ P!
P(T,(0) € (dr,ds)) = #exp {_EB (ﬁ +1; %) } (s - E) drds,
P(Tw(a) = (r1,51)/Tn(0) = (r0, 50))

1 1

1 B4y / 2\8 B+3 N
e | [ [ e a-st [ aee)yal )
V21 J J
V/2bnsy V2bnso
where 1 =ro — aby,, s1 = sy — arg + a22b"; and

P(T,(a) € (dr1,ds1)/T,(0) = (ro,s0)) = P (Th(a) € (dr1,dsy)),
if

ab,, — \/ansl > \/2bn30,
and

P(T,(a) € (dry,ds2)/T,(0) = (r1,$1))

1

1 1 p+i / 2\8
- = S 2 1—t*)Pdt
2w/ by, P < V2r <S2 ( )

S1 52 + abn

ay/2bpsg  4/2bnso
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1

2\ A1
- sf+% / (1—1t%)” dt)) (52 - 2%) dradss.

5152 + abn

ay/2bnsy V2bnsy

Here
2
(ri,si)ED:{(r,s): 52%}, abn—\/anszé\/ansl,
a?b,, a?b,,
32—|—T—|—a7"2 = 51 = Sg — 5 + ary.

Proof. Statement 1 of the lemma is implied immediately by the definition of 7,(a) and
Lemma 311

In what follows, we consider three possible cases regarding the position of the vertex process
W, (a).

Case 1: No jumps as the time changes from a to b (Statement 2);

Case 2: There are jumps as the time changes from a to b, but the sets D(a,x1,y1) and
D(b, x4, y2), determining the jump state W,,(-) at the time point a and b are disjoint (Statement
3);

Case 3: As the time changes from a to b, there are jumps and the sets D(a,z,y;) and
D(b, xs,ys) determining the jump state W, (-) at the moment of time a and b intersect (State-
ment 4).

All cases can be treated in a similar way, this is why we deal with Case 1 only. We are going
to calculate the probability

Pa,b) =P (W(b) = W(a)/W(a) = (,9));

here the methods from second part of the proof of Lemma [3.1] are used.
We have:

bbr++/2bn S (b) 5
1 2
P(a,b) =exp (— I / <b(u—x)+y—%) du

x

abp++/2bnS(a)
u? B
— — —— | d
/ (a(u x) +y 2bn> U>>
where

2 2
a2bn7 S(b):y—bx+bbn.

We let r(a) =  — aby, r(b) = x — bb,, then

S(a) =y —azr +

u? a’b,, u—abn2
a(u—x)—i—y—ﬁ:y—ax%— 5 _ 5 ):s(a)—

Substituting the variables, we get

2by, s(b) 2by, s(a)

P(a, b) = exp —2;@ / (s(b)—%)ﬁdu— / (s(a)—%)ﬂdu

r(b) r(a)
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1 1
1 1 1
=exp T s(b)?T2 / (1- tQ)B dt — s(a)’T2 / (1- tz)ﬂ dt

r(b) r(a)
/2bn s(b) 2bn s(a)

=P (T(b) = (r(b), 5(b)) /T(a) = (r(a), 5(a))).

Redenoting
ro =T, S0 =1, ry = — aby,
a®b, b2b
sl_y—am—l—T, re = T — bb,, S2 =Y 5
we obtain b a)
ry =11 — (b — a)by, 52231—(b—a)7“1+T".
Hence,

P(T(b) = (r2,52) /T(a) = (r1,51)) = P(T(b—a) = (r2,52) /T(0) = (r1, 1))
this proves Statement 2 of the lemma is obtained. The proof is complete. n
We consider the following o-algebras generated by process T),(a):
3V =g {T(c) : ¢ < 0}, St =0 {T,(c): c > a}.

Lemma 3.3. For every A € SU and B € I, the inequality

TL

IP(ANB) —P(A)P(B)| < m(a)

1 [a2,\"*? 1
To(a) < dexp <—E (a8 ) B(ﬁ+1;§>>.
In particular, if

an&‘; " _2B8-5-1
a> an = +/2b, logn, ey = (logn) 205D | 0<d<1,

holds, where

then S
To(a) < dexp <—c (log n)H?) :

Proof. We introduce events:
(Ian Gan
G1 = qWw: Sn(O) < 3 s G2 = q W Sn(a) < 3 y G = G1 N GQ.

Since the sets GG; and G, are disjoint, due to the property of the independence of increments,
inhomogeneous Poisson point processes for each A € G; € 2 and B € G5 € %" we have

P(ANB/G) =P (A/G)P(B/G)

Then it is easy to see that
P(ANB)>P(ANBNG) =P(G)P(AN B/G)
=P(G)P(A/G)P(B/G)
P(ANG)P(BNG)
P(G)
>P(ANG)P(BNG)

= (P(4) - P(@)) (B(B) - P(G))
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>P(A)P(B) — 2P (@) )
Here G is a completement to the event G. On the other hand,
P(ANB)<P(ANBNG)+P(G) =P(G)P(ANB/G) + P (G)
=P(G)P(A/G)P(B/G) IP( )

_P(ANG)P(BNG) —
- ]P’(G) (G)

QC

=P(ANG)P(BNG) + IP’AmG) (BNG)+P(G)

P(
<P(A)P(B) + 2P (G) :
Then it is easy to see that

WV

P(C) =P (GrUTs) <P (Gh) + P (Ga) = 2P (C)) = 2P <Sn(0) “an> .

By last three inequalities we obtain

F (AN B) - PUR(E)| <1B (5,0) > ;) —any (v > ")
2 B+
:Zlexp{—i27r (agbn> B(ﬁ—l—l;%)}.

P (AN B) — P(A)P(B)| < 4exp {—c (log n)H%} .

The proof is complete. O
This Lemma implies immediately that

Lemma 3.4. For all € > 0, a > 0 the inequality

o0
Z 75(a) < 0o
n=1

holds true.

We define
V2bps V2bys—r

B-1 6—1
O ) = 5 [t (o) g [ ()

where t = (r, s).

Lemma 3.5. The processes

and



PROPERTIES O CONVEX HULL ... 89

are martingales with respect to o—algebra

S, =0 {T(c) = (r(c),s(c)): 0<c<a}.
Proof. We first note that according the proof of Lemma we have
&

B—-1

P(W(a+h) € (dus, dyz) /W(a) = (21,51)) = o \/—(
Let

DO(a, h,r,s) =3 (u,v) : z<u<ab, +v/20,5(a), alu— ) <v<(a+h)(u—x)+y};

DW(a, h,r,s) = {(u, v) 1 ab, + v/ 2bys(a (a+ h)b, + /2b,s(a + h),

2
% <o < (a+h)(u—x)+y},
D(a,h,r,s) = D9(a, h,r,s)UDWV(a, h,r,s),
where
b, h)?b,,
s(a) =y a2 : s(a+h)=y—(a+h)x %.
It is easy to see that the areas are
2
SpO (ahrs) = / h(u — z)du = 3 <\/2b s+ ab, — x) =3 (\/2bns — r) ,
(a+h)bn++/2bns(a+h)
2
Soowea= [ (@00 vy g )au= o)

abn++/2bns(a)
Further, for each k, for small h > 0 we get
E{A(a,a+h), in DO (a, h,r,s), there are k vertices W (-)/W (a) = (z,y)} = O(K*),
E{A(a,a+ h), in DO(a, h,r,s), there are no vertices W (-)/W(a) = (z, y)}

Sp© (ahrs) P (zn D(O)(a, h,r,s) no vertices W(-)/W(a) = (a:,y)) (3.4)
, .
= g (\/ 20,8 — r) exp{—A, (D(a,h,r,s))} + o(h)
2
= g <\/2bns - r) + o(h).
This yield the first statement of the Lemma.
Using (3.4), we obtain
E {A%(a,a+ h)/W(a) = (,)} = O(k2) (35)

Then, by and , we have
E(A*(0,a + h) — A%(0,a)/W(a) = (z,y)) =E(A*(a,a + h)/W(a) = (z,y))
+2A(0,a)E(A(a,a+ h)/W(a) = (z,y)) + o(h)
—hA(a) (\/21)”5 - 7‘)2 +o(h).

The proof is complete. O
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4. PROOF OF THEOREMS 2.1 AND 2.2

In this section, the asymptotic behavior of the moments A(0,a) is found as n — oo for a
fixed a.

Using Lemma we have

EA(0,a) / (\/W )

Let us find each factor J; and J,. We see that

o0 2843
, B+3 1 2 Vor W /9843
J= [ Pt 2B 1= ) bds = r .
: /S eXp{ Ner (B+ 2)} ’ 2ﬁ+1(3(5+1;§)) (25+1)
0

We replace the variable ¢t = r2 and in view of the identity

1
/7’(1 — ) dr =0,
5

we get:
1 1 1
Jo :/(1 — )21 =3P ldr = /(1 — )y — 2/7‘(1 — )L dr
21 1 1
1 1 1
+ /r2(1 — ) dr = 2/(1 — ) lar 4 2/7"2(1 — ) dr
“1 0 0
1 1
:/t—éu — ) dt + /t%(1 —t)’~'dt =B (%;ﬁ) + B (g;ﬂ) .
0 0
Hence,

2843
AL ~ 26 (B (5:6) + B (3:8)) V21 p . (Qﬁ + 3)
' V2r(28+1) B(B+1;1) 26+1)
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It is easy to see that

EA2(0,q) = / EA(b) ( 2b,5(b) — r(b)>2 db

2

/deEA (k + 1), b — k:h)( 2bns(b)—r(b)>

m

:/adka:OE<E<D*(b—(k+1)h,b—kh,:z:0,y0) (1.1)
- ( 20,5(b) — r(b)>2 /(b — kh, oo))) +o(h)
:/ dbilﬁl(( 2,5(0) (b))

0 k=0

2

CB(D*(b— (k+ 1)h, b — kh, 30,50)/W (b — kh) = (z0,50)) ) + (),
where
D*(a — h,a, zo, ) Z{(u,v) s ab, — \/2b,s(a) < u < xo,
(a—h)(u—x0) +yo <v < alu—xo) —i—yo}.

Then the area of the domain D*(a — h, a, xq, o) is

)
SD+(a—h.azome) = / ((a = h)(u — z0) + yo — a(u — z9) — yo) du

E(( 2bns(b)—r(b)>2E(A*(b—(k+ V)i, b— kh)/S(b — khoo)

&=

2

S
V)

n

/N

(b)—r(b)>2E<< 2bns(b — ki) + (b — k;h)) /(b — kh,oo))

) (42)
|

(( 20,5(b) — r(b)>2< 2bns(b—kh)+r(b—kh)> /(b — kh, oo))
2b,5(b) — r(b)>2 <\/m+r(b - kh))Q) .

&=

Il
NS NS NS
=
e i R
-/ =
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On the other hand, we readily confirm that
2

E < 2b,s(a) — r(a)>2 =E < 2b,s(a) + r(a)) :

Let h = b/m, then from the latter identity (4.1)), (4.2)) imply that

EA%(0, a) /deE(( 2b,5(b (b))2
"E(A*(b— (k + 1)h,b— kh)/S(b — kh, oo))) +o(h)
%/ mz (( 2bys( r(b)>2< zbns(b—kh)+r(b—kh))2) h+ o(h).

Hence, as m — oo, we get
b

BA(0,a) %/adb/dd@{( 2s(b) —r(b)>2< 2bn8(0)+r(c)>2}

0 0

Then it follows from Lemma 3.5 that

/db/ch( 20,5 ( ( 26,5 (c) +7’(c)>2>

_ (%/dbE( 2b,,5(b) fr(b>)2>2
:%/ db/bdc]E(<\/M—r(b)>2( 2bns(0)+r(0))2)
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Hence,

QacEn a
1 1
—— | .| =TI+ L.
2/ +2/ 1+ 1o
0 aen

Let a > u,(ll)bn/en, then we let

It is easy to see that for each 7 > 0
E (v/2bus(a) - r(a))2 (V/2605(0) + 7’(0))2
) ( Obns(a) — r(a)>2]E ( 2b,5(0) + 7“(0))2

=0 (@) exp (= C (a%,) "7

Ir=o0 <ab§> .

We are going to estimate I;. Let a < ,ugll)bn/sn. We denote

Hence,

2 a’by,
Ki(a) =< (ro,80) X (r1,81) = 8; > j, i=0,1,r  =rqg—aby,, sy =8y —ar; — 5 ,
2
1A I
KQ((I) :{<7"0,So) X (7"1,51) S > j, 7= ,1, \/ anSO > abn — 1/ 2bn81781
a’b,, a’b,, a’b, a’b,,
+ 5 +ary = sp = 81 — 5 + arg, s —arg + 5 = 81 2= Sy —ary — 5 },

2
Ks(a) = {(7"0,30) X (r1,s1) 1 8 > 27;; ,i=0,1, \/2b,so < ab, — / 2bn81}7

2

Ky(a) = {(7‘0,30) X (ry,81): 8 > 2%,@ =0,1, \/2b,s0 > ab, — \/ansl} )

Given b < ag,, by the steady-state character of the process T'(a) we have

atn

I :% /(a —b)db (E ( 2b,5(b) — r(b)>2 ( 2b,5(0) + r(0)>2

_E ( 2b,5(b) — r(b))QE ( 20,5(0) + 'r(O))Q)

aenp

”@/ db([@j (V2hs®) ~r(®)) (v2bus(0) +r(0)

0
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_E ( 20,5(b) — r(b))Q]E ( 2b,5(0) + 7“(0))2)

S (%) + K50 - A

Y

where
AT (5) =E ((Mzbns(b) _ r(b)>2 (V/2b,5(0) + r(O))Q; (T(0), T()) € Kl(b)) ,
850 =% ( (V) - 1)) (VIO +10)) s (70).70)) € Kalt))

o= [ P@O)c @nds) (Vi o)
{(ro,so):so>%}

/ P(T(5) € (dry,dsy)) (V/2bus: 7”1>2

2
{(7‘1,81): S1>;bfln,\/ 2bsg>bby, —+/ ansl}

Using Statement 2 of Lemma for sufficiently large n we have

aen

A:’l—wfmdb

2
N
=
Svlw
Sy
0\8
QL
S
v
()
L
VR
[E—
|
%;
3
L
~_
no
VRS
—
+
()
;‘g
[V
()
S~
no

1 1 1
- exp ~on sf+2 / (1—t2)’8dt—s§+2 / (1—t2)ﬂdt

B+3
1
exp —?_WB (B +1; 5)) drodsg
3 oo V2by 50

B+

_ 0/1 (1—t2)ﬂdt>>exp<—s\;§7r3(ﬁ+1;%)) (1—25580)61

V2bnsg
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3 3 3
~Cy(B)aby < Ciaby /53 exp <_CQSO > dsy < Cgab2
0
In the same way, for sufficiently large n, we obtain

acn

Al :%/A’Q(b)db
0
Ba? [ [ ; s St .
20 T g it o (S (1011)
0 0 -1
1
1 1
[ ant-nren(- (4 fa-era
us
(r1,51)€K5(b,70,50) #(b)
1 N
st [ aeera) ) (2) a-
S0
t*(b)y/ 5t
3 0o 1 0o )
ﬂ/@?abi 264‘% 5.1 86+§ 1
~ dso | dro(1 (1—-rf /db* -—_—B 1;=
2 /so 80/ ro(1 +r0)” (1= 75) e o B+l
0 -1 0
B+ ) 1
drldsl(l —7.1)2 eXp< \/_ (( *)/8+§ / (1 _tQ)ﬁ dt
2m
(r1,87)€K3* (b*,r0,50) £+ ()

1

- / (1—1%)° dt)) ()% (1= 12)"" ~ Cy(B)abz,
t**(b*)\/g

where " )
51 n 1—s7 *

* I b* — t** b* — .

*1 ’ (0) = 5 bW

S0 ’ vV anSO

As in the above relations, for sufficiently large n we have

agn

=/_a(1 —ben) [
A —T/A (b) db

00 1 00
Bzabz +3 5+2 1 _o2\p-1
[ o e o (= Jgp (7 1s3) Jo—b

0
B+3 B+s 1
1 _
8f+2d7‘1d81 exp (—%B (ﬂ + 1; 5)) (1 — r%)ﬁ !

>

|r1]|<1;1>b—/51
3
:C4 (B)abﬁ .

The proof of Theorem [2.1]is complete.
Theorem [2.2]is implied by Theorem [2.1] Lemma [3.4] and Theorem 17.2.2 in [16].
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