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SYNTHESIZABLE SEQUENCE AND PRINCIPLE
SUBMODULES IN SCHWARTZ MODULE

N.F. ABUZYAROVA

Abstract. We consider a module of entire functions of exponential type and polynomial
growth on the real axis, that is, the Schwarz module with a non-metrizable locally convex
topology. In relation with the problem of spectral synthesis for the differentiation operator
in the space C*°(a;b), we study principle submodules in this module. In particular, we find
out what functions, apart of products of the polynomials on the generating function, are
contained in a principle submodule. The main results of the work is as follows: despite
the topology in the Schwarz module is non-metrizable, the principle submodule coincides
with a sequential closure of the set of products of its generating function by polynomials.
As a corollary of the main result we prove a weight criterion of a weak localizability of
the principle submodule. Another corollary concerns a notion of “synthesizable sequence”
introduced recently by A. Baranov and Yu. Belov. It follows from a criterion of the syn-
thesizable sequence obtained by these authors that a synthesizable sequence is necessary a
zero set of a weakly localizable principle submodule. In the work we give a positive answer
to a natural question on the validity of the inverse statement. Namely, we prove that the
weak set of a weakly localizable principle submodule is a synthesizable sequence.

Keywords: entire functions, Fourier-Laplace transform, Schwarz space, local description
of submodules, spectral synthesis.
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1. INTRODUCTION

Given a finite or an infinite interval (a;b) C R, we denote by C*°(a;b) the set of all infinitely
differentiable functions equipped with a standard metrizable topology, while its strongly dual
space consisting of all distributions compactly supported in in (a;b) is denoted by the symbol
E'(a;b).

Let W C &(a;b) be a closed subspace invariant with respect to the differentiation operator
D = %, or shortly, a D-invariant subspace. In work [I], the study of the problem on spectral
synthesis was initiated and in particular, it was established that the spectrum oy of the re-
striction of the differentiation operator D : W — W either coincides with entire complex plane
or is discrete, that is, is an infinite of finite, probably, empty sequence of multiple points in C
[1, Thm. 2.1].

For a non-empty relatively closed segment I C (a;b), the subspace Wj is defined by the
formula

Wr={fe€&(a;b): f=0o0nl}. (1.1)
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Each D-invariant subspace W possesses a “residual” subspace W,., C W being the maximal
subspace of form contained in W |1, Thm. 4.1]. We denote a corresponding segment by
Iy and we call it residual segment of the subspace W, that is, W,., = Wr,,,.

The existence of D-invariant subspaces of form led the authors of work [I] to the
following formulation of the problem on spectral synthesis: to find out under which conditions
the D-invariant subspace W with a discrete spectrum satisfies the representation

W =Wy, + span (Exp W)? (1.2)

Here Exp W is the set of all exponential monomials contained in W.

It turned out that in the case of a finite (in particular, empty) spectrum oy, the subspace
W is always of form (1.2]), while if the spectrum oy is discrete and infinite, then the answer
depends on a relation between quantities |Iy| and 27 Dpy(A), where |Iyy| is the length of the
residual segment, Dpgyr(A) is the Beurling-Malliavin density of the set A = ioy:

1) if |[Iw| < 27 Dpp(A), then W = E(a;b), see [2, Rem. 3|, [3, Thm. 1.3]);

2) if |Iwy| = 2mDpp(A), then there exist both D-invariant subspaces admitting spectral syn-
thesis in a weaK[| sense [4],[5] and subspaces not possessing this property [3], [6];

3) if |Iw| > 2w Dpp(A), then D-invariant subspace with a discrete spectrum oy = iA and a
residual segment Iy admits a weak spectral synthesis [2, Cor. 3], [3, Thm. 1.1].

The latter of the three above formulated results can be interpreted as follows: given a complex
sequence A and a relatively closed in (a;b) segment [ such that |I| > 27 Dpy(A), there exists
a unique D-invariant subspace W C &€(a;b) with a discrete spectrum oy = —iA and a residual
segment [y = I and this subspace is of form (L.2)).

In view of this interpretation, the authors of work [7] called a sequence A C C with Dy (A) <
+oo syntheziable if a D-invariant subspace with a spectrum —(iA) and a residual segment
[—mDpn(A); mDpar(A)] is unique; in this case it is of form (1.2). In that work a complete
description of synthesizable sequences was provided. In particular, it was shown that the if the
system of exponential monomials Exp, constructed by the sequence —(iA) is complete or it has
a finite defect in the space L?*(—mDpy(A); mDpar(A)), then A is a synthesizable sequence |7,
Prop. 3.2].

If the system Exp, has an infinite defect in L?*(—mDgas(A); 7Dpar(A)), then the syntesiz-
ability of A is determined by the conditions of the following criterion [7, Thm. 1.3]:

Theorem A. A sequence A C C is synthesizable if and only if it is a zero set of some
function ¢ € Po(R) and
dim (H(p) © Hper) < 1.

In the formulation of the above theorem we have employed the following notations:
Po(R) is the set of all entire functions ¢ of exponential type, the indicators of which satisfy the
estimates
hy(arg z) < Cyllmz|, zeC,
and on the real axis the identity holds:
lo(x)] = o(|x|™), || =00, n=1,2,...;
H(y) is a Hilbert space consisting of all entire functions w of minimal type at order 1 such that

l/”www@m%x<+m7

—00

equipped with the scalar product
(wr00) = [ n(oloal@l(@)da, w0 € M), (13)
R

lweak” with respect to the classical spectral synthesis when W = span (Exp W)
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H,, is the closure of the set of polynomials in H(¢p).
It is clear that the synthesizability of a sequence A is a sufficient condition for admitting
a weak spectral synthesis by a D-invariant subspace with a discrete spectrum —(iA) and a
residual segment of length 27 Dpy(A). This gives rise to a question: when the syntesizabil-
ity of a sequence A is also a necessary condition for admittance of a weak spectral synthe-
sis by a D-invariant subspace with the spectrum —(iA) and a residual segment equalling to
[—mDpp(AN); mDpp(A)] (or to any other fixed segment of the length 2w Dpgy(A))?

One of the aims of the present work is to answer this question.

Earlier for studying D-invariant subspaces we employed effectively the scheme of dual spaces
reducing the problem on subspaces to equivalent problems on closed submodules in a special
module of entire functions P(a;b), see [2], [4], [8]. We are going to employ this scheme in the
present work and this is why we describe briefly the duality between D-invaiant subspaces and
submodules.

For each element S € &£'(a;b) we introduce its Fourier-Laplace transform
F(S)(z) =S(e™™), z€C,
which is an entire function of a completely regular growth at order 1. We denote it by . The
indicator diagram of the function ¢ is the segment of the imaginary axis
i[c,; dy) Ci(a;b),

where ¢, = —hy,(—7/2), d, = h,(7/2), and h,, is the indicator of the function ¢.
We let P(a;b) = F(E'(a;b)). It is well known that P(a;b) = |J Pk, where { Py} is an increasing
sequence of Banach spaces, each being the set of all entire functions ¢ with a finite norm

p(2)] .
||90||/€ = igg (1 + \z\)’“exp(bky+ — akyi)’ yi = maX{0> :l:y}a 2 =1T+1y, (14)
[a1;b1] € [ag;by] € ... is a sequence of segments exhausting the interval (a;b). Equipping the

set P(a;b) by a locally convex topology of the inductive limit of the sequence { P}, we obtain
a space of type (LN*), see [9], isomorphic to £'(a;b) [10, Thm. 7.3.1]. We note that according
to the same theorem, Py(R) = F(C§°(R)).

In the space P(a;b), the operation of multiplication by an independent variable z is contin-
uous and this is why P(a;b) is a topological module over the ring of polynomials C|z] called
Schwartz module.

A closed submodule J C P(a;b) is a closed subspace satisfying also the condition zJ C J. In
what follows, for the sake of brevity, we shall say “submodule” meaning a closed submodule.

We recall a series of notions characterising submodules, see [11], [12]. An indicator segment

of a submodule J is the segment [c;;d;] C R, where c; = ing Cp, dj = supd,,.
e peJ
A divisor of a submodule J C P(a;b) is a function n;(\) = mi? ny(A), A € C, where ng,(\)
e

is a divisor of the function p € J :

{0 it p(A) #0,

\) =
n(A) m  if \is a zero of ¢ of multiplicity m,

and
A, ={AeC: ny(A) >0}, Aj={r eC: ny(\) >0}
are zero sets of the function ¢ and submodule J, respectively, and each point \ is repeated
according its multiplicity.
The submodules of the module P(a;b) are dual to D-invariant subspaces of the space &(a; b).
Namely, there exists an one-to-one correspondence between the set of closed submodules {J} of
the module P(a;b) and the of D-invariant subspaces {W'} of the space €(a;b). This one-to-one
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correspondence is defined by the following rule: J <— W if and only if J = F(W"V), where a
closed subspace W° C &'(a;b) consists of all distributions S € £'(a;b) annihilating W; here

Exp W = {tie M, j=0,...my —1, ny(Ag) = my > 0},

and the points c; and d; serve as boundaries for the residual segment Iy, see [2], [12]. The
above formulated fact is called the duality principle.
A submodule J C P(a;b) is weakly localizable if for each function ¢ € P(a;b) the conditions
1) ny(z) = ny(z) for all z € C,
2) the indicator diagram of the function ¢ is contained in the set i[cy; d;];
imply that ¢ € J.
A submodule J is called stable if for each A € C an implication holds:

ped, n,(\)>ns\) = % .

A D-invariant subspace W admits a weak spectral synthesis if and only if its annihilating
submodule J = F(W?) is weakly localizable, see [2], [4].

A D-invariant subspace W has a discrete spectrum if and only if its annihilating submodule
J = F(WY) is stable [1, Prop. 3.1|, [I2, Prop. 2].

A principle submodule J, generated by a function ¢ € P(a;b) is defined as a closure of the
set

Pol, = {pp: peCl]}
in P(a;b). A principle submodule is always stable [12].

Let, as above, A be a complex sequence with a finite Beurling-Malliavin density; W C £(R)
be a D-invariant subspace with the spectrum oy, = —iA and the residual segment Iy, =
[—=mDpp(A); mDpp(A)]. We observe that if the residual segment Iy is given, the corresponding
subspace W can be considered in each space £(a;b) such that Iy C (a;b).

We assume first that the sysmte Exp, is either complete or have a finite defect in the space
L*(—m Dy (A); mDpar(A)). Tt is easy to make sure that this is equivalent to the existence
of the function ¢ € P(R) \ Po(R), with the zero set A, = A and the indicator diagram
[—imDpp(A);irDpy(A)]. By Theorem 2 in work [8], this implies that the annihilator sub-
module of the subspace W is the principle submodule 7, with generator ¢. Moreover, in this
case,

J(p) =T, =A{pp: peCll} (1.5)
where the symbol J(¢) denotes a weakly localizable sudmodule with the zero set A and the
indicator segment [—imDpgp(A);imrDpar(A)].

By the duality between D-invariant subspaces and submodules and by the said above Theo-
rem A we conclude that
if the system Exp, is complete or has a finite defect in the space

L*(=7Dpm(A); 7Dpun(A)),

then W admits a weak spectral synthesis and A is a synthesizable sequence.

Now we consider the case when the exponential system Exp, has an infinite defect in
L*(—=mDpp(A); mDpyr(A)). In this case it follows from Theorem A and the duality that for
the synthesizability of A, it is necessary that the space W is of the form

W=Ws={fc&ER): S(f®)=0 forall k=0,1,...}, (1.6)

where S € &'(R), and ¢ = F(S) € Py(R), A, = A, while the indicator diagram ¢ is
[—irDpp(A);in Dy (A)]. Then F(WJ) = J, and the admittance of the weak spectral syn-
thesis for Wg is equivalent to the weak localizability of J, : J, = J (p). In other words, it
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is equivalent to the fact that J () is the closure of the set Pol, in the topology of the space
P(R).

On the other hand, in the considered case, if A is a synthesizable sequence, then the submo-
dule J(¢) coincides with a sequential closure of the set Pol,, that is, with the set of all limits of
countable sequences in Pol, converging in the topology of the space P(R); this set is indicated
by the symbol 7, s¢q. This is implied by Theorem A in view of the remark after Lemma [1} see
the next section.

Thus, for the equivalence of the synthesizability of the sequence A and the admittance of
a weak spectral synthesis by the corresponding D-invariant subspace W with the spectrum
ow = —iA and the residual segment Iy = [—mDppr(A); mDpa(A)], it is necessary that W = W
and J, = Ty 5eq, where o = F(S), and A, = A, and the indicator diagram of ¢ is the segment
[—iTI'DB]V[ (/\)7 i7TDBM (A)] .

The space P(a;b) is non-metrizable [9, Cor. 2 of Thm. 1|. This is why, generally speaking,
the closure of an arbitrary set A C P(a;b) can not be obtained just by adding the limits of
converging countable sequences {¢,} C A. Therefore, to answer the question on equivalence
of synthesizability of the sequence A and the weak spectral synthesis for the corresponding
subspace of form (1.6) with the spectrum oy = —iA, we first need to study whether the
identity

Jioseq = Ji (L.7)

is possible.
Theorem 1. Identity holds for all o € P(a;b).

By means of this theorem we prove the equivalence of the synthesizability of the sequence
A and the admittance of the weak spectral synthesis by a space of form (L.6) with the spec-
trum —(iA), see Corollary Another important application of Theorem (1| is a convenient
weight criterion of the weak localizability of the principle submodule in the module P(a;b), see
Theorem 2

The main results of the present work were announced in [I3].

2. SEQUENTIAL DESCRIPTION OF PRINCIPLE SUBMODULES IN THE SCHWARTZ MODULE
2.1. Preliminaries. Let [c;d] C (a;b), PW(c;d) = F (L*(c;d)) be the Paley-Wiener space,

Pylc; d] be the space of all entire functions ¢ with a finite norm

_ (=)
[¥]lo = o ey

Lemma 1. If ) € PW(c;d), then ¢ € Pyle;d|, and
1]lo < CollYll pw ey (2.2)

where a positive constant Cy is independent of ¢ and d.

y* = max{0, +y}, z=ux+iy. (2.1)

Proof. Without loss of generality we can assume that ¢ = —d; then

$(z) = / (DA, f e L(—dsd),

—d
(=) |

=sup ————, z=ux+ 1.

[l = sup o iyl v

According Plancherel theorem, for a fixed y € R we have

(@ + i)l 22wy = 27 lle” F(O 122 aa)-
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Employing this fact and a subharmonicity of the function |¢|?, for all z € R we obtain the

estimates
1

+oo
1 1 :
pal <> [ wwlPiel < [ { [ erinPas | dr < e vl g
|Jw—x|<1 -1 \-o0
where (' is an absolute constant. Inequality (2.2 follows from these estimates and Phragmén-
Lindel6f principle. O

Remark 1. Theorem A and the proven Lemma yield easily that if the zero set A, of the
function p € P(a;b) (" Po(R) is a synthesizable sequence, then

j(@p) - jgo = jcp,seq‘

Indeed, if ® € J(p), then ® = wy, where w is an entire function of the minimal type and there
exists a polynomial qp such that q% € H(p). Then, by Theorem A, either q% € Hpoq or for an

arbitrary fized point Ao € A, \ Ay, there exist numbers oy, o € C such that

aq w
Qg — -— e H,,.
(2 Z—AO) q po!

In both case, in view of the intrinsic description of the space P(a;b) and a sequential convergence
in it, [9, Cor. 1 from Thm. 2|, by the proven lemma we conclude that ® € T, seq-

Let ¢ € Po(R), ¢, = hy(—7/2), d, = hy(m/2), where h,, is the indicator of the function
¢, PW = PW/(cy;d,). We consider the following closed subspaces in PW: the subspace
PW(¢) = J(p) () PW and the subspace PW,, defined as the closure of the set Pol, in PW.

A one-to-one correspondence

Wi we, w e H(p), (2.3)

makes an isometry of Hilbert spaces H(y) and PW(yp). The subspace H,y defined as the
closure of the set of polynomials in #H(yp) is the pre-image of the subspace PW,, under this
isometry.

We shall need some definitions and facts from the general theory of de Branges spaces [14],
and also from work [7], in which this theory was successfully employed for studying D-invariant
subspaces in the Schwartz space (in particular, for the proof of Theorem A).

Originally, de Branges space is defined as associated with an entire function F from the
Hermite-Biehler class and is the set of all entire functions F', such that

/+°° Ft)?

EQ) dt < +o0,
and obeying some further restrictions, see [14, Sects. 19-21]|, [7, Sect. 2]).

In this work, we restrict ourselves by an exact formulation of an equivalent definition of de
Branges space; this definition is an axiomatic description, see [14, Thm. 23|): a non-trivial
Hilbert space of entire functions H is a de Branges space if and only if the following axioms are
satisfied: )

(H1) if F € H, A € C\ R is a zero of the function F, then Fy = F(z)2=3 € H and the norm
of the funcionts F' and F) are equal;

(H2) for each A € C\R, a corresponding linear -functional acting by the rule 6,(F) = F(\),
F' € 'H, is continuous in H;

(H3) for each function F € H, the function F*(z) = F(Z) belongs to H and has the same
norm as F'.

By means of this axiomatic description, it was established in [I5], [7, Sect. 2, Thm. 2.7
that H(p) is a de Branges space. It is also easy to check that axioms (H1)—(H3) holds also for
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the subspace H,, regarded as a Hilbert space with scalar product , that is, H,y is a de
Branges space.

We also formulate two results on de Branges space, see [I4], Sect. 35|, [7, Thm. 2.1] and [14],
Sect. 29|, respectively.

Theorem B. Let Hy and Hy be closed subspaces of the same de Branges space H being also
de Branges spaces with the scalar product induced from H. Then one of the following inclusions
holds: Hy C Hy or Hy C H;.

Theorem C. Let H be a de Branges space, Hy, be the closure of a linear set {f € H: 2/ f €
H, j=1,...,k}, k€N, in H. Then dim (H © Hj) < +00.

Employing Theorems B and C, it is easy to prove the following lemma.

Lemma 2. Assume that in the space H,, there exists a function wy with the following prop-
erty:
27wy € Hip), 2wy & Hp)
for some kg € N. Then
dim (H(¢) © Hyo) < L.

Proof. For each k € IN, by the symbol H; we denote the closure of the set
{weH(p): FweHlp)

in H(yp).

Since H(yp) is the pre-image of the set PW () J(¢) under the isometry (2.3), and J(¢) is
a stable submodule, then H; coincides with the subspace Hj from Theorem C. It is also clear
that Ho = H(QD), %k C Hk—l; k= 1, 2, R

Each Hj with the scalar product induced by that in H(y) is a de Branges space, as well
as the subspace H,,. This is why by Theorem B, either H;, C Hp, or Hy, C Hi,. But the
presence of the function wy in H,y excludes the possibility H,, C Hi,; therefore,

,Hko C Hpol'
In view of Theorem C we have
dim (H(p) © Hpo) < dim (H(p) © Hi,) < +00.

On the other hand, it is known that the codimension of H,, in #H(y) can take only three
possible values: 0, 1, 400 [7, Thms. 2.1, 2.2, 2.9]. This implies the desired statement. O

2.2. Proof of Theorem As it has been already mentioned in the Introduction, by The-
orem 2 in [8], the relation ¢ € P(a;b) \ Po(R) is equivalent to the validity of and hence,
in this case the statement of the theorem is trivial.

Let ¢ € P(a;b) (1 Po(R). Then, as it has been said in the end of the proof of Lemma 2| the
quantity dim (H(¢) © Hp,) can take only one of three possible values: 0, 1, +o0.

If dim (H(p) © Hpo) = 0, then

Jpseq = Jo = J(9). (2.4)

In the case dim (H(p) © H,y) = 1, identities can be proved on the base of Lemma [1] by
arguing in the same way as in the remark after this lemma.

We consider the last option:

dim (H(p) © Hpo) = +00. (2.5)

We denote by H, the pre-image of the closed subspace PW, = PW (17, of the space PW
under isometry (2.3) and we let H; = H, © Hpq.
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To complete the proof of the theorem, it is sufficient to make sure that

First of all we observe that the subspace H; can not contain a non-zero function w satisfying
O = wyp € Py(R). Indeed, otherwise

O =F(s), s€CFR)[)E ab).
And if S, is a regular functional belonging to in C§°(a; b) obeying the identity ¢ = F(S,), then

b
k YNy _ _
/a SO (s@dt =0, k=0,1,2...

Therefore, 5 € Wg,.
On the other hand, ® € J,, since w € H; C H,. This is why s € Wg@ and

b —
0=s(5) = / s(t)s(t)dt,
that is, s = 0. Thus, if w € H; \ {0}, then there exists a number n, € IN such that
dweH(p), j=0,...,n,—1, 2w & H(p). (2.6)

Suppose we shall succeed to establish the following fact.

(F): in the subspace H,,, there exists a function with property @

Applying then Lemma [2 we conclude that dim (H(¢) © Hpe) < +00, and this contradicts
relation (2.5]). Thus, we have established that in case we have

H, = {0}, Jpseq = Jo # J(#),

that is, the principle submodule J, is sequentially generated but is not weakly localizable.

It remains to justify statement (F).

Let {p;} be a “sparse” sequence of zeroes a fixed non-zero function w € Hi, say, such that
pr > 1, > 8uiq, 7 =2,3,... We let

we=T[(1-2), a2
j=1 My

It is clear that @,, satisfies condition and by the stability of the submodule J, we have
Wm € Hy.

Let Pr,y : H, — Hpo and Pry : H, — H; be the projectors on the corresponding subspaces.
If Pry(@,,) = 0 for some index m, then statement (F) holds. Otherwise Pri(@,,) # 0 for all
m = 1,2,... Employing standard ways for estimating entire functions and for description of
bounded sets in locally-convex spaces of type (LN*) [9, Thm. 2|, the space P(a;b) being one
of those, it is easy to confirm that the sequence {@,,¢} is bounded in the sense of some norm
| - llko» see (L.4). Hence, there exists a subsequence converging in P(a;b), more precisely,

H‘DWJ"P - ‘DO‘PHkOH — 0,

where
w(z)

(DU(Z> ~ T ,
(-7

Let ¢ be some polynomial of degree (ko + 2) with roots in the set A, \ {y;}. As in the case
of Wy, if Pri(@mg™t) = 0 for some index m, then w,,q~' € H,y satisfies (2.6) and statement
(F) holds. Otherwise we employ the convergence of the sequence {w,, ¢~ '} converges to the

function wy = wog ! in the space H(p) and wop € Py(R). By the above remark that each
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function in H; satisfies (2.6)), we have Pryy(wy) # 0. If Pry(wo) # 0, then the function Pry(wo)
is the sought one and (F) holds.

It remains to treat the case wy € H,y. We observe that multiplying the function wy by
arbitrary rational function () such that Quwy is entire produces a function belonging to H,
and not satisfying condition (2.6). This is why, if for some rational function Qq the inequality
Pri(Qowp) # 0 holds, then the function Prp,(Qowy) satisfies (F).

Finally, let Quwy € H,,, for each rational function () such that Quwy is entire. For the principle
submodule generated by the function

®=wq 'y

relations hold since the function wq™! satisfies . In view of the restrictions determining
the choice of the points {s;}, now we are under the same conditions as before Theorem 2 in
work [8, Sect. 2|. Employing then Lemmata 1-3 of this work, we find a sequence of polynomials
{p;} such that

lim pjwop = @
J]—00

in the space P(a;b). In view of the description of the sequential convergence in P(a;b), see [9,
Cor. 1 from Thm. 2|, we conclude that there exists a polynomial p possessing the following
property: the sequence {p;wop '} converges to an entire function v = wqg 'p~! in the norm of
the space H (i) and the function v satisfies (2.6). Since Pry(pjwop~') = 0 for all values of the
index j, then v € H,, and this completes the proof.

3. APPLICATION OF MAIN RESULT

Let A C C, 2rDpp(A) < b — a. By Theorem [I] and Theorem A we obtain the following
statement.

Corollary 1. A stable submodule J C P(a;b) with a zero set A and an indicator segment
[e;d] C (a;b) of length 2mDpar(A) is unique if and only if it is principle and weakly localizable.

Proof. Without loss of generality we assume that
b= —a, d=—c=—7mDgpy(A).

According to the said in the Introduction for the case, the statement holds when the system
Exp, is complete or has a finite defect in the space L?*(—mDpy(A); mDpar(A)). Indeed, this
condition for the system Exp, is equivalent to the fact that the submodule J is principle and
is of the form (1.5).

If the system Exp, has an infinite defect in L?(—7Dpgps(A); 7Dpar(A)), then the part of the
statement concerning necessity is implied by Theorem A and the fact that a principle submodule
is always stable.

To justify sufficiency we note that if J is a weakly localizable principle submodule, then

dim (H(Qp) © HPOI) < 1
see the proof of Theorem [I| and it remains to apply Theorem A. O

The duality principle allows us to provide an equivalent formulation of Corollary [I] in terms
of D-invariant subspaces.

Corollary 2. A D-invariant subspace W with a given discrete spectrum (—iA) and a residual
segment [c;d| C (a;b) of length 2mDpyr(A) is unique if and only if it is of form and admits
a weak spectral synthesis .
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It follows from Theorem [I]that a weak localizability of the principle submodule in the module
P(a;b) generated by the function ¢ € Py(a;b) can be studied a possibility of approximating
functions ® € J(y) by countable sequences functions from the set Pol,.

To formulate an appropriate criterion, we introduce the following notations: u(z) is the max-
imal subharmonic minorant of the function (h(arg 2)|z| — In|p(2)|), where h,, is the indicator
function ¢,

H,={we HC): |w)|.= sug |w(z)]e™®) < 00},
FAS]

Theorem 2. The principle submodule J, generated by the function ¢ € Po(R) is weakly
localizable if and only if each function w € H, is approrimated by the polynomaials in the norm
ol = sup e(z) exp (~u(=) = 2 (2 +|2]))

Proof. 1t is clear we need to prove only necessity.

Let w € H, and pg be some zero of this function, then Z_‘”MO € H(y). By Corollary 1| and

Theorem A, either H(p) = Hpy or

dim (H(p) © Hpet) = 1. (3.1)
In the first case for some sequence of polynomials {¢;} the relation holds:
w .
= lim g;

Z— Mo Jooo

in the space H(p). By Lemma

P — el =0
Z — Mo 0
where || - [|p is determined by formula (2.1) with ¢ = ¢,, d = d,. This implies easily the
convergence of the polynomials {(z — 110)g;} to a function w in the norm || - ||".

If identity (3.1)) holds, then

<Oé() d + o v ) S Hpoly
Z— Mo Z— M
for some «g, 1 € C, where py; # o is one more zero of the function w. By Lemma [I} some
sequence of polynomials {p,} converges to the function ((ao+ a1)z — (1o + appr))w in the
norm || - ||".
If ag + a1 = 0, then the statement holds. Otherwise, letting 5 = % and taking into

consideration the Phragmén-Lindelof principle and the definition of the function u, we see that
the sequence of the polynomials
pi(z) — pi(B)

S () = |
pilz) (o + 1)z — (aipio + aopn)

converges to the function w in the norm || - ||". O

i=1,2,...,
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