doi:10.13108/2020-12-3-11

SYNTHESIZABLE SEQUENCE AND PRINCIPLE SUBMODULES IN SCHWARTZ MODULE

N.F. ABUZYAROVA

Abstract. We consider a module of entire functions of exponential type and polynomial growth on the real axis, that is, the Schwarz module with a non-metrizable locally convex topology. In relation with the problem of spectral synthesis for the differentiation operator in the space $C^{\infty}(a; b)$, we study principle submodules in this module. In particular, we find out what functions, apart of products of the polynomials on the generating function, are contained in a principle submodule. The main results of the work is as follows: despite the topology in the Schwarz module is non-metrizable, the principle submodule coincides with a sequential closure of the set of products of its generating function by polynomials. As a corollary of the main result we prove a weight criterion of a weak localizability of the principle submodule. Another corollary concerns a notion of "synthesizable sequence" introduced recently by A. Baranov and Yu. Belov. It follows from a criterion of the synthesizable sequence obtained by these authors that a synthesizable sequence is necessary a zero set of a weakly localizable principle submodule. In the work we give a positive answer to a natural question on the validity of the inverse statement. Namely, we prove that the weak set of a weakly localizable principle submodule is a synthesizable sequence.

Keywords: entire functions, Fourier-Laplace transform, Schwarz space, local description of submodules, spectral synthesis.

Mathematics Subject Classification: 30D15, 30H99, 42A38, 47E05

1. INTRODUCTION

Given a finite or an infinite interval $(a; b) \subseteq \mathbb{R}$, we denote by $C^{\infty}(a; b)$ the set of all infinitely differentiable functions equipped with a standard metrizable topology, while its strongly dual space consisting of all distributions compactly supported in in (a; b) is denoted by the symbol $\mathcal{E}'(a; b)$.

Let $W \subset \mathcal{E}(a; b)$ be a closed subspace invariant with respect to the differentiation operator $D = \frac{d}{dt}$, or shortly, a *D*-invariant subspace. In work [1], the study of the problem on spectral synthesis was initiated and in particular, it was established that the spectrum σ_W of the restriction of the differentiation operator $D: W \to W$ either coincides with entire complex plane or is discrete, that is, is an infinite of finite, probably, empty sequence of multiple points in \mathbb{C} [1, Thm. 2.1].

For a non-empty relatively closed segment $I \subset (a; b)$, the subspace W_I is defined by the formula

$$W_I = \{ f \in \mathcal{E}(a; b) : f = 0 \text{ on } I \}.$$
 (1.1)

N.F. ABUZYAROVA, SYNTHESIZABLE SEQUENCE AND PRINCIPLE SUBMODULES IN SCHWARTZ MODULE.

[©] ABUZYAROVA N.F. 2020.

The research is made in the framework of the state task of the Ministry of Science and Higher Education of Russian Federation (code of scientific theme FZWU-2020-0027).

Submitted June 25, 2020.

Each *D*-invariant subspace *W* possesses a "residual" subspace $W_{res} \subset W$ being the maximal subspace of form (1.1) contained in *W* [1, Thm. 4.1]. We denote a corresponding segment by I_W and we call it residual segment of the subspace *W*, that is, $W_{res} = W_{I_W}$.

The existence of D-invariant subspaces of form (1.1) led the authors of work [1] to the following formulation of the problem on spectral synthesis: to find out under which conditions the D-invariant subspace W with a discrete spectrum satisfies the representation

$$W = \overline{W_{I_W}} + \operatorname{span}\left(\operatorname{Exp} W\right)? \tag{1.2}$$

Here $\operatorname{Exp} W$ is the set of all exponential monomials contained in W.

It turned out that in the case of a finite (in particular, empty) spectrum σ_W , the subspace W is always of form (1.2), while if the spectrum σ_W is discrete and infinite, then the answer depends on a relation between quantities $|I_W|$ and $2\pi D_{BM}(\Lambda)$, where $|I_W|$ is the length of the residual segment, $D_{BM}(\Lambda)$ is the Beurling-Malliavin density of the set $\Lambda = i\sigma_W$: 1) if $|I_W| < 2\pi D_{BM}(\Lambda)$, then $W = \mathcal{E}(a; b)$, see [2, Rem. 3], [3, Thm. 1.3]);

2) if $|I_W| = 2\pi D_{BM}(\Lambda)$, then there exist both *D*-invariant subspaces admitting spectral synthesis in a weak¹ sense (1.2) [4],[5] and subspaces not possessing this property [3], [6];

3) if $|I_W| > 2\pi D_{BM}(\Lambda)$, then *D*-invariant subspace with a discrete spectrum $\sigma_W = i\Lambda$ and a residual segment I_W admits a weak spectral synthesis (1.2) [2, Cor. 3], [3, Thm. 1.1].

The latter of the three above formulated results can be interpreted as follows: given a complex sequence Λ and a relatively closed in (a; b) segment I such that $|I| > 2\pi D_{BM}(\Lambda)$, there exists a unique D-invariant subspace $W \subset \mathcal{E}(a; b)$ with a discrete spectrum $\sigma_W = -i\Lambda$ and a residual segment $I_W = I$ and this subspace is of form (1.2).

In view of this interpretation, the authors of work [7] called a sequence $\Lambda \subset \mathbb{C}$ with $D_{BM}(\Lambda) < +\infty$ syntheziable if a *D*-invariant subspace with a spectrum $-(i\Lambda)$ and a residual segment $[-\pi D_{BM}(\Lambda); \pi D_{BM}(\Lambda)]$ is unique; in this case it is of form (1.2). In that work a complete description of synthesizable sequences was provided. In particular, it was shown that the if the system of exponential monomials Exp_{Λ} constructed by the sequence $-(i\Lambda)$ is complete or it has a finite defect in the space $L^2(-\pi D_{BM}(\Lambda); \pi D_{BM}(\Lambda))$, then Λ is a synthesizable sequence [7, Prop. 3.2].

If the system Exp_{Λ} has an infinite defect in $L^2(-\pi D_{BM}(\Lambda); \pi D_{BM}(\Lambda))$, then the syntesizability of Λ is determined by the conditions of the following criterion [7, Thm. 1.3]:

Theorem A. A sequence $\Lambda \subset \mathbb{C}$ is synthesizable if and only if it is a zero set of some function $\varphi \in \mathcal{P}_0(\mathbb{R})$ and

dim
$$(\mathcal{H}(\varphi) \ominus H_{pol}) \leq 1.$$

In the formulation of the above theorem we have employed the following notations: $\mathcal{P}_0(\mathbb{R})$ is the set of all entire functions φ of exponential type, the indicators of which satisfy the estimates

$$h_{\varphi}(\arg z) \leqslant C_{\varphi}|\operatorname{Im} z|, \quad z \in \mathbb{C}$$

and on the real axis the identity holds:

$$|\varphi(x)| = o(|x|^{-n}), \quad |x| \to \infty, \quad n = 1, 2, \dots;$$

 $\mathcal{H}(\varphi)$ is a Hilbert space consisting of all entire functions ω of minimal type at order 1 such that

$$\int_{-\infty}^{\infty} |\omega(x)\varphi(x)|^2 \mathrm{d}x < +\infty$$

equipped with the scalar product

$$(\omega_1, \omega_2) = \int_{\mathbb{R}} \omega_1(x) \overline{\omega_2(x)} |\varphi(x)|^2 \mathrm{d}x, \quad \omega_1, \omega_2 \in \mathcal{H}(\varphi),$$
(1.3)

¹"weak" with respect to the classical spectral synthesis when $W = \overline{\text{span}(\text{Exp } W)}$

 H_{pol} is the closure of the set of polynomials in $\mathcal{H}(\varphi)$.

It is clear that the synthesizability of a sequence Λ is a sufficient condition for admitting a weak spectral synthesis by a D-invariant subspace with a discrete spectrum $-(i\Lambda)$ and a residual segment of length $2\pi D_{BM}(\Lambda)$. This gives rise to a question: when the syntesizability of a sequence Λ is also a necessary condition for admittance of a weak spectral synthesis by a D-invariant subspace with the spectrum $-(i\Lambda)$ and a residual segment equalling to $[-\pi D_{BM}(\Lambda); \pi D_{BM}(\Lambda)]$ (or to any other fixed segment of the length $2\pi D_{BM}(\Lambda)$)?

One of the aims of the present work is to answer this question.

Earlier for studying D-invariant subspaces we employed effectively the scheme of dual spaces reducing the problem on subspaces to equivalent problems on closed submodules in a special module of entire functions $\mathcal{P}(a; b)$, see [2], [4], [8]. We are going to employ this scheme in the present work and this is why we describe briefly the duality between D-invalue subspaces and submodules.

For each element $S \in \mathcal{E}'(a; b)$ we introduce its Fourier-Laplace transform

$$\mathcal{F}(S)(z) = S(e^{-itz}), \quad z \in \mathbb{C},$$

which is an entire function of a completely regular growth at order 1. We denote it by φ . The indicator diagram of the function φ is the segment of the imaginary axis

$$\mathbf{i}[c_{\varphi}; d_{\varphi}] \subset \mathbf{i}(a; b),$$

where $c_{\varphi} = -h_{\varphi}(-\pi/2), d_{\varphi} = h_{\varphi}(\pi/2)$, and h_{φ} is the indicator of the function φ .

We let $\mathcal{P}(a; b) = \mathcal{F}(\mathcal{E}'(a; b))$. It is well known that $\mathcal{P}(a; b) = \bigcup P_k$, where $\{P_k\}$ is an increasing sequence of Banach spaces, each being the set of all entire functions φ with a finite norm

$$\|\varphi\|_{k} = \sup_{z \in \mathbb{C}} \frac{|\varphi(z)|}{(1+|z|)^{k} \exp(b_{k}y^{+} - a_{k}y^{-})}, \qquad y^{\pm} = \max\{0, \pm y\}, \qquad z = x + \mathrm{i}y, \qquad (1.4)$$

 $[a_1; b_1] \in [a_2; b_2] \in \ldots$ is a sequence of segments exhausting the interval (a; b). Equipping the set $\mathcal{P}(a; b)$ by a locally convex topology of the inductive limit of the sequence $\{P_k\}$, we obtain a space of type (LN^*) , see [9], isomorphic to $\mathcal{E}'(a; b)$ [10, Thm. 7.3.1]. We note that according to the same theorem, $\mathcal{P}_0(\mathbb{R}) = \mathcal{F}(C_0^{\infty}(\mathbb{R})).$

In the space $\mathcal{P}(a; b)$, the operation of multiplication by an independent variable z is continuous and this is why $\mathcal{P}(a; b)$ is a topological module over the ring of polynomials $\mathbb{C}[z]$ called Schwartz module.

A closed submodule $J \subset \mathcal{P}(a; b)$ is a closed subspace satisfying also the condition $zJ \subset J$. In what follows, for the sake of brevity, we shall say "submodule" meaning a closed submodule.

We recall a series of notions characterising submodules, see [11], [12]. An indicator segment

of a submodule J is the segment $[c_J; d_J] \subset \overline{\mathbb{R}}$, where $c_J = \inf_{\varphi \in J} c_{\varphi}, d_J = \sup_{\varphi \in J} d_{\varphi}$. A divisor of a submodule $J \subset \mathcal{P}(a; b)$ is a function $n_J(\lambda) = \min_{\varphi \in J} n_{\varphi}(\lambda), \lambda \in \mathbb{C}$, where $n_{\varphi}(\lambda)$ is a divisor of the function $\varphi \in J$:

$$n_{\varphi}(\lambda) = \begin{cases} 0 & \text{if } \varphi(\lambda) \neq 0, \\ m & \text{if } \lambda \text{ is a zero of } \varphi \text{ of multiplicity } m, \end{cases}$$

and

$$\Lambda_{\varphi} = \{\lambda \in \mathbb{C} : n_{\varphi}(\lambda) > 0\}, \qquad \Lambda_J = \{\lambda \in \mathbb{C} : n_J(\lambda) > 0\}$$

are zero sets of the function φ and submodule J, respectively, and each point λ is repeated according its multiplicity.

The submodules of the module $\mathcal{P}(a; b)$ are dual to D-invariant subspaces of the space $\mathcal{E}(a; b)$. Namely, there exists an one-to-one correspondence between the set of closed submodules $\{J\}$ of the module $\mathcal{P}(a; b)$ and the of D-invariant subspaces $\{W\}$ of the space $\mathcal{E}(a; b)$. This one-to-one

correspondence is defined by the following rule: $J \leftrightarrow W$ if and only if $J = \mathcal{F}(W^0)$, where a closed subspace $W^0 \subset \mathcal{E}'(a; b)$ consists of all distributions $S \in \mathcal{E}'(a; b)$ annihilating W; here

Exp $W = \{ t^j e^{-i\lambda_k t}, \quad j = 0, \dots m_k - 1, \quad n_J(\lambda_k) = m_k > 0 \},\$

and the points c_J and d_J serve as boundaries for the residual segment I_W , see [2], [12]. The above formulated fact is called the duality principle.

A submodule $J \subset \mathcal{P}(a; b)$ is weakly localizable if for each function $\varphi \in \mathcal{P}(a; b)$ the conditions 1) $n_{\varphi}(z) \ge n_J(z)$ for all $z \in \mathbb{C}$,

2) the indicator diagram of the function φ is contained in the set $i[c_J; d_J]$; imply that $\varphi \in J$.

A submodule J is called *stable* if for each $\lambda \in \mathbb{C}$ an implication holds:

$$\varphi \in J, \quad n_{\varphi}(\lambda) > n_J(\lambda) \Longrightarrow \frac{\varphi}{z - \lambda} \in J.$$

A *D*-invariant subspace *W* admits a weak spectral synthesis if and only if its annihilating submodule $\mathcal{J} = \mathcal{F}(W^0)$ is weakly localizable, see [2], [4].

A *D*-invariant subspace *W* has a discrete spectrum if and only if its annihilating submodule $\mathcal{J} = \mathcal{F}(W^0)$ is stable [1, Prop. 3.1], [12, Prop. 2].

A principle submodule J_{φ} generated by a function $\varphi \in \mathcal{P}(a; b)$ is defined as a closure of the set

$$\operatorname{Pol}_{\varphi} = \{ p\varphi : p \in \mathbb{C}[z] \}$$

in $\mathcal{P}(a; b)$. A principle submodule is always stable [12].

Let, as above, Λ be a complex sequence with a finite Beurling-Malliavin density; $W \subset \mathcal{E}(\mathbb{R})$ be a *D*-invariant subspace with the spectrum $\sigma_W = -i\Lambda$ and the residual segment $I_W = [-\pi D_{BM}(\Lambda); \pi D_{BM}(\Lambda)]$. We observe that if the residual segment I_W is given, the corresponding subspace *W* can be considered in each space $\mathcal{E}(a; b)$ such that $I_W \subset (a; b)$.

We assume first that the sysmte Exp_{Λ} is either complete or have a finite defect in the space $L^{2}(-\pi D_{BM}(\Lambda); \pi D_{BM}(\Lambda))$. It is easy to make sure that this is equivalent to the existence of the function $\varphi \in \mathcal{P}(\mathbb{R}) \setminus \mathcal{P}_{0}(\mathbb{R})$, with the zero set $\Lambda_{\varphi} = \Lambda$ and the indicator diagram $[-i\pi D_{BM}(\Lambda); i\pi D_{BM}(\Lambda)]$. By Theorem 2 in work [8], this implies that the annihilator submodule of the subspace W is the principle submodule \mathcal{J}_{φ} with generator φ . Moreover, in this case,

$$\mathcal{J}(\varphi) = \mathcal{J}_{\varphi} = \{ p\varphi : \quad p \in \mathbb{C}[z] \}, \tag{1.5}$$

where the symbol $\mathcal{J}(\varphi)$ denotes a weakly localizable sudmodule with the zero set Λ and the indicator segment $[-i\pi D_{BM}(\Lambda); i\pi D_{BM}(\Lambda)]$.

By the duality between D-invariant subspaces and submodules and by the said above Theorem A we conclude that

if the system Exp_Λ is complete or has a finite defect in the space

$$L^2(-\pi D_{BM}(\Lambda);\pi D_{BM}(\Lambda))$$

then W admits a weak spectral synthesis and Λ is a synthesizable sequence.

Now we consider the case when the exponential system Exp_{Λ} has an infinite defect in $L^2(-\pi D_{BM}(\Lambda); \pi D_{BM}(\Lambda))$. In this case it follows from Theorem A and the duality that for the synthesizability of Λ , it is necessary that the space W is of the form

$$W = W_S = \{ f \in \mathcal{E}(\mathbb{R}) : S(f^{(k)}) = 0 \text{ for all } k = 0, 1, \dots \},$$
(1.6)

where $S \in \mathcal{E}'(\mathbb{R})$, and $\varphi = \mathcal{F}(S) \in \mathcal{P}_0(\mathbb{R})$, $\Lambda_{\varphi} = \Lambda$, while the indicator diagram φ is $[-i\pi D_{BM}(\Lambda); i\pi D_{BM}(\Lambda)]$. Then $\mathcal{F}(W_S^0) = \mathcal{J}_{\varphi}$ and the admittance of the weak spectral synthesis for W_S is equivalent to the weak localizability of $\mathcal{J}_{\varphi} : \mathcal{J}_{\varphi} = \mathcal{J}(\varphi)$. In other words, it

is equivalent to the fact that $\mathcal{J}(\varphi)$ is the closure of the set $\operatorname{Pol}_{\varphi}$ in the topology of the space $\mathcal{P}(\mathbb{R})$.

On the other hand, in the considered case, if Λ is a synthesizable sequence, then the submodule $\mathcal{J}(\varphi)$ coincides with a sequential closure of the set $\operatorname{Pol}_{\varphi}$, that is, with the set of all limits of countable sequences in $\operatorname{Pol}_{\varphi}$ converging in the topology of the space $\mathcal{P}(\mathbb{R})$; this set is indicated by the symbol $\mathcal{J}_{\varphi,seq}$. This is implied by Theorem A in view of the remark after Lemma 1, see the next section.

Thus, for the equivalence of the synthesizability of the sequence Λ and the admittance of a weak spectral synthesis by the corresponding *D*-invariant subspace *W* with the spectrum $\sigma_W = -i\Lambda$ and the residual segment $I_W = [-\pi D_{BM}(\Lambda); \pi D_{BM}(\Lambda)]$, it is necessary that $W = W_S$ and $\mathcal{J}_{\varphi} = \mathcal{J}_{\varphi,seq}$, where $\varphi = \mathcal{F}(S)$, and $\Lambda_{\varphi} = \Lambda$, and the indicator diagram of φ is the segment $[-i\pi D_{BM}(\Lambda); i\pi D_{BM}(\Lambda)]$.

The space $\mathcal{P}(a; b)$ is non-metrizable [9, Cor. 2 of Thm. 1]. This is why, generally speaking, the closure of an arbitrary set $A \subset \mathcal{P}(a; b)$ can not be obtained just by adding the limits of converging *countable* sequences $\{\varphi_n\} \subset A$. Therefore, to answer the question on equivalence of synthesizability of the sequence Λ and the weak spectral synthesis for the corresponding subspace of form (1.6) with the spectrum $\sigma_W = -i\Lambda$, we first need to study whether the identity

$$J_{\varphi,seq} = J_{\varphi} \tag{1.7}$$

is possible.

Theorem 1. Identity (1.7) holds for all $\varphi \in \mathcal{P}(a; b)$.

By means of this theorem we prove the equivalence of the synthesizability of the sequence Λ and the admittance of the weak spectral synthesis by a space of form (1.6) with the spectrum $-(i\Lambda)$, see Corollary 2. Another important application of Theorem 1 is a convenient weight criterion of the weak localizability of the principle submodule in the module $\mathcal{P}(a; b)$, see Theorem 2.

The main results of the present work were announced in [13].

2. Sequential description of principle submodules in the Schwartz module

2.1. Preliminaries. Let $[c; d] \subset (a; b)$, $PW(c; d) = \mathcal{F}(L^2(c; d))$ be the Paley-Wiener space, $P_0[c; d]$ be the space of all entire functions ψ with a finite norm

$$\|\psi\|_{0} = \sup_{z \in \mathbb{C}} \frac{|\psi(z)|}{\exp(dy^{+} - cy^{-})}, \qquad y^{\pm} = \max\{0, \pm y\}, \qquad z = x + \mathrm{i}y.$$
(2.1)

Lemma 1. If $\psi \in PW(c; d)$, then $\psi \in P_0[c; d]$, and

$$\|\psi\|_{0} \leqslant C_{0} \|\psi\|_{PW(c;d)},\tag{2.2}$$

where a positive constant C_0 is independent of c and d.

Proof. Without loss of generality we can assume that c = -d; then

$$\psi(z) = \int_{-d}^{d} e^{-izt} f(t) dt, \quad f \in L^{2}(-d; d),$$
$$\|\psi\|_{0} = \sup_{z \in \mathbb{C}} \frac{|\psi(z)|}{\exp(d|y|)}, \quad z = x + iy.$$

According Plancherel theorem, for a fixed $y \in \mathbb{R}$ we have

$$\|\psi(x+\mathrm{i}y)\|_{L^2(\mathbb{R})}^2 = 2\pi \|e^{yt}f(t)\|_{L^2(-d;d)}^2.$$

Employing this fact and a subharmonicity of the function $|\psi|^2$, for all $x \in \mathbb{R}$ we obtain the estimates

$$|\psi(x)|^{2} \leqslant \frac{1}{\pi} \int_{|w-x|\leqslant 1} |\psi(w)|^{2} |\mathrm{d}w| \leqslant \frac{1}{\pi} \int_{-1}^{1} \left(\int_{-\infty}^{+\infty} |\psi(s+\mathrm{i}\tau)|^{2} \mathrm{d}s \right) \mathrm{d}\tau \leqslant C_{1} e^{2d} \|\psi\|_{PW(-d;d)}^{2},$$

where C_1 is an absolute constant. Inequality (2.2) follows from these estimates and Phragmén-Lindelöf principle.

Remark 1. Theorem A and the proven Lemma yield easily that if the zero set Λ_{φ} of the function $\varphi \in \mathcal{P}(a; b) \bigcap \mathcal{P}_0(\mathbb{R})$ is a synthesizable sequence, then

$$\mathcal{J}(\varphi) = \mathcal{J}_{\varphi} = \mathcal{J}_{\varphi,seq}.$$

Indeed, if $\Phi \in \mathcal{J}(\varphi)$, then $\Phi = \omega \varphi$, where ω is an entire function of the minimal type and there exists a polynomial q_{Φ} such that $\frac{\omega}{q_{\Phi}} \in \mathcal{H}(\varphi)$. Then, by Theorem A, either $\frac{\omega}{q_{\Phi}} \in H_{pol}$ or for an arbitrary fixed point $\lambda_0 \in \Lambda_\omega \setminus \Lambda_\varphi$ there exist numbers $\alpha_1, \alpha_2 \in \mathbb{C}$ such that

$$\left(\alpha_2 - \frac{\alpha_1}{z - \lambda_0}\right) \cdot \frac{\omega}{q_\Phi} \in H_{pol}.$$

In both case, in view of the intrinsic description of the space $\mathcal{P}(a; b)$ and a sequential convergence in it, [9, Cor. 1 from Thm. 2], by the proven lemma we conclude that $\Phi \in \mathcal{J}_{\varphi,seq}$.

Let $\varphi \in \mathcal{P}_0(\mathbb{R}), c_{\varphi} = h_{\varphi}(-\pi/2), d_{\varphi} = h_{\varphi}(\pi/2)$, where h_{φ} is the indicator of the function φ , $PW = PW(c_{\varphi}; d_{\varphi})$. We consider the following closed subspaces in PW: the subspace $PW(\varphi) = J(\varphi) \bigcap PW$ and the subspace PW_{pol} defined as the closure of the set Pol_{φ} in PW. A one-to-one correspondence

$$\omega \mapsto \omega \varphi, \quad \omega \in \mathcal{H}(\varphi), \tag{2.3}$$

makes an isometry of Hilbert spaces $\mathcal{H}(\varphi)$ and $PW(\varphi)$. The subspace H_{pol} defined as the closure of the set of polynomials in $\mathcal{H}(\varphi)$ is the pre-image of the subspace PW_{pol} under this isometry.

We shall need some definitions and facts from the general theory of de Branges spaces [14], and also from work [7], in which this theory was successfully employed for studying D-invariant subspaces in the Schwartz space (in particular, for the proof of Theorem A).

Originally, de Branges space is defined as associated with an entire function E from the Hermite-Biehler class and is the set of all entire functions F, such that

$$\int_{-\infty}^{+\infty} \left| \frac{F(t)}{E(t)} \right|^2 \mathrm{d}t < +\infty,$$

and obeying some further restrictions, see [14, Sects. 19–21], [7, Sect. 2]).

In this work, we restrict ourselves by an exact formulation of an equivalent definition of de Branges space; this definition is an axiomatic description, see [14, Thm. 23]): a non-trivial Hilbert space of entire functions \mathcal{H} is a de Branges space if and only if the following axioms are satisfied:

(H1) if $F \in \mathcal{H}, \lambda \in \mathbb{C} \setminus \mathbb{R}$ is a zero of the function F, then $F_1 = F(z) \frac{z-\bar{\lambda}}{z-\lambda} \in \mathcal{H}$ and the norm of the functionts F and F_1 are equal;

(H2) for each $\lambda \in \mathbb{C} \setminus \mathbb{R}$, a corresponding linear δ_{λ} -functional acting by the rule $\delta_{\lambda}(F) = F(\lambda)$, $F \in \mathcal{H}$, is continuous in \mathcal{H} ;

(H3) for each function $F \in \mathcal{H}$, the function $F^*(z) = \overline{F(\overline{z})}$ belongs to \mathcal{H} and has the same norm as F.

By means of this axiomatic description, it was established in [15], [7, Sect. 2, Thm. 2.7] that $\mathcal{H}(\varphi)$ is a de Branges space. It is also easy to check that axioms (H1)–(H3) holds also for

the subspace H_{pol} regarded as a Hilbert space with scalar product (1.3), that is, H_{pol} is a de Branges space.

We also formulate two results on de Branges space, see [14, Sect. 35], [7, Thm. 2.1] and [14, Sect. 29], respectively.

Theorem B. Let H_1 and H_2 be closed subspaces of the same de Branges space \mathcal{H} being also de Branges spaces with the scalar product induced from \mathcal{H} . Then one of the following inclusions holds: $H_1 \subset H_2$ or $H_2 \subset H_1$.

Theorem C. Let \mathcal{H} be a de Branges space, H_k be the closure of a linear set $\{f \in \mathcal{H} : z^j f \in \mathcal{H}, j = 1, ..., k\}, k \in \mathbb{N}$, in \mathcal{H} . Then dim $(\mathcal{H} \ominus H_k) < +\infty$.

Employing Theorems B and C, it is easy to prove the following lemma.

Lemma 2. Assume that in the space H_{pol} there exists a function ω_0 with the following property:

$$z^{k_0-1}\omega_0 \in \mathcal{H}(\varphi), \quad z^{k_0}\omega_0 \notin \mathcal{H}(\varphi)$$

for some $k_0 \in \mathbb{N}$. Then

dim
$$(\mathcal{H}(\varphi) \ominus H_{pol}) \leq 1.$$

Proof. For each $k \in \mathbb{N}$, by the symbol \mathcal{H}_k we denote the closure of the set

$$\{\omega \in \mathcal{H}(\varphi): \ z^k \omega \in \mathcal{H}(\varphi)\}$$

in $\mathcal{H}(\varphi)$.

Since $\mathcal{H}(\varphi)$ is the pre-image of the set $PW \bigcap \mathcal{J}(\varphi)$ under the isometry (2.3), and $\mathcal{J}(\varphi)$ is a stable submodule, then \mathcal{H}_k coincides with the subspace H_k from Theorem C. It is also clear that $\mathcal{H}_0 = \mathcal{H}(\varphi), \mathcal{H}_k \subset \mathcal{H}_{k-1}, k = 1, 2, ...$

Each \mathcal{H}_k with the scalar product induced by that in $\mathcal{H}(\varphi)$ is a de Branges space, as well as the subspace H_{pol} . This is why by Theorem B, either $\mathcal{H}_{k_0} \subset H_{pol}$ or $H_{pol} \subset \mathcal{H}_{k_0}$. But the presence of the function ω_0 in H_{pol} excludes the possibility $H_{pol} \subset \mathcal{H}_{k_0}$; therefore,

$$\mathcal{H}_{k_0} \subset H_{pol}$$

In view of Theorem C we have

$$\dim (\mathcal{H}(\varphi) \ominus H_{pol}) \leq \dim (\mathcal{H}(\varphi) \ominus \mathcal{H}_{k_0}) < +\infty.$$

On the other hand, it is known that the codimension of H_{pol} in $\mathcal{H}(\varphi)$ can take only three possible values: 0, 1, $+\infty$ [7, Thms. 2.1, 2.2, 2.9]. This implies the desired statement.

2.2. Proof of Theorem 1. As it has been already mentioned in the Introduction, by Theorem 2 in [8], the relation $\varphi \in \mathcal{P}(a; b) \setminus \mathcal{P}_0(\mathbb{R})$ is equivalent to the validity of (1.5) and hence, in this case the statement of the theorem is trivial.

Let $\varphi \in \mathcal{P}(a; b) \bigcap \mathcal{P}_0(\mathbb{R})$. Then, as it has been said in the end of the proof of Lemma 2, the quantity dim $(\mathcal{H}(\varphi) \ominus H_{pol})$ can take only one of three possible values: 0, 1, $+\infty$.

If dim $(\mathcal{H}(\varphi) \ominus H_{pol}) = 0$, then

$$J_{\varphi,seq} = J_{\varphi} = J(\varphi). \tag{2.4}$$

In the case dim $(\mathcal{H}(\varphi) \ominus H_{pol}) = 1$, identities (2.4) can be proved on the base of Lemma 1 by arguing in the same way as in the remark after this lemma.

We consider the last option:

$$\dim \left(\mathcal{H}(\varphi) \ominus H_{pol}\right) = +\infty. \tag{2.5}$$

We denote by H_{φ} the pre-image of the closed subspace $PW_{\varphi} = PW \bigcap \mathcal{J}_{\varphi}$ of the space PWunder isometry (2.3) and we let $H_1 = H_{\varphi} \ominus H_{pol}$. To complete the proof of the theorem, it is sufficient to make sure that

$$H_1 = \{\bar{0}\}.$$

First of all we observe that the subspace H_1 can not contain a non-zero function ω satisfying $\Phi = \omega \varphi \in \mathcal{P}_0(\mathbb{R})$. Indeed, otherwise

$$\Phi = \mathcal{F}(s), \quad s \in C_0^\infty(\mathbb{R}) \bigcap \mathcal{E}'(a; b).$$

And if S_{φ} is a regular functional belonging to in $C_0^{\infty}(a; b)$ obeying the identity $\varphi = \mathcal{F}(S_{\varphi})$, then

$$\int_{a}^{b} S_{\varphi}^{(k)}(t)\overline{s(t)} \mathrm{d}t = 0, \quad k = 0, 1, 2 \dots$$

Therefore, $\bar{s} \in W_{S_{\omega}}$.

On the other hand, $\Phi \in J_{\varphi}$, since $\omega \in H_1 \subset H_{\varphi}$. This is why $s \in W^0_{S_{\varphi}}$ and

$$0 = s(\bar{s}) = \int_{a}^{b} s(t) \overline{s(t)} dt$$

that is, s = 0. Thus, if $\omega \in H_1 \setminus \{\overline{0}\}$, then there exists a number $n_\omega \in \mathbb{N}$ such that

$$z^{j}\omega \in \mathcal{H}(\varphi), \quad j = 0, \dots, n_{\omega} - 1, \qquad z^{n_{\omega}}\omega \notin \mathcal{H}(\varphi).$$
 (2.6)

Suppose we shall succeed to establish the following fact.

(F): in the subspace H_{pol} , there exists a function with property (2.6).

Applying then Lemma 2, we conclude that dim $(\mathcal{H}(\varphi) \ominus H_{pol}) < +\infty$, and this contradicts relation (2.5). Thus, we have established that in case (2.5) we have

$$H_1 = \{\bar{0}\}, \qquad J_{\varphi,seq} = J_{\varphi} \neq J(\varphi),$$

that is, the principle submodule J_{φ} is sequentially generated but is not weakly localizable.

It remains to justify statement (**F**).

Let $\{\mu_j\}$ be a "sparse" sequence of zeroes a fixed non-zero function $\omega \in H_1$, say, such that $\mu_1 > 1, \ \mu_j > 8\mu_{j-1}, \ j = 2, 3, \ldots$ We let

$$q_m(z) = \prod_{j=1}^m \left(1 - \frac{z}{\mu_j}\right), \qquad \tilde{\omega}_m = \frac{\omega}{q_m}.$$

It is clear that $\tilde{\omega}_m$ satisfies condition (2.6) and by the stability of the submodule J_{φ} we have $\tilde{\omega}_m \in H_{\varphi}$.

Let $\operatorname{Pr}_{pol} : H_{\varphi} \to H_{pol}$ and $\operatorname{Pr}_1 : H_{\varphi} \to H_1$ be the projectors on the corresponding subspaces. If $\operatorname{Pr}_1(\tilde{\omega}_m) = 0$ for some index m, then statement (F) holds. Otherwise $\operatorname{Pr}_1(\tilde{\omega}_m) \neq 0$ for all $m = 1, 2, \ldots$ Employing standard ways for estimating entire functions and for description of bounded sets in locally-convex spaces of type (LN^*) [9, Thm. 2], the space $\mathcal{P}(a; b)$ being one of those, it is easy to confirm that the sequence $\{\tilde{\omega}_m \varphi\}$ is bounded in the sense of some norm $\|\cdot\|_{k_0}$, see (1.4). Hence, there exists a subsequence converging in $\mathcal{P}(a; b)$, more precisely,

$$\left\|\tilde{\omega}_{m_j}\varphi - \tilde{\omega}_0\varphi\right\|_{k_0+1} \to 0,$$

where

$$\tilde{\omega}_0(z) = \frac{\omega(z)}{\prod\limits_{i=1}^{\infty} \left(1 - \frac{z}{\mu_i}\right)}.$$

Let q be some polynomial of degree $(k_0 + 2)$ with roots in the set $\Lambda_{\omega} \setminus \{\mu_j\}$. As in the case of $\tilde{\omega}_m$, if $\Pr_1(\tilde{\omega}_m q^{-1}) = 0$ for some index m, then $\tilde{\omega}_m q^{-1} \in H_{pol}$ satisfies (2.6) and statement (**F**) holds. Otherwise we employ the convergence of the sequence $\{\tilde{\omega}_{m_j}q^{-1}\}$ converges to the function $\omega_0 = \tilde{\omega}_0 q^{-1}$ in the space $\mathcal{H}(\varphi)$ and $\omega_0 \varphi \in \mathcal{P}_0(\mathbb{R})$. By the above remark that each function in H_1 satisfies (2.6), we have $\Pr_{pol}(\omega_0) \neq 0$. If $\Pr_1(\omega_0) \neq 0$, then the function $\Pr_{pol}(\omega_0)$ is the sought one and (**F**) holds.

It remains to treat the case $\omega_0 \in H_{pol}$. We observe that multiplying the function ω_0 by arbitrary rational function Q such that $Q\omega_0$ is entire produces a function belonging to H_{φ} and not satisfying condition (2.6). This is why, if for some rational function Q_0 the inequality $Pr_1(Q_0\omega_0) \neq 0$ holds, then the function $Pr_{pol}(Q_0\omega_0)$ satisfies (**F**).

Finally, let $Q\omega_0 \in H_{pol}$ for each rational function Q such that $Q\omega_0$ is entire. For the principle submodule generated by the function

$$\Phi = \omega q^{-1} \varphi$$

relations (1.5) hold since the function ωq^{-1} satisfies (2.6). In view of the restrictions determining the choice of the points $\{\mu_j\}$, now we are under the same conditions as before Theorem 2 in work [8, Sect. 2]. Employing then Lemmata 1–3 of this work, we find a sequence of polynomials $\{p_j\}$ such that

$$\lim_{i \to \infty} p_j \omega_0 \varphi = \Phi$$

in the space $\mathcal{P}(a; b)$. In view of the description of the sequential convergence in $\mathcal{P}(a; b)$, see [9, Cor. 1 from Thm. 2], we conclude that there exists a polynomial p possessing the following property: the sequence $\{p_j\omega_0p^{-1}\}$ converges to an entire function $\nu = \omega q^{-1}p^{-1}$ in the norm of the space $\mathcal{H}(\varphi)$ and the function ν satisfies (2.6). Since $\Pr_1(p_j\omega_0p^{-1}) = 0$ for all values of the index j, then $\nu \in H_{pol}$ and this completes the proof.

3. Application of main result

Let $\Lambda \subset \mathbb{C}$, $2\pi D_{BM}(\Lambda) < b - a$. By Theorem 1 and Theorem A we obtain the following statement.

Corollary 1. A stable submodule $J \subset \mathcal{P}(a; b)$ with a zero set Λ and an indicator segment $[c; d] \subset (a; b)$ of length $2\pi D_{BM}(\Lambda)$ is unique if and only if it is principle and weakly localizable.

Proof. Without loss of generality we assume that

$$b = -a, \qquad d = -c = -\pi D_{BM}(\Lambda).$$

According to the said in the Introduction for the case, the statement holds when the system $\operatorname{Exp}_{\Lambda}$ is complete or has a finite defect in the space $L^2(-\pi D_{BM}(\Lambda); \pi D_{BM}(\Lambda))$. Indeed, this condition for the system $\operatorname{Exp}_{\Lambda}$ is equivalent to the fact that the submodule \mathcal{J} is principle and is of the form (1.5).

If the system Exp_{Λ} has an infinite defect in $L^2(-\pi D_{BM}(\Lambda); \pi D_{BM}(\Lambda))$, then the part of the statement concerning *necessity* is implied by Theorem A and the fact that a principle submodule is always stable.

To justify sufficiency we note that if J is a weakly localizable principle submodule, then

dim
$$(\mathcal{H}(\varphi) \ominus H_{pol}) \leq 1$$
,

see the proof of Theorem 1 and it remains to apply Theorem A.

The duality principle allows us to provide an equivalent formulation of Corollary 1 in terms of D-invariant subspaces.

Corollary 2. A D-invariant subspace W with a given discrete spectrum $(-i\Lambda)$ and a residual segment $[c;d] \subset (a;b)$ of length $2\pi D_{BM}(\Lambda)$ is unique if and only if it is of form (1.6) and admits a weak spectral synthesis (1.2).

N.F. ABUZYAROVA

It follows from Theorem 1 that a weak localizability of the principle submodule in the module $\mathcal{P}(a; b)$ generated by the function $\varphi \in \mathcal{P}_0(a; b)$ can be studied a possibility of approximating functions $\Phi \in J(\varphi)$ by countable sequences functions from the set Pol_{φ} .

To formulate an appropriate criterion, we introduce the following notations: u(z) is the maximal subharmonic minorant of the function $(h_{\varphi}(\arg z)|z| - \ln |\varphi(z)|)$, where h_{φ} is the indicator function φ ,

$$H_u = \{ \omega \in H(\mathbb{C}) : \|\omega(z)\|_u = \sup_{z \in \mathbb{C}} |\omega(z)| e^{-u(z)} < +\infty \}.$$

Theorem 2. The principle submodule J_{φ} generated by the function $\varphi \in \mathcal{P}_0(\mathbb{R})$ is weakly localizable if and only if each function $\omega \in H_u$ is approximated by the polynomials in the norm $\|\omega\|' = \sup_{z \in \mathbb{C}} |\omega(z)| \exp(-u(z) - 2\ln(2 + |z|)).$

Proof. It is clear we need to prove only necessity.

Let $\omega \in H_u$ and μ_0 be some zero of this function, then $\frac{\omega}{z-\mu_0} \in \mathcal{H}(\varphi)$. By Corollary 1 and Theorem A, either $\mathcal{H}(\varphi) = H_{pol}$ or

$$\dim \left(\mathcal{H}(\varphi) \ominus H_{pol}\right) = 1. \tag{3.1}$$

In the first case for some sequence of polynomials $\{q_j\}$ the relation holds:

$$\frac{\omega}{z-\mu_0} = \lim_{j \to \infty} q_j$$

in the space $\mathcal{H}(\varphi)$. By Lemma 1,

$$\left\| q_j \varphi - \frac{\omega}{z - \mu_0} \varphi \right\|_0 \to 0,$$

where $\|\cdot\|_0$ is determined by formula (2.1) with $c = c_{\varphi}$, $d = d_{\varphi}$. This implies easily the convergence of the polynomials $\{(z - \mu_0)q_j\}$ to a function ω in the norm $\|\cdot\|'$.

If identity (3.1) holds, then

$$\left(\alpha_0 \frac{\omega}{z - \mu_0} + \alpha_1 \frac{\omega}{z - \mu_1}\right) \in H_{pol},$$

for some $\alpha_0, \alpha_1 \in \mathbb{C}$, where $\mu_1 \neq \mu_0$ is one more zero of the function ω . By Lemma 1, some sequence of polynomials $\{p_j\}$ converges to the function $((\alpha_0 + \alpha_1)z - (\alpha_1\mu_0 + \alpha_0\mu_1))\omega$ in the norm $\|\cdot\|'$.

If $\alpha_0 + \alpha_1 = 0$, then the statement holds. Otherwise, letting $\beta = \frac{\alpha_1 \mu_0 + \alpha_0 \mu_1}{\alpha_0 + \alpha_1}$ and taking into consideration the Phragmén-Lindelöf principle and the definition of the function u, we see that the sequence of the polynomials

$$\tilde{p}_j(z) = \frac{p_j(z) - p_j(\beta)}{(\alpha_0 + \alpha_1)z - (\alpha_1\mu_0 + \alpha_0\mu_1)}, \quad j = 1, 2, \dots,$$

converges to the function ω in the norm $\|\cdot\|'$.

BIBLIOGRAPHY

- A. Aleman, B. Korenblum. Derivation-invariant subspaces of C[∞] // Comput. Meth. Funct. Theor. 8:2, 493-512 (2008).
- N.F. Abuzyarova. Spectral synthesis in the Schwartz space of infinitely differentiable functions // Dokl. Akad. Nauk. 457:5, 510-513 (2014). [Dokl. Math. 90:1, 479-482 (2014).]
- A. Aleman, A. Baranov, Yu. Belov. Subspaces of C[∞] invariant under the differentiation// J. Funct. Anal. 268, 2421–2439 (2015).
- 4. N.F. Abuzyarova. Spectral synthesis for the differentiation operator in the Schwartz space // Matem. Zamet. 102:2, 163–177 (2017) [Math. Notes. 102:2, 137–148 (2017).]

- N.F. Abuzyarova. Principal submodules in the module of entire functions, which is dual to the Schwarz space, and weak spectral synthesis in the Schwartz space // J. Math. Sci. 241:6, 658-671 (2019).
- N.F. Abuzyarova. Some properties of principal submodules in the module of entire functions of exponential type and polynomial growth on the real axis // Ufimskij Matem. Zhurn. 8:1, 3-14 (2016). [Ufa Math. J. 8:1, 1-12 (2016).]
- A. Baranov, Yu. Belov. Synthesizable differentiation-invariant subspaces // Geom. Funct. Anal. 29:1, 44-71 (2019).
- N.F. Abuzyarova. On 2-generateness of weakly localizable submodules in the module of entire functions of exponential type and polynomial growth on the real axis // Ufimskij Matem. Zhurn. 8:3, 8-21 (2016). [Ufa Math. J. 8:3, 8-21 (2016).]
- 9. J. Sebastian-e-Silva. "On some classes of locally convex spaces important in applications" // Matematika. Sbornik Perevodov. 1, 60-77 (1957). (in Russian).
- 10. L. Hörmander. The analysis of linear partial differential operators I: distribution theory and Fourier analysis. Springer, Berlin, (1980).
- I.F. Krasičkov-Ternovskiĭ. Local description of closed ideals and submodules of analytic functions of one variable. I, II // Izvestia AN SSSR. Ser. Matem. 43:1, 44-66 (1979). [Math. USSR-Izvestiya. 14:1, 41-60 (1980).]

I.F. Krasičkov-Ternovskiĭ. Local description of closed ideals and submodules of analytic functions of one variable. II // Izvestia AN SSSR. Ser. Matem. 43:2, 309–341 (1979). [Math. USSR-Izvestiya. 14:2, 289–316 (1980).]

- N.F. Abuzyarova. Closed submodules in the module of entire functions of exponential type and polynomial growth on the real axis // Ufimskij Matem. Zhurn. 6:4, 3-18 (2014). [Ufa Math. J. 6:4, 3-17 (2014).]
- N.F. Abuzyarova. Principal submodules in the Schwartz module // Izv. Vyssh. Uchebn. Zaved. Mat. 5, 83-88 (2020). [Russian Math. 64:5, 74-78 (2020).]
- 14. L. de Branges. Hilbert spaces of entire functions. N.J.: Prentice-Hall inc. 1968.
- Yu. Belov. Complementability of exponential systems // C.R. Math. Acad. Sci. Paris. 353, 215–218 (2015).

Natalia Fairbakhovna Abuzyarova, Bashkir State University, Zaki Validi str. 32, 450076, Ufa, Russia E-mail: abnatf@gmail.com