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POISSON LIMIT THEOREMS IN ALLOCATION

SCHEMES OF DISTINGUISHABLE PARTICLES

F.A. ABDUSHUKUROV

Abstract. We consider a random variable 𝜇𝑟(𝑛,𝐾,𝑁) being the number of cells containing
𝑟 particles among first𝐾 cells in an equiprobable allocation scheme of at most 𝑛 distinguish-
able particles over 𝑁 different cells. We find conditions ensuring the convergence of these
random variables to a random Poisson variable. We describe a limit distribution. These
conditions are of a simplest form, when the number of particles 𝑟 belongs to a bounded
set or as 𝐾 is equivalent to

√
𝑁 . Then random variables 𝜇𝑟(𝑛,𝐾,𝑁) behave as the sums

of independent identically distributed indicators, namely, as binomial random variables,
and our conditions coincide with the conditions of a classical Poisson limit theorem. We
obtain analogues of these theorems for an equiprobable allocation scheme of 𝑛 distinguish-
able particles of 𝑁 different cells. The proofs of these theorems are based on the Poisson
limit theorem for the sums of exchangeable indicators and on an analogue of the local limit
Gnedenko theorem.

Keywords: allocation scheme of distinguishable particles over different cells, Poisson ran-
dom variable, Gaussian random variable, limit theorem, local limit theorem.
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1. Introduction

A lot of works were devoted to limit theorem of equiprobable allocation scheme of dis-
tinguishable particles over different cells, see, for instance, monograph [1] by V.F. Kolchin,
B.A. Sevastjanov, V.P. Chistyakov and the references therein.
In [3], V.F. Kolchin introduced the notion of a generalized allocation scheme. Many schemes

of combinatorial probability theory like random permutations, random forest, random parti-
tions, urn schemes are generalized allocation schemes [2]. A series of works was devoted to limit
theorems for a generalized allocation scheme, see monographs by A.N. Timashev [4], [5], [6]
and the references therein. A lot of studies made in this direction is devoted to Poisson limit
theorems for the number of cells of a prescribed volume, see, for instance, a recent work by
A.N. Timashev [7].
In work [8] by A.N. Chuprunov and I. Fazekas, they introduced an analogue of a generalized

allocation scheme, which could be treated as a generalized allocation scheme of at most 𝑛
particles over 𝑁 cells. In this work, the authors proved the law of large numbers and Gaussian
and Poisson limit theorems for the number of cells of a prescribed volume.
In work [10], R.Kh. Khakimullin and Yu.Yu. Enatskaya obtained limit theorems for the

number of empty cells in an indicated set of cells in the allocation scheme of distinguishable
particles over different cells. The ideas of their proofs are close to the proof of theorems in
works by V.A. Vatutin, V.G. Mikhailov [10]. In this work, for the allocation scheme of at most
𝑛 distinguishable particles over 𝑁 different cells, Poisson limit theorems were obtained for the
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number of cells of prescribed volume in an indicated set of cells. The proofs were based on
a known Poisson limit theorem for exchangeable random variables, see [11], [12]. In our last
section we show how our results can be generalized for the allocation scheme of 𝑛 distinguishable
particles over 𝑁 different cells and provide appropriate formulations.
We note that conditions ensuring the convergence of the number of cells of a prescribed

volume to the Poisson random variable coincide both in the allocation scheme of at most 𝑛
distinguishable particles over 𝑁 different cells (Theorem 2.1) and in the allocation scheme of 𝑛
distinguishable particles over 𝑁 different cells (Theorem 4.1).

2. Main results

Let 𝑛, 𝑁 be natural numbers. An equiprobable allocation scheme of 𝑛 distinguishable parti-
cles over 𝑁 different cells is random variables 𝜂1, . . . , 𝜂𝑁 , whose joint distribution is determined
by the formula

𝑃{𝜂1 = 𝑘1, . . . 𝜂𝑁 = 𝑘𝑁} =
𝑛!

𝑘1!𝑘2! · · · 𝑘𝑁 !

(︂
1

𝑁

)︂𝑁

, (2.1)

where 𝑘1, 𝑘2, . . . 𝑘𝑁 are non-negative integers such that 𝑘1 + 𝑘2 + · · · + 𝑘𝑁 = 𝑛.
An equiprobable allocation scheme of 𝑛 distinguishable particles over𝑁 different cells satisfies

the representation

𝑃{𝜂1 = 𝑘1, . . . , 𝜂𝑁 = 𝑘𝑁} = 𝑃

{︃
𝜉1 = 𝑘1, . . . , 𝜉𝑁 = 𝑘𝑁

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

𝜉𝑖 = 𝑛

}︃
, (2.2)

where 𝜉1, 𝜉2, . . . are independent identically distributed Poisson random with an arbitrary
parameter 𝜆, see, for instance, monograph [2] by V.F. Kolchin.
In the present paper we consider random variables 𝜂1, . . . , 𝜂𝑁 , whose joint distribution is

given by the formula

𝑃{𝜂1 = 𝑘1, . . . , 𝜂𝑁 = 𝑘𝑁} = 𝑃

{︃
𝜉1 = 𝑘1, . . . , 𝜉𝑁 = 𝑘𝑁

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

𝜉𝑖 6 𝑛

}︃
, (2.3)

where 𝜉1, 𝜉2, . . . are independent identically distributed Poisson random with a parameter 𝜆 =
𝜆𝑛,𝑁 = 𝑛

𝑁
. Scheme (2.3) can be regarded as an equiprobable allocation scheme of at most 𝑛

distinguishable particles over 𝑁 different cells.
We denote:

𝑝𝑘(𝜆) = 𝑃{𝜉𝑖 = 𝑘} =
𝜆𝑘𝑒−𝜆

𝑘!
, 𝑘 = 0, 1, 2 . . . , (2.4)

𝛾 is the Gaussian random variable with the zero mean and unit dispersion, 𝑃ℎ𝑖 is its distribution

function, 𝑃𝑖(𝑎) is the Poission random variable with a parameter 𝑎,
𝑑
= stands for the identity

of distributions and
𝑑→ does for the convergence in distribution.

We shall consider the convergence of a sequence of random variables

𝜇𝑟(𝑛,𝐾,𝑁) =
𝐾∑︁
𝑖=1

𝐼{𝜂𝑖=𝑟}, where 0 < 𝐾 6 𝑁, 𝑟 = 0, 1, 2 . . . .

The random variable 𝜇𝑟(𝑛,𝐾,𝑁) can be interpreted as the number of cells, among first 𝐾 cells,
containing 𝑟 particles.
The main result of the work is the following theorem. It holds both for the case 𝑟 → ∞ and

for the case, when the set of numbers 𝑟 is bounded.
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Theorem 2.1. Let 𝐾,𝑛,𝑁 → ∞ be such that√︂
𝑛

𝑁2
− 𝑟√

𝑛
→ 0, 𝐾𝑝𝑟(𝜆) → 𝛽, (2.5)

where 0 6 𝛽 < ∞. Then

𝜇𝑟(𝑛,𝐾,𝑁)
𝑑→ 𝑃𝑖(𝛽).

If the set of numbers 𝑟 is bounded, then Theorem 2.1 can be specified as follows.

Theorem 2.2. Let 𝑟 6 𝐶 for some 𝐶 > 0 and 𝐾,𝑛,𝑁 → ∞ such that

𝐾𝑝𝑟(𝜆) → 𝛽,

where 0 < 𝛽 < ∞. Then

𝜇𝑟(𝑛,𝐾,𝑁)
𝑑→ 𝑃𝑖(𝛽).

The following example shows that there exist 𝑟, 𝐾, 𝑛, 𝑁 satisfying the assumptions of
Theorem 2.1 and 𝐾 = 𝑂(

√
𝑁). Moreover, if the set of the numbers 𝑟 is bounded, then it

follows from the convergence 𝑟√
𝑛
→ 0 and the proof of Theorem 2.2 that as 0 < 𝛽 < ∞, the

second condition in (2.5) implies 𝑛
𝑁2 → 0. Our example shows that if 𝑟 → ∞, then, in general,

this is wrong.

Example 2.1. We denote by [𝑥] the integer part of a number 𝑥 and {𝑥} stands for a frac-
tional part of the number 𝑥.
Let 0 < 𝛼 < ∞ and

𝑛 = (𝛼 + 𝑜(1))𝑁2, 𝑟 = [(𝛼 + 𝑜(1))𝑁 ].

Then 𝜆 = (𝛼 + 𝑜(1))𝑁 . This is why 𝑟√
𝑛
→

√
𝛼, 𝑛

𝑁2 → 𝛼, and the first condition in (2.5) is

satisfied. Employing the Stirling formula for estimating 𝑟!, we obtain:

𝑝𝑟(𝜆) =
𝜆𝑟𝑒−𝜆

𝑘!
=

1√︀
2𝑃𝑖[(𝛼 + 𝑜(1))𝑁 ]

𝑒−{(𝛼+𝑜(1))𝑁}
(︂

(𝛼 + 𝑜(1))𝑁

[(𝛼 + 𝑜(1))𝑁 ]

)︂[(𝛼+𝑜(1))𝑁 ]

(1 + 𝑜(1))

=
1√

2𝑃𝑖𝛼𝑁
𝑒−{(𝛼+𝑜(1))𝑁}

(︂
1 +

{(𝛼 + 𝑜(1))𝑁}
[(𝛼 + 𝑜(1))𝑁 ]

)︂[(𝛼+𝑜(1))𝑁 ]

(1 + 𝑜(1)).

This is why
1√

2𝑃𝑖𝛼𝑁
𝑒−1(1 + 𝑜(1)) 6 𝑝𝑟(𝜆) 6

1√
2𝑃𝑖𝛼𝑁

(1 + 𝑜(1))

and there exist numbers 𝐾, 0 < 𝐾 < 𝑁 obeying the second condition in (2.5). We note that if
𝛽 > 0, then it follows from the second condition in (2.5) that there exist 𝐶1, 𝐶2 > 0 such that

𝐶1

√
𝑁 < 𝐾 < 𝐶2

√
𝑁.

Theorem 2.3. Let 𝑟,𝐾, 𝑛,𝑁 → ∞ such that

𝐾𝑝𝑟(𝜆) → 𝛽,

where 0 < 𝛽 < ∞ and 𝐶1

√
𝑟 < 𝐾 < 𝐶2

√
𝑟 for some 𝐶1, 𝐶2 > 0. Then

𝜇𝑟(𝑛,𝐾,𝑁)
𝑑→ 𝑃𝑖(𝛽).

Remark 2.1. As it follows from the proof of Theorems 2.2 and 2.3, under additional con-
ditions, the second condition in (2.5) implies the first one. The author does not know whether
this is true without additional conditions.
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Remark 2.2. Assume that the second condition in (2.5) holds and 𝛽 > 0, 𝑟 → ∞. Since
𝑒1−𝑥𝑥 6 1 as 𝑥 > 0, by employing the Stirling formula for estimating 𝑟!, we get

𝐾(1 + 𝑜(1))√
2𝑃𝑖𝑟

> 𝐾𝑝𝑟(𝜆) =
𝐾√
2𝑃𝑖𝑟

(︂
𝑒1−

𝜆
𝑟
𝜆

𝑟

)︂𝑟

(1 + 𝑜(1)) = 𝛽 + 𝑜(1).

This is why

𝐾 > (𝛽 + 𝑜(1))
√

2𝑃𝑖𝑟

and the condition for the numbers 𝐾 in Theorem 2.3 is in some sense extremal.

The proofs of our theorems are based on the limit theorem for exchangeable random vari-
ables. Random variables 𝜂′1, 𝜂

′
2, . . . 𝜂

′
𝐾 are called exchangeable if the distribution of the random

vector (𝜂′1, 𝜂
′
2, . . . 𝜂

′
𝑁) coincides with the distribution of the random vector (𝜂′𝑖1 , 𝜂

′
𝑖2
, . . . 𝜂′𝑖𝐾 ) for

all permutations (𝑖1, 𝑖2, . . . 𝑖𝑁) of the sequence (1, 2, . . . 𝐾). We shall make use of the following
known theorem, see Theorem II in [11] or Proposition 2.1 in [12]; we also mention Theorem 1
from work [13], in which this theorem was provided in a more general form.

Theorem 2.4. Assume that for each fixed 𝐾 random variables 𝜂′𝐾𝑖, 1 6 𝑖 6 𝐾, are ex-

changeable and the events 𝐴𝐾𝑖 = 𝐴𝐾𝑟𝑖 = {𝜔 ∈ Ω : 𝜂′𝐾𝑖(𝜔) = 𝑟} satisfy 𝑆𝐾 =
∑︀𝐾

𝑖=1 𝐼𝐴𝐾𝑖
.

Assume that the random variables 𝜂′𝐾𝑖, 1 6 𝑖 6 𝐾, 𝐾 ∈ N and numbers 𝑟 are such that the
following conditions hold: there exists 0 6 𝛽 < ∞ such that

𝐾𝑘P(𝐴𝐾1 ∩ 𝐴𝐾2 ∩ · · · ∩ 𝐴𝐾𝑘) → 𝛽𝑘 as 𝐾 → ∞, for all 𝑘 = 0, 1, 2, . . .

Then

𝑆𝐾
𝑑→ 𝑃𝑖(𝛽).

We note that the random variables 𝜂1, . . . , 𝜂𝑁 defined in (2.3) are exchangeable and the
identity holds:

𝑃 (𝐴1 ∩ 𝐴2 ∩ · · · ∩ 𝐴𝑘) = (𝑝𝑟(𝜆))𝑘
𝑃{𝜁𝑁−𝑘 6 𝑛− 𝑘𝑟}

𝑃{𝜁𝑁 6 𝑛}
, (2.6)

where

𝐴𝑖 = 𝐴𝑟𝑖 = {𝜔 ∈ Ω : 𝜂𝑖(𝜔) = 𝑟}, 𝜁𝑙 = 𝜉1 + 𝜉2 + · · · + 𝜉𝑙, 𝑙 ∈ {𝑁,𝑁 − 𝑘}.

The distribution of the random variable 𝜇𝑟(𝑛,𝐾,𝑁) coincides with the distribution of the
random variable 𝜇𝑟(𝑛,𝐴,𝑁) =

∑︀
𝑖∈𝐴 𝐼{𝜂𝑖=𝑟}, where 𝐴 is an indicated subset of the set of cells

consisting of 𝐾 cells.
Work [10] was devoted to limit theorems for 𝜇0(𝑛,𝐴,𝑁), which is the number of empty cells

in the indicated set of cells in the allocation scheme of distinguishable particles over different
cells. Our results can be considered as extension of some results of work [10] to scheme (2.3).

3. Proofs of theorems

We shall make use of the following lemma.

Lemma 1. Let 𝜉𝑖, 𝑖 = 1, 2 . . . , be independent Poisson random variables with the parameter
𝛼,

𝜁𝑁 =
𝑁∑︁
𝑖=1

𝜉𝑖, 𝑆𝑁 =
𝜁𝑁 − 𝛼𝑁√

𝛼𝑁
.

We assume that 𝛼 = 𝛼𝑁 are numbers such that 𝛼𝑁 → ∞. Then

𝑆𝑁
𝑑→ 𝛾.
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Lemma 1 is an implication of Lindeberg-Feller theorem. But it can proved in a simpler way:
the characteristic function of the random variable 𝑆𝑁 reads as

𝑃ℎ𝑖𝑁(𝑡) = exp
(︁
−𝛼𝑁(1 − 𝑒

𝑖 𝑡√
𝛼𝑁 ) − 𝑖𝑡

√
𝛼𝑁
)︁
, 𝑡 ∈ R.

and 𝑃ℎ𝑖𝑁(𝑡) → 𝑒−
𝑡2

2 as 𝛼𝑁 → ∞ for each 𝑡 ∈ R.

Proof of Theorem 2.1. Employing (2.6), we have

𝐾𝑘𝑃 (𝐴1 ∩ 𝐴2 ∩ · · · ∩ 𝐴𝑘) =(𝐾𝑝𝑟(𝜆))𝑘
𝑃

{︂
𝜁𝑁−𝑘−𝜆(𝑁−𝑘)√

𝜆(𝑁−𝑘)
6 𝑛−𝑘𝑟−𝜆(𝑁−𝑘)√

𝜆(𝑁−𝑘)

}︂
𝑃
{︁

𝜁𝑁−𝜆𝑁√
𝜆𝑁

6 𝑛−𝜆𝑁√
𝜆𝑁

}︁
=(𝛽 + 𝑜(1))𝑘

𝑃
{︁
𝑆𝑁−𝑘 6 𝑘

(︁√︀
𝑛
𝑁2 − 𝑟√

𝑛

)︁
(1 + 𝑜(1))

}︁
𝑃 {𝑆𝑁 6 0}

.

Since for 𝛼 = 𝜆 = 𝑛
𝑁
we have 𝛼𝑁 = 𝑛 → ∞, Lemma 1 can be applied. By this lemma we get

𝑃{𝑆𝑁 6 0} = Φ(0)(1 + 𝑜(1)).

The first condition in (2.5) and Lemma 1 imply that

𝑃

{︂
𝑆𝑁−𝑘 6 𝑘

(︂√︂
𝑛

𝑁2
− 𝑟√

𝑛

)︂}︂
= 𝑃ℎ𝑖(0)(1 + 𝑜(1)).

Therefore,
𝐾𝑘𝑃 (𝐴1 ∩ 𝐴2 ∩ · · · ∩ 𝐴𝑘) = 𝛽𝑘 + 𝑜(1).

Hence, the assumptions of Theorem 2.4 are satisfied and Theorem 2.1 follows from Theorem 2.4.
The proof is complete.

Proof of Theorem 2.2. If the set of the numbers 𝜆 is bounded, then

𝜆

𝑁
=

𝑛

𝑁2
→ 0.

Let 𝜆 → ∞. Taking the logarithm of the identity 𝐾𝑝𝑟(𝜆) = 𝛽 + 𝑜(1), we obtain:

ln(𝐾) − 𝜆 + 𝑟 ln(𝜆) − ln(𝑟!) = ln(𝛽 + 𝑜(1)).

This is why
ln(𝐾)

𝑁
− 𝜆

𝑁
(1 + 𝑜(1)) − ln(𝑟!)

𝑁
=

ln(𝛽 + 𝑜(1))

𝑁
.

Since
ln(𝐾)

𝑁
→ 0,

ln(𝑟!)

𝑁
→ 0,

ln(𝛽 + 𝑜(1))

𝑁
→ 0,

then
𝜆

𝑁
=

𝑛

𝑁2
→ 0.

Now in view of the convergence 𝑟√
𝑛
→ 0 conditions (2.5) hold and Theorem 2.2 follows from

Theorem 2.1. The proof is complete.

Proof of Theorem 2.3. Employing the Stirling formula for estimating 𝑟!, we get:

𝐶 ′
1(𝛽 + 𝑜(1)) < 𝑒𝑟−𝜆

(︂
𝜆

𝑟

)︂𝑟

< 𝐶 ′
2(𝛽 + 𝑜(1)), (3.1)

where 𝐶 ′
𝑖 = 𝐶𝑖√

2𝑃𝑖
, 𝑖 ∈ {1, 2}. This is why

(𝐶 ′
1(𝛽 + 𝑜(1)))1/𝑟 < 𝑒1−

𝜆
𝑟
𝜆

𝑟
< (𝐶 ′

2(𝛽 + 𝑜(1)))1/𝑟.
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Therefore,

𝑒1−
𝜆
𝑟
𝜆

𝑟
→ 1,

𝜆

𝑟
→ 1.

But then

1 − 𝜆

𝑟
=

𝑟 − 𝜆

𝑟
→ 0

and employing the Taylor formula, we get:

𝑒𝑟−𝜆

(︂
𝜆

𝑟

)︂𝑟

= exp

(︂
𝑟
𝑟 − 𝜆

𝑟
+ 𝑟 ln

(︂
1 − 𝑟 − 𝜆

𝑟

)︂)︂
= exp

(︃
𝑟
𝑟 − 𝜆

𝑟
+ 𝑟

∞∑︁
𝑖=1

(−1)𝑖+11

𝑖

(︂
−𝑟 − 𝜆

𝑟

)︂𝑖
)︃

= exp

(︂
−1

2

(𝑟 − 𝜆)2

𝑟
(1 + 𝑜(1))

)︂
.

In view of (3.1) this yields

𝐶3 < −(𝜆− 𝑟)2

𝑟
< 𝐶4, (3.2)

where

𝐶3 = 2 ln(𝐶 ′
1(𝛽))(1 + 𝑜(1)), 𝐶4 = 2 ln(𝐶 ′

2(𝛽))(1 + 𝑜(1)).

Then either 𝜆 > 𝑟 or 𝜆 6 𝑟 and in the latter case by the left inequality in (3.2) we have

𝜆 > 𝑟 −
√︀
−𝐶3𝑟.

This is why
𝑛

𝑁
> 𝑟 −

√︀
−𝐶3𝑟 и 𝑛 > 𝑁(𝑟 −

√︀
−𝐶3𝑟) = 𝑁𝑟(1 + 𝑜(1)).

Therefore, ⃒⃒⃒⃒√︂
𝑛

𝑁2
− 𝑟√

𝑛

⃒⃒⃒⃒
=

⃒⃒⃒⃒
𝜆− 𝑟√

𝑛

⃒⃒⃒⃒
<

⃒⃒⃒⃒
𝜆− 𝑟√
𝑁𝑟

⃒⃒⃒⃒
(1 + 𝑜(1)) <

√
𝐶4√
𝑁

(1 + 𝑜(1)) = 𝑜(1).

Hence, conditions (2.5) are satisfied and Theorem 2.3 follows from Theorem 2.1. The proof is
complete.

4. Addendum

In this section we consider a generalization of the results of the present work to the allocation
scheme of distinguishable particles over different cells. Namely, we consider random variables
𝜂1, . . . , 𝜂𝑁 defined by formula (2.1). We shall employ representation (2.2) with independent
Poisson random variables 𝜉1, 𝜉2, . . . with the parameter 𝜆 = 𝑛

𝑁
.

The random variable 𝜇𝑟(𝑛,𝐾,𝑁) =
∑︀𝐾

𝑖=1 𝐼{𝜂𝑖=𝑟} is the number of the cells among first 𝐾
cells containing 𝑟 particles. The following analogue of formula (2.5) holds:

𝑃 (𝐴1 ∩ 𝐴2 ∩ · · · ∩ 𝐴𝑘) = (𝑝𝑟(𝜆))𝑘
𝑃{𝜁𝑁−𝑘 = 𝑛− 𝑘𝑟}

𝑃{𝜁𝑁 = 𝑛}
, (4.1)

where 𝐴𝑖 = 𝐴𝑟𝑖 = {𝜔 ∈ Ω : 𝜂𝑖(𝜔) = 𝑟}.
Employing the Stirling formula for estimating 𝑛!, we get:

𝑃{𝜁𝑁 = 𝑛} = 𝑒−𝑁𝛼 (𝑁𝛼)𝑛

𝑛!
=

1 + 𝑜(1)√
2𝑃𝑖𝑛

=
1 + 𝑜(1)√

2𝑃𝑖𝑁𝛼
. (4.2)

To estimate the numerator of the quotient in (4.1), we make use of the following lemma. Its
proof reproduces the proof of Gnedenko local theorem, see Theorem 1.1.11 in [2], and uses also
Lemma 1.
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Lemma 2. Let numbers 𝛼 = 𝛼𝑁 be such that 𝛼𝑁 → ∞. Then

𝑃{𝜁𝑁 = 𝑙} =
𝑒−

(𝑙−𝑁𝛼)2

2𝛼𝑁

√
2𝑃𝑖𝛼𝑁

(1 + 𝑜(1)) (4.3)

uniformly in 𝑙 = 0, 1, 2 . . . .

By (4.3) we have:

𝑃{𝜁𝑁−𝑘 = 𝑛− 𝑘𝑟} =
𝑒−

(𝑘(𝜆−𝑟))2

2𝛼𝑁√︀
2𝑃𝑖𝛼(𝑁 − 𝑘)

(1 + 𝑜(1)) =
𝑒
− 𝑘2

2

(︁√
𝑛

𝑁2−
𝑟√
𝑛

)︁2√︀
2𝑃𝑖𝛼(𝑁 − 𝑘)

(1 + 𝑜(1)). (4.4)

Reproducing the proof of Theorem 2.1 and employing (4.2) and (4.4) for estimating the
quotient in (4.1), we arrive at the following theorem.

Theorem 4.1. Let 𝐾,𝑛,𝑁 → ∞ be such that√︂
𝑛

𝑁2
− 𝑟√

𝑛
→ 0, 𝐾𝑝𝑟(𝜆) → 𝛽, (4.5)

where 0 6 𝛽 < ∞. Then

𝜇𝑟(𝑛,𝐾,𝑁)
𝑑→ 𝑃𝑖(𝛽).

Remark 4.1. It was proved in Theorem 2.4 in work [12] that if one of the conditions holds:

(A) the set of the numbers 𝑟 is bounded, 𝑛
𝑁2 → 0, 𝐾

(︀
𝑛
𝑁

)︀𝑟
𝑒−

𝑛
𝑁 → 𝛽,

(B) 𝑟
𝑁

→ 0, 𝑟2

𝑁
→ 0, 𝑛

𝑁
→ 0, 𝐾

(︀
𝑛
𝑁

)︀𝑟
𝑒−

𝑛
𝑁 → 𝛽,

then

𝜇𝑟(𝑛,𝐾,𝑁)
𝑑→ 𝑃𝑖(𝛽).

Condition (А) and condition (В) ensure the assumptions of Theorem 4.1. This is why Theo-
rem 2.4 in work [12] is a corollary of Theorem 4.1.

The matter of the proofs of Theorems 2.2 and 2.3 is to show that under their assumptions,
the second condition in (4.5) implies the first one. This is why their proof can be literally
reproduced also for the scheme of distinguishable particles over different cells. As a result, we
obtain the following theorems.

Theorem 4.2. Let 𝑟 6 𝐶 for some 𝐶 > 0 and 𝐾,𝑛,𝑁 → ∞ are such that

𝐾𝑝𝑟(𝜆) → 𝛽,

where 0 < 𝛽 < ∞. Then

𝜇𝑟(𝑛,𝐾,𝑁)
𝑑→ 𝑃𝑖(𝛽).

Theorem 4.3. Let 𝑟,𝐾, 𝑛,𝑁 → ∞ be such that

𝐾𝑝𝑟(𝜆) → 𝛽,

where 0 < 𝛽 < ∞ and 𝐶1

√
𝑟 < 𝐾 < 𝐶2

√
𝑟 for some 𝐶1, 𝐶2 > 0. Then

𝜇𝑟(𝑛,𝐾,𝑁)
𝑑→ 𝑃𝑖(𝛽).
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13. A. Benczúr. On sequences of equivalent events and the compound Poisson process // Studia Sci.

Math. Hangar. 3, 451-458 (1968).

Fajzikhutdin Abdurakhimovich Abdushukurov,
Institute of Computational Mathematics and Information Technologies,
Kazan Federal University,
Kremlevskaya str., 35,
420008, Kazan, Russia
E-mail: fayz.abdushukurov@mail.ru


	to1. Introduction
	to2. Main results
	to3. Proofs of theorems
	to4. Addendum
	 References

