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RECOVERING OF TWO-POINT BOUNDARY

CONDITIONS BY FINITE SET OF EIGENVALUES

OF BOUNDARY VALUE PROBLEMS FOR

HIGHER ORDER DIFFERENTIAL EQUATIONS

B.E. KANGUZHIN

Abstract. The recovering of boundary conditions for higher order differential equations by
some set of spectra is difficult because of two facts. First, opposite to second order differen-
tial equations, there are not triangle transformation operators for higher order differential
equations. Second, non-separable boundary conditions give additional analytic problems
while recovering them by the set of spectra. In the present work we provide a new way
of normalizing boundary conditions, which is adapted for further recovering by some set
of spectra of boundary value problems. In other words, before posing the issue by which
data the boundary conditions can be recovered, one should first reduce them to a canonical
form. Then, basing on an assumed canonical form, a system of boundary value problems
is to be chosen and by the their spectra boundary conditions are to recovered.

We propose an algorithm of recovering two-point boundary conditions in a boundary
value problem for higher order differential equations. As an additional information, a finite
set of eigenvalues of special boundary value problems serve. According the terminology by
V.A. Sadovnichii, such problems are called canonical problems.
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1. Introduction

Recovering of ordinary differential equations and associated boundary conditions by the set
of eigenvalues was considered in works [1]-[4]. In monograph [5], the methods for recove-
ring differential operators on the segments were systematized. In the case of non-separable
boundary conditions, the authors of [5] propose a method of canonical problems. According
their approach, for each boundary value problem with non-separable boundary conditions for
a differential equation, one should find a set of canonical problems, by the spectra of which the
original operator can be recovered. However, in our opinion, the method of finding canonical
problems requires a certain systematization. In the present work the process of finding canonical
problems is systematized in a certain extent.

Generally speaking, the process of recovering boundary conditions and differential equation
consists in two steps. At the first step, by some spectral data, one should recover the coeffi-
cients of the differential equation, and then at the second step the coefficients of the boundary
conditions are found. We note that now the methods for recovering the coefficients in the dif-
ferential equation are developed quite well; at the same time, some coefficients in the boundary
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conditions can be recovered. In the general case, the recovering of remaining coefficients in the
boundary conditions is an unavoidable step. In monograph [5], the aforementioned approach
of two-step recovering of a differential operator is promoted.

In the present work we suppose that the first step of recovering the coefficients of a differential
equation is over and it remains to recover the coefficients of the boundary conditions in a
boundary value problem for a given differential equation by some set of the eigenvalues of some
canonical problems. First, one needs to specify the set of canonical problems. Second, how
many and which eigenvalues of the chosen canonical problems determine uniquely the boundary
conditions in the original boundary value problems?

2. Original two-point boundary value problem

In the space 𝐿2(0, 1) we consider the eigenvalue problem

𝑑(𝑦) ≡ 𝑦(𝑛)(𝑥) +
𝑛−2∑︁
𝑘=0

𝑝𝑘(𝑥)𝑦(𝑘)(𝑥) = 𝜆𝑦(𝑥), 0 < 𝑥 < 1 (2.1)

𝑉𝑗(𝑦) ≡
𝑛∑︁

𝑠=1

(︀
𝛼𝑗𝑠𝑦

(𝑠−1)(0) + 𝛽𝑗𝑠𝑦
(𝑠−1)(1)

)︀
= 0, 𝑗 = 1, . . . , 𝑛 (2.2)

where 𝑝𝑘(𝑥) are sufficiently smooth coefficients of a differential equation, 𝛼𝑗𝑠, 𝛽𝑗𝑠 are scalar
coefficients of boundary conditions. We assume that 𝜆 = 0 is not an eigenvalue of problem
(2.1) and (2.2). A direct problem of spectral analysis reads as follows: given a differential
expression 𝑑(·) and a set of boundary forms {𝑉𝑗(·)}, study the spectrum and the properties of
the systems of root functions of problem (2.1)-(2.2). According our assumption, the resolvent
set of problem (2.1)–(2.2) is non-empty, and hence, the spectrum of the original problem consists
of countably many eigenvalues [6]. While solving the direct problem, one should first form the
set of boundary conditions (2.1)–(2.2). For instance [6], if conditions (2.2) are equivalent to
boundary conditions regular in the Birkhoff sense, then the system of root functions of problem
(2.1)–(2.2) forms a complete system in 𝐿2(0, 1).

In the present work we study an inverse problem: given differential equation (2.1) and some
set of the eigenvalues of canonical problems, recover uniquely the coefficients of boundary
conditions (2.2). In what follows we shall specify how to find canonical problems. Before we
choose canonical problems, we need to normalize boundary conditions in a special way.

It turns out that solving of direct and inverse problems is to be begun by normalizing the
set of boundary conditions (2.2). In other words, set of canonical boundary conditions (2.2)
should be first reduced to some equivalent canonical form.

3. Equivalent canonical boundary conditions

In this section we describe how to normalize the set of two-points boundary conditions and
specify then the formulation of the inverse problem.

We introduce a fundamental system of solutions {𝑦𝑖(𝑥)} of a homogeneous equation 𝑑(𝑦) = 0

with standard Cauchy conditions at zero: 𝑦
(𝑠−1)
𝑖 (0) = 𝛿𝑖𝑠. Hereinafter the symbol 𝛿𝑖𝑠 stands for

the Kronecker delta. The determinant⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

𝑦1(𝑡) 𝑦2(𝑡) · · · 𝑦𝑛(𝑡)
...

...
. . .

...

𝑦
(𝑛−2)
1 (𝑡) 𝑦

(𝑛−2)
2 (𝑡) · · · 𝑦

(𝑛−2)
𝑛 (𝑡)

𝑦1(𝑥) 𝑦2(𝑥) · · · 𝑦𝑛(𝑥)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
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is denoted by 𝑔(𝑥, 𝑡). It is known [6] that a function 𝑢0(𝑥) defined by the formula

𝑢0(𝑥) =

𝑥∫︁
0

𝑔(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡

is a solution to an inhomogeneous Cauchy problem with homogeneous conditions at zero:

𝑑(𝑢0) = 𝑓(𝑥), 𝑢
(𝑠−1)
0 (0) = 0.

We also note that the following relations hold for 𝑠 = 1, . . . , 𝑛:

𝑢
(𝑠−1)
0 (𝑥) =

𝑥∫︁
0

𝜕𝑠−1

𝜕𝑥𝑠−1
𝑔(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡,

Now we are in position to formulate a statement.

Lemma 3.1. For each 𝑓 in 𝐿2(0, 1), an inhomogeneous equation 𝑑(𝑢) = 𝑓(𝑥) possesses the
unique solution satisfying conditions (2.2). This solution satisfies the representation:

𝑢(𝑥) = 𝑢0(𝑥) −
𝑛∑︁

𝑠=1

𝜙𝑠(𝑥)𝑉𝑠(𝑢0). (3.1)

Here {𝜙𝑠(𝑥)} is the system of solutions to the homogeneous equation 𝑑(𝑦) = 0 with conditions
𝑉𝑗(𝜙𝑠) = 𝛿𝑗𝑠, 𝑗 = 1, . . . , 𝑛.

Lemma 3.1 can be confirmed straightforwardly. The uniqueness is implied by the assumption
that 𝜆 = 0 is not an eigenvalue of problem (2.1) and (2.2). Let us find the values of boundary
forms 𝑉𝑗(𝑢0). Recalling the properties of 𝑢0(𝑥), we have:

𝑉𝑗(𝑢0) =
𝑛∑︁

𝑠=1

𝛽𝑗𝑠

1∫︁
0

𝜕𝑠−1

𝜕𝑥𝑠−1
𝑔(𝑥, 𝑡) |𝑥=1 𝑓(𝑡)𝑑𝑡.

By representation (3.1) we obtain the identity

𝑢(𝑥) +
𝑛∑︁

𝑗=1

𝜙𝑗(𝑥)𝑉𝑗(𝑢0) = 𝑢0(𝑥).

Therefore, the function 𝑢0(𝑥) satisfies the representation

𝑢0(𝑥) = 𝑢(𝑥) +
𝑛∑︁

𝑗=1

𝜙𝑗(𝑥)
𝑛∑︁

𝑠=1

𝛽𝑗𝑠

1∫︁
0

𝜕𝑠−1

𝜕𝑥𝑠−1
𝑔(𝑥, 𝑡) |𝑥=1 𝑓(𝑡)𝑑𝑡.

The latter identity can be rewritten as

𝑢0(𝑥) = 𝑢(𝑥) +

1∫︁
0

𝜃(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡,

where

𝜃(𝑥, 𝑡) =
𝑛∑︁

𝑗=1

𝜙𝑗(𝑥)
𝑛∑︁

𝑠=1

𝛽𝑗𝑠

1∫︁
0

𝜕𝑠−1

𝜕𝑥𝑠−1
𝑔(𝑥, 𝑡) |𝑥=1 .
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Since 𝑢
(𝑠−1)
0 (0) = 0 and 𝑑(𝑢) = 𝑓(𝑥), the relations

𝑢(𝑠−1)(0) +

1∫︁
0

𝜌𝑠(𝑡)𝑑(𝑢)𝑑𝑡 = 0, 𝑠 = 1, . . . , 𝑛,

hold, where

𝜌𝑠(𝑡) =
𝜕𝑠−1

𝜕𝑥𝑠−1
𝜃(𝑥, 𝑡) |𝑥=0 .

Now we introduce the set of boundary forms by the formulae

𝑊𝑠(𝑢) = 𝑢(𝑠−1)(0) +

1∫︁
0

𝜌𝑠(𝑡)𝑑(𝑢)𝑑𝑡, 𝑠 = 1, . . . , 𝑛.

Hence, we have proved the following statement.

Theorem 3.1. Set of boundary conditions (2.2) is equivalent to the following boundary con-
ditions:

𝑊𝑠(𝑢) ≡ 𝑢(𝑠−1)(0) +

1∫︁
0

𝜌𝑠(𝑡)𝑑(𝑢)𝑑𝑡 = 0, 𝑠 = 1, . . . , 𝑛.

We call boundary conditions defined by Theorem 3.1 canonical boundary conditions or nor-
malized boundary conditions. Thus, the set of boundary form {𝑉𝑗(·)} is equivalent to the
canonical set of boundary forms {𝑊𝑗(·)}. This is why, instead of recovering boundary condi-
tions {𝑉𝑗(·)}, we shall recover boundary conditions {𝑊𝑗(·)}.

4. Choice of canonical problems and
specified formulation of inverse problem

In this section we provide a way of choosing canonical problems, the spectra of which deter-
mine uniquely the boundary conditions in the original problem or equivalent boundary condi-
tions. In fact, for determining the boundary coefficients not entire spectrum is employed but
only its finite part.

The number of auxiliary canonical problems is equal to the order of differential equation
(2.1). That is, we construct 𝑛 canonical problems. As a first canonical problem, the following
one serves:

𝑑(𝑦) ≡ 𝑦(𝑛)(𝑥) +
𝑛−2∑︁
𝑘=0

𝑝𝑘(𝑥)𝑦(𝑘)(𝑥) = 𝜆𝑦(𝑥), 0 < 𝑥 < 1,

𝑊1(𝑦) = 0, 𝑦(𝑘−1)(0) = 0, 𝑘 = 2, . . . , 𝑛.

(4.1)

The second canonical problem reads as

𝑑(𝑦) ≡ 𝑦(𝑛)(𝑥) +
𝑛−2∑︁
𝑘=0

𝑝𝑘(𝑥)𝑦(𝑘)(𝑥) = 𝜆𝑦(𝑥), 0 < 𝑥 < 1,

𝑊1(𝑦) = 0,𝑊2(𝑦) = 0, 𝑦(𝑘−1)(0) = 0, 𝑘 = 3, . . . , 𝑛.

(4.2)

In the same we choose the third, the fourth, . . . , (𝑛−1)th canonical problems. As 𝑛th canonical
problem we choose the following problem:

𝑑(𝑦) ≡ 𝑦(𝑛)(𝑥) +
𝑛−2∑︁
𝑘=0

𝑝𝑘(𝑥)𝑦(𝑘)(𝑥) = 𝜆𝑦(𝑥), 0 < 𝑥 < 1,

𝑊𝑘(𝑦) = 0, 𝑘 = 1, . . . , 𝑛− 1, 𝑦(𝑛−1)(0) = 0.

(4.3)
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Now we are in position to provide a specified formulation of the inverse problem.
The first inverse problem: given differential equation (2.1) and the spectrum of the first

canonical problem, recover uniquely the first boundary function 𝜌1(𝑡). The second inverse
problem: by the given differential equation (2.1), the found boundary function 𝜌1(𝑡) and the
spectrum of the second canonical problem, recover uniquely the second boundary function
𝜌1(𝑡). In the same the third, the fourth,. . . , (𝑛 − 1)th inverse problems are formulated. The
𝑛th inverse problem reads as: by the given differential equation (2.1), the found boundary
functions 𝜌1(𝑡), . . . , 𝜌𝑛−1(𝑡) and the spectrum of 𝑛th canonical problem, recover uniquely 𝑛th
boundary function 𝜌𝑛(𝑡). In fact, not entire spectrum of a canonical problem is employed, but
only its finite part. In the following sections we shall study in details this aspect.

5. Theorem on unique recovering of boundary functions

By passing from boundary conditions (2.2) to equivalent canonical boundary forms, we shall
prove a theorem on unique recovering of boundary conditions 𝜌1(𝑡), . . . , 𝜌𝑛(𝑡). In what follows,
the 𝑠th canonical problem is called Problem 𝐸𝑠. Problem 𝐸𝑠 with the same equation (2.1),

but with other parameters in boundary conditions (2.2) is denoted by ̃︀𝐸𝑠. Hereafter, if some
symbol denotes an object related to Problem 𝐸𝑠, then the same symbol with tilde denotes a

similar object for problem ̃︀𝐸𝑠.

Theorem 5.1. Fix an integer 𝑠 in the set {1, . . . , 𝑛}. Assume that the spectra of Problems 𝐸𝑠

and ̃︀𝐸𝑠 coincide. If 𝜌1(𝑡) = 𝜌1(𝑡), . . . , 𝜌𝑠−1(𝑡) = 𝜌𝑠−1(𝑡) in 𝐿2(0, 1) and the systems of root

functions of Problems 𝐸𝑠 and ̃︀𝐸𝑠 are complete in 𝐿2(0, 1), then 𝜌𝑠(𝑡) = ̃︂𝜌𝑠(𝑡) in 𝐿2(0, 1).

Remark 5.1. In the case of two-points boundary value problems (2.1)-(2.2), the boundary
functions 𝜌1(𝑡), . . . , 𝜌𝑛(𝑡) are smooth enough. Moreover, each of them solves a homogeneous
equation 𝑑+(𝑦) = 0, where 𝑑+(·) is a formally adjoint differential expression. Therefore, bound-
ary functions 𝜌1(𝑡), . . . , 𝜌𝑛(𝑡) belong to a finite-dimensional and their recovering is reduced to
determining finitely many constants. This is why, the completeness of the system of the root

functions of Problems 𝐸𝑠 and ̃︀𝐸𝑠 is superfluous. Howerver, Theorem 2 holds for the boundary
functions 𝜌1(𝑡), . . . , 𝜌𝑛(𝑡) in 𝐿2(0, 1).

Proof of Theorem 5.1. Case 𝑠 = 1. We introduce a fundamental system of solutions {𝑦𝑖(𝑥)} of

the homogeneous equation 𝑑(𝑦) = 𝜆𝑦(𝑥) with standard Cauchy conditions at zero 𝑦
(𝑠−1)
𝑖 (0) =

𝛿𝑖𝑠. Let 𝜆 = 𝜆(1) be an arbitrary eigenvalue of problem 𝐸1. Then 𝑦1(𝑥, 𝜆
(1)) is an eigenfunction

of Problem 𝐸1 associated with the eigenvalue 𝜆(1). The first boundary condition in Problem 𝐸1

becomes

𝑦1(0, 𝜆
(1)) +

1∫︁
0

𝜌1(𝑡)𝑑(𝑦1)𝑑𝑡 = 0.

Since

𝑑(𝑦1) = 𝜆(1)𝑦1(𝑥, 𝜆
(1)),

then
1∫︁

0

𝜌1(𝑡)𝑦1(𝑡, 𝜆
(1))𝑑𝑡 = − 1

𝜆(1)
.

Therefore, the eigenvalues of Problem 𝐸1 determine the Fourier coefficients of the function 𝜌1(𝑡)
over the system of root functions of the problem adjoint for Problem 𝐸1. Since the system of root
functions of Problem 𝐸1 is complete in the space 𝐿2(0, 1), then the system of the root functions

of the adjoint functions is also complete in 𝐿2(0, 1). Thus, if the spectra of Problems 𝐸𝑠 and ̃︀𝐸𝑠
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coincide, the same is true the Fourier coefficients of the functions 𝜌1(𝑡) and 𝜌1(𝑡) over the same

complete system in the space 𝐿2(0, 1). Therefore, the functions 𝜌1(𝑡) and 𝜌1(𝑡) coincide in the

space 𝐿2(0, 1). This proof corresponds to the case of simple eigenvalues of Problems 𝐸𝑠 and ̃︀𝐸𝑠.
In the case of existence of multiple eigenvalues the arguing should be modified a little.

Case 𝑠 = 2. We introduce a solution 𝜒2(𝑥, 𝜆) to homogeneous equation 𝑑(𝑦) = 𝜆𝑦(𝑥) with

conditions 𝜒
(𝑠−1)
2 (0) = 𝛿2𝑠, 𝑠 = 2, . . . , 𝑛, 𝑊1(𝜒2) = 0. Let 𝜆 = 𝜆(2) be an arbitrary eigenvalue of

problem 𝐸2. Then 𝜒2(𝑥, 𝜆
(2)) is an eigenfunction of Problem 𝐸2 associated with the eigenvalue

𝜆(2). The second boundary condition in Problem 𝐸2 becomes

𝜒
(1)
2 (0, 𝜆(2)) +

1∫︁
0

𝜌2(𝑡)𝑑(𝜒2)𝑑𝑡 = 0.

Since

𝑑(𝜒2) = 𝜆(2)𝜒2(𝑥, 𝜆
(2)),

then
1∫︁

0

𝜌2(𝑡)𝜒2(𝑡, 𝜆
(2))𝑑𝑡 = − 1

𝜆(2)
.

Further arguing reproduces the proof of Theorem 5.1 as 𝑠 = 1. In the case when Problems 𝐸1

and 𝐸2 have joint eigenvalues, minor modifications in the above arguing is needed. The proof
for other values of 𝑠 is similar.

6. Specification of uniqueness theorem in case of
two-point boundary value problems

In the present section we specify Theorem 2 for two-point boundary value problems. In
Section 3 of the present paper we have provided a relation between the coefficients {𝛽𝑗𝑠} in
boundary conditions (2.2), the coefficients {𝑝𝑘(𝑥)} in differential equation (2.2) and the func-
tions 𝜌1(𝑡), . . . , 𝜌𝑛(𝑡). We recall that

𝜌𝑘(𝑡) =
𝑛∑︁

𝑗=1

𝜙
(𝑘−1)
𝑗 (0)

𝑛∑︁
𝑠=1

𝛽𝑗𝑠
𝜕𝑠−1

𝜕𝑥𝑠−1
𝑔(𝑥, 𝑡) |𝑥=1 .

It is known [6] that at 𝑥 = 1, the functions 𝜕𝑠−1

𝜕𝑥𝑠−1 𝑔(𝑥, 𝑡) solve the homogeneous equation 𝑑+(𝑦) =
0, where 𝑑+(·) is the formally adjoint differential expression. Therefore, boundary functions
𝜌1(𝑡), . . . , 𝜌𝑛(𝑡) are also solutions to the homogeneous equation 𝑑+(𝑦) = 0.

Since the coefficients of the differential expression 𝑑(·) are given, then the formally adjoint
expression 𝑑+(·) is also known. We denote by {𝑧𝑖(𝑥)} the fundamental solution of the homoge-

neous equation 𝑑+(𝑧) = 0 with standard Cauchy conditions at zero: 𝑧
(𝑠−1)
𝑖 (0) = 𝛿𝑖𝑠. Let

𝜌𝑘(𝑡) = 𝑐1𝑧1(𝑡) + 𝑐2𝑧2(𝑡) + · · · + 𝑐𝑛𝑧𝑛(𝑡)

with unknown constants 𝑐1, 𝑐2, . . . , 𝑐𝑛. In Section 5 of the present paper, the relation between
the Fourier coefficients of the boundary functions 𝜌𝑘(𝑡) and eigenvalues of Problem 𝐸𝑘 has been
described. We recall that

1∫︁
0

𝜌𝑘(𝑡)𝑢𝑘(𝑡)𝑑𝑡 = − 1

𝜆(𝑘)
,
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where 𝑢𝑘(𝑡) is an eigenfunction of Problem 𝐸𝑘 associated with the eigenvalue 𝜆(𝑘). We hence
obtain a system of equations for unknown constants 𝑐1, 𝑐2, . . . , 𝑐𝑛

𝑐1

1∫︁
0

𝑧1(𝑡)𝑢𝑘(𝑡)𝑑𝑡 + 𝑐2

1∫︁
0

𝑧2(𝑡)𝑢𝑘(𝑡)𝑑𝑡 + · · · + 𝑐𝑛

1∫︁
0

𝑧𝑛(𝑡)𝑢𝑘(𝑡)𝑑 = − 1

𝜆(𝑘)
.

Thus, for the unique determination of unknown constants 𝑐1, 𝑐2, . . . , 𝑐𝑛, it is sufficient to choose
eigenvalues of problem 𝐸𝑘 so that the determinant⃒⃒⃒⃒

⃒⃒⃒⃒
⃒⃒⃒
1∫︀
0

𝑧1(𝑡)𝑢𝑘1(𝑡)𝑑𝑡 · · ·
1∫︀
0

𝑧𝑛(𝑡)𝑢𝑘1(𝑡)𝑑𝑡

...
. . .

...
1∫︀
0

𝑧1(𝑡)𝑢𝑘𝑛(𝑡)𝑑𝑡 · · ·
1∫︀
0

𝑧𝑛(𝑡)𝑢𝑘𝑛(𝑡)𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒

is non-zero. Here 𝑢𝑘1(𝑡), . . . , 𝑢𝑘𝑛(𝑡) are the eigenfunctions of Problem 𝐸𝑘 associated with the
chosen eigenvalues.

Lemma 6.1. Assume that Problem 𝐸𝑘 possesses infinitely many eigenvalues. There exist a

set of eigenvalues {𝜆(𝑘)
𝑗 , 𝑗 = 𝑗1, . . . , 𝑗𝑛} of Problems 𝐸𝑘 such that the determinant

𝐴 =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
1∫︀
0

𝑧1(𝑡)𝑢𝑘1(𝑡)𝑑𝑡 · · ·
1∫︀
0

𝑧𝑛(𝑡)𝑢𝑘1(𝑡)𝑑𝑡

...
. . .

...
1∫︀
0

𝑧1(𝑡)𝑢𝑘𝑛(𝑡)𝑑𝑡 · · ·
1∫︀
0

𝑧𝑛(𝑡)𝑢𝑘𝑛(𝑡)𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒

is non-zero. Here 𝑢𝑘1(𝑡) is an eigenfunction of Problem 𝐸𝑘 associated with the eigenvalue 𝜆
(𝑘)
𝑗 ,

𝑗 = 𝑗1. The functions 𝑢𝑘2(𝑡), . . . , 𝑢𝑘𝑛(𝑡) have the same meaning.

Proof. We assume the opposite: for each set {𝜆(𝑘)
𝑗 , 𝑗 = 𝑗1, . . . , 𝑗𝑛} the determinant vanishes:

𝐴 = 0. We let 𝑗1 = 1, . . . , 𝑗𝑛−1 = 𝑛−1. Since Problem 𝐸𝑘 possesses infinitely many eigenvalues,

let 𝜆
(𝑘)
𝑗 , 𝑗 = 𝑗𝑛, ranges over entire spectrum of problem 𝐸𝑘. Since 𝐴 = 0, the system of linear

algebraic equations

𝑐1

1∫︁
0

𝑧1(𝑡)𝑢𝑘𝑗(𝑡)𝑑𝑡 + 𝑐2

1∫︁
0

𝑧2(𝑡)𝑢𝑘𝑗(𝑡)𝑑𝑡 + · · · + 𝑐𝑛

1∫︁
0

𝑧𝑛(𝑡)𝑢𝑘𝑗(𝑡)𝑑𝑡 = 0, 𝑗 = 1, . . . , 𝑛

possesses a non-zero solution. Suppose that 𝑐𝑛 = 1. Therefore, the Fourier coefficients
of the function 𝑧𝑛(𝑡) are expressed linearly via the Fourier coefficients of the functions
{𝑧1(𝑥), . . . , 𝑧𝑛−1(𝑡)}:

1∫︁
0

𝑧𝑛(𝑡)𝑢𝑘𝑗(𝑡)𝑑𝑡 = −𝑐1

1∫︁
0

𝑧1(𝑡)𝑢𝑘𝑗(𝑡)𝑑𝑡− · · · − 𝑐𝑛−1

1∫︁
0

𝑧𝑛−1(𝑡)𝑢𝑘𝑗(𝑡)𝑑𝑡.

If all Fourier coefficients of the function 𝑧𝑛(𝑡) are expressed linearly via the Fourier coefficients of
the functions {𝑧1(𝑥), . . . , 𝑧𝑛−1(𝑡)}, then the system of the functions {𝑧1(𝑥), . . . , 𝑧𝑛(𝑡)} is linearly
dependent. The latter contradicts its choice. If 𝑐1 = 1 does not hold, some modification is
needed in the above arguing. Now Lemma 6.1 and Theorem 5.1 imply the desired statement.
The proof is complete.
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Theorem 6.1. We fix an integer 𝑠 in the set {1, . . . , 𝑛}. Let finite sets of the eigenvalues

of Problems 𝐸𝑠 and ̃︀𝐸𝑠 in Lemma 2 coincide. If 𝜌1(𝑡) = 𝜌1(𝑡), . . . , 𝜌𝑠−1(𝑡) = 𝜌𝑠−1(𝑡) in 𝐿2(0, 1),

then 𝜌𝑠(𝑡) = ̃︂𝜌𝑠(𝑡) in 𝐿2(0, 1).

It was established in the proof of Theorem 5.1 that the eigenfunctions of Problems 𝐸𝑠 and ̃︀𝐸𝑠

coincide if the corresponding eigenvalues do. This fact plays an essential role in the proof of
Theorem 6.1. In conclusion we mention that some of our constructions can be found in works
[7, 8].

BIBLIOGRAPHY

1. Z.L. Lejbenzon. An inverse problem of spectral analysis of ordinary differential operators of
higher order // Trudy Mosk. Matem. Obsch. 15, 70–144 (1966). [Trans. Mosc. Math. Soc. 15,
78–163 (1966).]

2. B.M. Levitan, M.G. Gasymov. Determination of a differential equation by two of its spectra //
Uspekhi Matem. Nauk. 19:2 (116), 3–63 (1964). [Russian Math. Surveys. 19:2, 1–63 (1964).]

3. V.A. Yurko. On Differential operators with nonseparated boundary conditions // Funkts. Anal.
Pril. 28:4, 90–92 (1994). [Funct. Anal. Appl. 28:4, 295–297 (1994).]

4. V.A. Sadovnichii. Uniqueness of the solution to the inverse problem in the case of a second-order
equation with indecomposable boundary conditions. Regularized sums of some of the eigenvalues.
Factorization of the characteristic determinant // Dokl. AN SSSR. 206:2, 293–296 (1972). [Sov.
Math., Dokl. 13, 1220–1223 (1972).]

5. V.A. Sadovnichii, Ya.T. Sultanaev, A.M. Akhtyamov. Inverse Sturm-Liouville problems with
non-separable boundary conditions. Mosk. Univ. Publ., Moscow (2009). (in Russian).

6. M.A. Naimark. Linear differential operators. Nauka, Moscow (1969). [Part I: Elementary theory
of linear differential operators, Frederick Ungar Publ. Co., New York (1967); Part II: Linear
differential operators in Hilbert space, Frederick Ungar Publ. Co., New York (1968)].

7. B.E. Kanguzhin, G. Dairbaeva, Zh. Madibajuly. Unique recovering of boundary conditions for
differential operator by set of spectra // Vestnik KazNU. Ser. Matem. 4 (104), 44–49 (2019). (in
Russian).

8. B.E. Kanguzhin, G. Dairbaeva, Zh. Madibajuly. Identification of boundary conditions for differ-
ential operator // Vestnik KazNU. Ser. Matem. (103), 82–93 (2019). (in Russian).

Baltabek Esmatovich Kanguzhin,
Al-Farabi Kazakh National University,
Al-Farabi av. 71,
050040, Almaty, Kazakhstan
E-mail: kanbalta@mail.ru


	to1. Introduction
	to2. Original two-point boundary value problem
	to3. Equivalent canonical boundary conditions
	to4. Choice of canonical problems and  specified formulation of inverse problem
	to5. Theorem on unique recovering of boundary functions
	to6. Specification of uniqueness theorem in case of  two-point boundary value problems
	 References

