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OVERDETERMINED NEUMANN BOUNDARY VALUE

PROBLEM IN UNBOUNDED DOMAINS

V.V. VOLCHKOV, VIT.V. VOLCHKOV

Abstract. The studying of overdetermined boundary value problems for elliptic partial
differential equations was initiated by J. Serrin in 1971. In his work, he established a
property of radial symmetry for solutions of some overdetermined Poisson problem. Apart
of a significant independent interest, the problems of such kind have important applications
in the potential theory, integral geometry, hydrodynamics and capillarity theory. Usually,
the resolving of these problems is based on Hopf lemma on an angular boundary point
and the method of hyperplanes motion introduced by A.A. Alexandrov for studying some
geometric problems related with characterizing the spheres. Among other more modern
methods not involving the maximum principle for the considered problems we mention the
duality method, the method of volume derivative as well as an integral method.

In the present paper we consider an overdetermined Neumann problem for the Laplace
equation Δ𝑓 = 0 in planar unbounded domains. We show that under some conditions, see
Theorem 1 in Section 1, such problem is solvable only for the exterior of a ball. A specific
feature of Theorem 1 is that in this theorem, for the first time, we obtain an exact condition
for the growth of 𝑓 at infinity. Moreover, as Theorem 2 in Section 2 shows, other conditions
in Theorem 1 are also necessary. In contrast to the earlier works, the proof of Theorem 1
employs some boundary properties of conformal mappings, Smirnov theorem on functions
in a class 𝐻𝑝 and Fejer-Riesz theorem on non-negative trigonometrical polynomials.

Keywords: overdetermined problems, Neumann problem, harmonic functions, boundary
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1. Introduction

In 1971, J. Serrin initiated [1] the studying of overdetermined boundary value problems for
elliptic partial differential equations. Later it was found that apart of a significant independent
interest, such problems have important applications in the potential theory [2], integral geome-
try [3], [4], hydrodynamics [5], electrostatics [6], [7], and capillarity theory [8], [9]. For instance,
a known Pompeiu problem still not completely resolved is reduced to an overdetermined bound-
ary value problem for the Helmholtz equation [4], [10], [11] under rather general assumptions.
Moreover, exactly the studying of such problems produced the deepest results on the regularity
of boundaries of sets considered in the Pompeiu problem [3], [12], [13]. The results on an old
Schiffer conjecture related to the discussed issues can be found by an interesting reader in [14],
[15], see also the references therein.

A classical result by J. Serrin [1] establishes the property of a radial symmetry for the
solutions of the following overdetemined Poisson problem.

V.V. Volchkov, Vit.V. Volchkov, Overdetermined Neumann boundary value problem in un-
bounded domains.
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Let Ω be a bounded domain in R𝑛, 𝑛 > 2, with a boundary 𝜕Ω in the class 𝐶2, for which
there exists a function 𝑓 ∈ 𝐶2(Ω) solving the Poisson equation

∆𝑓 = −1 in Ω (1.1)

and the boundary conditions

𝑓 = 0,
𝜕𝑓

𝜕𝑛
= 𝑐𝑜𝑛𝑠𝑡 on 𝜕Ω. (1.2)

Then, as it was shown in [1], Ω is a ball and 𝑓 is radially symmetric. It was also mentioned
in [1] that such statement remains true for some other equations generalizing (1.1) if in addition
to (1.2), the following condition is satisfied

𝑓 > 0 in Ω. (1.3)

Serrin theorem was further developed and specified in various directions, see survey [16]
with a wide list of references. First, in a series of works, there were specified assumptions of
this theorem related with the smoothness of the boundary of Ω and of the right hand side 𝑓 .
Second, similar problems were considered for other equations including nonlinear ones and for
other boundary conditions. Third, analogues of Serrin theorem were studied for other types of
domains like perforated ones, annuli, unbounded domains. At that, in the case of an unbounded
domain, in addition to conditions (1.2), (1.3), a condition on the behavior of the function 𝑓 at
infinity was imposed. For instance, in work [17] it was assumed that 𝑓 tends to zero at infinity,
while in [8], [18] it was additionally supposed that the same condition was holds for all first
derivatives of 𝑓 .

The proof of the main results in the most of the cited works was based on the maximum
principle, Hopf lemma on an angular point and the method of hyperplanes motion introduced
by A.D. Alexandrov for resolving some geometric problems related with characterization of
spheres, see [16], [19], [20]. Among other, more modern methods not involving the maximum
principle, we mention the duality method [21], the volume derivative method [22], and the
integral method [23].

In the present paper we consider an overdetermined Neumann problem for the Laplace equa-
tion ∆𝑓 = 0 in planar unbounded domains. We show that under certain conditions, see
Theorem 2.1 in Section 1 such problem is solvable only in the exterior of a circle. A specific
feature of Theorem 2.1 is that an exact condition for the growth of 𝑓 at infinity is obtained.
Moreover, as we see in Theorem 2.2 in Section 2, other conditions in Theorem 2.1 are also
necessary. In contrast to the works of the predecessors, the proof of Theorem 2.1 employs some
boundary properties of the conformal mappings, Smirnov theorem on the functions in the class
𝐻𝑝 and Fejer-Riesz theorem on non-negative trigonometric polynomials.

2. Formulation of main results

Let Γ be a closed smooth Jordan curve in a complex plane C and 𝐺 be a bounded domain

C with the boundary Γ, 𝐺 = 𝐺 ∪ Γ. As usually, the symbol
𝜕

𝜕𝑛
stands for the operator of

differentiating along the outward to 𝐺 normal to Γ.
Our main results as follows.

Theorem 2.1. Assume that there exists a function 𝑓 continuous in C ∖𝐺 and harmonic in
C ∖𝐺 and satisfying the following conditions:

1. 𝑓 = 0 on Γ;

2.
𝜕𝑓

𝜕𝑛
= 1 on Γ;

3. 𝑓(𝑧) = 𝑜 (|𝑧|2) as 𝑧 → ∞.
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Then the domain 𝐺 is a circle and

𝑓(𝑧) = 𝑅 ln
|𝑧 − 𝑧0|
𝑅

,

where 𝑧0, 𝑅 is the center and the radius of the circle 𝐺.

The proof of Theorem 2.1 is provided in Section 3. It is based on applying a conformal
mapping of the exterior of the unit circle onto the domain C ∖ 𝐺. This mapping allows us to
reduce the original problem in the domain C∖𝐺 to an overdetermined boundary value problem,
in which the main difficulty is an inhomogeneous boundary condition for the normal derivative.
In order to study this condition, we need some gentle results on boundary properties of the
function making the aforementioned conformal mapping as well as some properties of the Hardy
classes 𝐻𝑝 in the unit circle, see [24, Chs. 9, 10]. Auxiliary constructions and statements are
given in Section 2. We note that the absence of a similar theory of conformal mappings in
a multi-dimensional case leave open an issue on analogue of Theorem 2.1 in the space R𝑛 as
𝑛 > 2.

The following result shows the necessity of Conditions 1, 2 and the sharpness of Condition 3
in Theorem 2.1.

Theorem 2.2. There exist a bounded domain 𝐺 ⊂ C with a Jordan boundary Γ of the class
𝐶∞ not coinciding with a circle and functions 𝑓1, 𝑓2, 𝑓3 belonging to 𝐶∞(C ∖𝐺) and harmonic
in C ∖𝐺 such that

1. 𝑓1 satisfies Conditions 1 and 3 of Theorem 2.1;
2. 𝑓2 satisfies Conditions 2 and 3 of Theorem 2.1;
3. 𝑓3 satisfies Conditions 1, 2 of Theorem 2.1 and at that,

𝑓3(𝑧) = 𝑂
(︀
|𝑧|2

)︀
as 𝑧 → ∞.

The proof of Theorem 2.2 is provided in Section 4.

3. Auxiliary constructions

Let 𝐴 = {𝑧 ∈ C : |𝑧| > 1} and a function 𝑢 be continuous in 𝐴 = {𝑧 ∈ C : |𝑧| > 1}. For each
fixed 𝜌 > 1, the Fourier series of the function 𝑢 (𝜌𝑒𝑖𝜙) reads as

𝑢
(︀
𝜌𝑒𝑖𝜙

)︀
=

∞∑︁
𝑛=−∞

𝑢𝑛(𝜌)𝑒𝑖𝑛𝜙, 𝜙 ∈ [0, 2𝜋], (3.1)

where

𝑢𝑛(𝜌) =
1

2𝜋

∫︁ 2𝜋

0

𝑢
(︀
𝜌𝑒𝑖𝜙

)︀
𝑒−𝑖𝑛𝜙𝑑𝜙. (3.2)

It follows from (3.2) that

|𝑢𝑛(𝜌)| 6 max
𝜙∈[0,2𝜋]

⃒⃒
𝑢
(︀
𝜌𝑒𝑖𝜙

)︀⃒⃒
(3.3)

for all 𝑛 ∈ Z, 𝜌 > 1. Let ∆ =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
be the Laplace operator. If 𝑢 ∈ 𝐶2(𝐴), simple

calculations and (3.2) show that for all 𝜌 > 1, 𝜙 ∈ [0, 2𝜋], 𝑛 ∈ Z the identity

∆
(︀
𝑢𝑛(𝜌)𝑒𝑖𝑛𝜙

)︀
=

1

2𝜋

∫︁ 2𝜋

0

(∆𝑢)(𝜌𝑒𝑖𝑡)𝑒𝑖𝑛(𝜙−𝑡)𝑑𝑡 (3.4)

holds true. Moreover,

∆
(︀
𝑢𝑛(𝜌)𝑒𝑖𝑛𝜙

)︀
=

(︂
𝑢′′𝑛(𝜌) +

𝑢′𝑛(𝜌)

𝜌
− 𝑛2

𝜌2
𝑢𝑛(𝜌)

)︂
𝑒𝑖𝑛𝜙. (3.5)
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By Riemann theorem on conformal mapping there exists a unique holomorphic in the domain
𝐴 function 𝑤 = 𝜓(𝑧) mapping conformally 𝐴 onto the domain C ∖𝐺 under the conditions

𝜓(∞) = ∞, 𝜓′(∞) = 𝑎 > 0. (3.6)

The former condition in (3.6) shows that the function 𝑤 = 𝜓(𝑧) maps the point 𝑧 = ∞ into
the point 𝑤 = ∞, while the second condition means that

lim
𝑧→∞

𝜓(𝑧)

𝑧
= 𝑎 > 0. (3.7)

It follows from Conditions (3.6) and (3.7) that the function 𝜓 being holomorphic in the
domain 𝐴 has a simple pole at the point 𝑧 = ∞ and this is why its Laurent series in 𝐴 reads as

𝜓(𝑧) = 𝑎𝑧 +
∞∑︁
0

𝜓𝑛𝑧
−𝑛, 𝑎 > 0. (3.8)

According the principle of boundaries correspondence under conformal mappings, the func-
tion 𝜓 can be continuously continued on the set 𝐴. For this continuation we keep the same
notation 𝑤 = 𝜓(𝑧).

Let D = {𝑧 ∈ C : |𝑧| < 1}, T = {𝑧 ∈ C : |𝑧| = 1}. As usually, we denote by 𝐻𝑝(D), 𝑝 > 0,
the class of functions 𝑓 holomorphic in D such that the integral∫︁ 2𝜋

0

⃒⃒
𝑓(𝑟𝑒𝑖𝜙)

⃒⃒𝑝
𝑑𝜙 (3.9)

is bounded as 0 6 𝑟 < 1. For 𝑧 ∈ D we let

ℎ(𝑧) = 𝑎−
∞∑︁
0

𝑛𝜓𝑛𝑧
−𝑛−1 = 𝜓′

(︂
1

𝑧

)︂
. (3.10)

We note that since 𝜓 is univalent, the function ℎ has no zeroes in D. In what follows we shall
make use of some auxiliary statements on the properties of the functions ℎ and 𝜓.

Lemma 3.1. The functions ℎ and 1/ℎ belong to the class 𝐻𝑝(D) for all 𝑝 > 0.

Proof. Let 𝑏 ∈ 𝐺. We denote by 𝑑(𝑏) the distance from the point 𝑏 to Γ. Then for each 𝑧 ∈ D
we have ⃒⃒⃒⃒

𝜓

(︂
1

𝑧

)︂
− 𝑏

⃒⃒⃒⃒
> 𝑑(𝑏) > 0.

It follows from this inequality and (3.8) that there exists a constant 𝑐1 > 0 such that⃒⃒⃒⃒
𝑧

(︂
𝜓

(︂
1

𝑧

)︂
− 𝑏

)︂⃒⃒⃒⃒
> 𝑐1 (3.11)

for all 𝑧 ∈ D. Moreover, by (3.8) and the definition of 𝜓 we obtain that⃒⃒⃒⃒
𝑧

(︂
𝜓

(︂
1

𝑧

)︂
− 𝑏

)︂⃒⃒⃒⃒
< 𝑐2, 𝑧 ∈ D, (3.12)

where 𝑐2 > 0 is independent of 𝑧. For 𝑧 ∈ D, by (3.10) we find:

ℎ(𝑧) = −𝑧2
(︂
𝜓

(︂
1

𝑧

)︂
− 𝑏

)︂2

𝜆′(𝑧), (3.13)

where

𝜆(𝑧) =

(︂
𝜓

(︂
1

𝑧

)︂
− 𝑏

)︂−1

.
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Taking into consideration estimates (3.11) and (3.12), for all 𝑝 > 0, 𝑟 ∈ [0, 1) by (3.13) we
obtain:∫︁ 2𝜋

0

(︀
|ℎ(𝑟𝑒𝑖𝜙)|𝑝 + |ℎ(𝑟𝑒𝑖𝜙)|−𝑝

)︀
𝑑𝜙 < 𝑐2𝑝2

∫︁ 2𝜋

0

|𝜆′(𝑟𝑒𝑖𝜙)|𝑝𝑑𝜙+ 𝑐−2𝑝
1

∫︁ 2𝜋

0

|𝜆′(𝑟𝑒𝑖𝜙)|−𝑝𝑑𝜙. (3.14)

The function 𝜆 maps the circle D conformally and univalently onto some bounded domain with
a smooth Jordan boundary. By the Lindelöf theorem, see [24, Ch. 10, Sect. 1, Thm. 4], under
an appropriate choice, the branches of the argument of the function arg 𝜆′(𝑧) and arg 1

𝜆′(𝑧)
can

be continued to continuous functions on D. This implies [24, Ch. 10, Sect. 1, Thm. 5] that
the functions 𝜆 and 1/𝜆 belong to the class 𝐻𝑝(D) for each 𝑝 > 0. Thus, the integrals in the
right hand side of inequality (3.14) are bounded in 𝑟. Together with (3.14) this completes the
proof.

Corollary 3.1. Almost everywhere in T, the function ℎ possesses finite limiting values over
non-tangential paths; these values form a boundary function ℎ(𝑒𝑖𝜙), 𝜙 ∈ (0, 2𝜋). At that,
ℎ(𝑒𝑖𝜙) ∈ 𝐿𝑝(0, 2𝜋) for each 𝑝 > 0 and

ℎ(𝑒𝑖𝜙) ̸= 0 for almost all 𝜙 ∈ (0, 2𝜋). (3.15)

Proof. The existence of the mentioned limiting function ℎ(𝑒𝑖𝜙) and its belonging to the class
𝐿𝑝(0, 2𝜋) is implied by Lemma 3.1 and by a well-known property for a each function in the
class 𝐻𝑝(D), see, for instance, [24, Ch. 9, Sect. 4]. Applying this property to the function 1/ℎ
and employing Lemma 3.1, we obtain (3.15).

Corollary 3.2. Let 𝛼, 𝛽 ∈ C and |𝛼| > |𝛽| > 0. Then the function

ℎ1(𝑧) =
ℎ(𝑧)

(𝛼 + 𝛽𝑧)2

belongs to the class 𝐻𝑝(D) for all 0 < 𝑝 < 1
4
.

Proof. We first assume that |𝛽| = |𝛼|. In this case 𝛼 + 𝛽𝑧 = 𝛽(𝑧 − 𝑒𝑖𝛾) for some 𝛾 ∈ [0, 2𝜋].
Let 0 < 𝑝 < 1

4
. We choose 𝑞 > 1 so that 𝑞𝑝 < 1

4
. Employing Hölder inequality and Lemma 3.1,

for each 𝑟 ∈ [0, 1) we have:∫︁ 2𝜋

0

⃒⃒
ℎ1(𝑟𝑒

𝑖𝜙)
⃒⃒𝑝
𝑑𝜙 =

∫︁ 2𝜋

0

⃒⃒
ℎ(𝑟𝑒𝑖𝜙)

⃒⃒𝑝 ⃒⃒
𝛽(𝑟𝑒𝑖𝜙 − 𝑒𝑖𝛾)

⃒⃒−2𝑝
𝑑𝜙

6

(︂∫︁ 2𝜋

0

⃒⃒
ℎ(𝑟𝑒𝑖𝜙)

⃒⃒ 𝑝𝑞
𝑞−1 𝑑𝜙

)︂ 𝑞−1
𝑞

(︂∫︁ 2𝜋

0

⃒⃒
𝛽(𝑟𝑒𝑖𝜙 − 𝑒𝑖𝛾)

⃒⃒−2𝑝𝑞
𝑑𝜙

)︂ 1
𝑞

6𝑐

(︂∫︁ 2𝜋

0

⃒⃒
1 − 𝑟𝑒𝑖(𝜙−𝛾)

⃒⃒−2𝑝𝑞
𝑑𝜙

)︂ 1
𝑞

,

(3.16)

where a constant 𝑐 > 0 is independent of 𝑟. Since⃒⃒
1 − 𝑟𝑒𝑖(𝜙−𝛾)

⃒⃒
> 1 − cos(𝜙− 𝛾)

and 𝑝𝑞 < 1
4
, by (3.16) we obtain a desired statement. In the case |𝛼| > |𝛽| > 0 the statement

is obvious in view of Lemma 3.1 and the inequality

|𝛼 + 𝛽𝑧| > |𝛼| − |𝛽|, 𝑧 ∈ D.
The proof is complete.

Lemma 3.2. For almost each 𝜙 ∈ [0, 2𝜋] in sense of the Lebesgue measure, the identity

lim
𝜀→+0

𝜓′((1 + 𝜀)𝑒𝑖𝜙) = lim
𝜀→+0

𝜓((1 + 𝜀)𝑒𝑖𝜙) − 𝜓(𝑒𝑖𝜙)

𝜀𝑒𝑖𝜙
(3.17)

holds, where both limits exist and are finite.
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Proof. By relation (3.10) we have

𝜓′ (︀(1 + 𝜀)𝑒𝑖𝜙
)︀

= ℎ
(︀
(1 + 𝜀)−1𝑒−𝑖𝜙

)︀
for all 𝜀 > 0, 𝜙 ∈ [0, 2𝜋]. Together with Corollary 3.1 this implies the existence of a finite limit
in the left hand side of identity (3.17) for almost each 𝜙 ∈ [0, 2𝜋]. By the mean theorem, for
such 𝜙, the identity holds: ∫︁ 1+𝜀

1

𝜓′(𝜌𝑒𝑖𝜙)𝑑𝜌 = 𝜀𝜓′(𝜉𝑒𝑖𝜙)

for each 𝜀 > 0 and some 𝜉 ∈ (1, 1 + 𝜀) independent of 𝜀. Therefore, there exists a finite limit

lim
𝜀→+0

1

𝜀

∫︁ 1+𝜀

1

𝜓′(𝜌𝑒𝑖𝜙)𝑑𝜌,

which is equal to the limit in the left hand side in identity (3.17). Since∫︁ 1+𝜀

1

𝜓′(𝜌𝑒𝑖𝜙)𝑑𝜌 =
𝜓 ((1 + 𝜀)𝑒𝑖𝜙) − 𝜓(𝑒𝑖𝜙)

𝑒𝑖𝜙
,

this implies the statement of Lemma 3.2. The proof is complete.

Lemma 3.3. For almost each 𝜙 ∈ (0, 2𝜋), there exists 𝛿 = 𝛿(𝜙) > 0 such that as 𝜀 ∈
(0, 𝛿(𝜙)), the circle

𝐾𝜀,𝜙 =
{︁
𝑧 ∈ C :

⃒⃒
𝑧 − 𝜓(𝑒𝑖𝜙) − 𝜀𝑒𝑖𝜙𝜓′(𝑒𝑖𝜙)

⃒⃒
6
𝜀

2

⃒⃒
𝜓′(𝑒𝑖𝜙)

⃒⃒}︁
(3.18)

is disjoint with Γ.

Proof. We assume that for some 𝜙 ∈ (0, 2𝜋) there exists a sequence {𝜀𝑗}∞𝑗=1 of positive numbers
such that lim

𝑗→∞
𝜀𝑗 = 0 and for each 𝑗 the circle 𝐾𝜀𝑗 ,𝜙 intersects Γ. We denote by 𝜙𝑗 one of the

points in the semi-interval [0, 2𝜋), for which 𝜓(𝑒𝑖𝜙𝑗) ∈ 𝐾𝜀𝑗 ,𝜙 ∩ Γ. Then we have⃒⃒
𝜓(𝑒𝑖𝜙𝑗) − 𝜓(𝑒𝑖𝜙) − 𝜀𝑗𝑒

𝑖𝜙𝜓′(𝑒𝑖𝜙)
⃒⃒
6
𝜀𝑗
2

⃒⃒
𝜓′(𝑒𝑖𝜙)

⃒⃒
. (3.19)

By this inequality and the univalentness of 𝜓 we conclude that 𝜙𝑗 → 𝜙 as 𝑗 → ∞.
The function 𝜓(𝑒𝑖𝑡) is absolutely continuous on [0, 2𝜋] and for almost all 𝑡 ∈ [0, 2𝜋] the

identity
𝑑

𝑑𝑡
𝜓(𝑒𝑖𝑡) = 𝑖𝑒𝑖𝑡𝜓′(𝑒𝑖𝑡) (3.20)

holds true, see [24, Ch. 10, Sect. 1, Thm. 1].
Assume now that 𝜓′(𝑒𝑖𝜙) ̸= 0 and

𝜓(𝑒𝑖𝜙) − 𝜓(𝑒𝑖𝜙𝑗) = 𝑖𝜓′(𝑒𝑖𝜙)𝑒𝑖𝜙(𝜙− 𝜙𝑗) + 𝑜(𝜙− 𝜙𝑗) as 𝑗 → ∞. (3.21)

It follows from Corollary 3.1 and identity (3.20) that these conditions are satisfied for almost
all 𝜙 ∈ (0, 2𝜋). Comparing (3.21) and (3.19) and bearing in mind that 𝜓′(𝑒𝑖𝜙) ̸= 0, we arrive
at the inequality

|𝜀𝑗 + 𝑖(𝜙− 𝜙𝑗) + 𝑜(𝜙− 𝜙𝑗)| 6
𝜀𝑗
2

as 𝑗 → ∞.

For sufficiently large 𝑗 the latter inequality is contradictory and this completes the proof.

Lemma 3.4. Let a function 𝑓 be harmonic in the circle 𝐾 = {𝜁 ∈ C : |𝜁 − 𝜁0| < 𝑟} and

𝑀 = sup
𝜁∈𝐾

|𝑓(𝜁)| < +∞. (3.22)

Then for each 𝜁 ∈ 𝐾 the estimate

|𝑓(𝜁) − 𝑓(𝜁0)| 6
2𝑀 |𝜁 − 𝜁0|
𝑟 − |𝜁 − 𝜁0|

(3.23)

holds.
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Proof. The assumptions of the lemma imply that the function 𝑤(𝑧) = 𝑓(𝑟𝑧 + 𝜁0) is harmonic
in D and |𝑤(𝑧)| 6 𝑀 for each 𝑧 ∈ D. This implies, see, for instance, [24, Ch. 9, Sect. 2, Cor.
2] that almost everywhere on T the function 𝑤 possesses non-tangential finite limiting values.
As usually, we keep the notation 𝑤(𝑒𝑖𝑡) for the corresponding limiting function defined almost
everywhere on T. Then by (3.22) we get |𝑤(𝑒𝑖𝑡)| 6𝑀 . Moreover, for each 𝑧 = 𝜌𝑒𝑖𝜙, 0 6 𝜌 < 1,
the Poisson formula holds:

𝑤(𝑧) − 𝑤(0) =
1

𝜋

∫︁ 2𝜋

0

𝑤(𝑒𝑖𝑡)
∞∑︁
𝑛=1

𝜌𝑛 cos(𝑛(𝜙− 𝑡))𝑑𝑡, (3.24)

see [24, Ch. 9, Sect. 2, Thm. 3]. The integral in the right hand side does not exceed the
expression

1

𝜋

∫︁ 2𝜋

0

|𝑤(𝑒𝑖𝑡)|
∞∑︁
𝑛=1

𝜌𝑛𝑑𝑡 6
2𝑀𝜌

1 − 𝜌
,

and this is why estimate (3.23) follows (3.24). The proof is complete.

Lemma 3.5. For almost each 𝜙 ∈ (0, 2𝜋), the following statement holds: if 𝑓 is harmonic
in C∖𝐺, continuous in C∖𝐺, and there exists a derivative 𝜕𝑓

𝜕𝑛
(𝜓(𝑒𝑖𝜙)), then

lim
𝜀→+0

𝑓(𝜓((1 + 𝜀)𝑒𝑖𝜙)) − 𝑓(𝜓(𝑒𝑖𝜙))

𝜀
=
𝜕𝑓

𝜕𝑛

(︀
𝜓(𝑒𝑖𝜙)

)︀ ⃒⃒
𝜓′(𝑒𝑖𝜙)

⃒⃒
.

Proof. It follows from Corollary 3.1 and Lemma 3.2 that for almost each 𝜙 ∈ (0, 2𝜋) there exists
a finite non-zero limit in the left hand side of identity (3.17) and

𝜓((1 + 𝜀)𝑒𝑖𝜙) = 𝜓(𝑒𝑖𝜙) + 𝜀𝑒𝑖𝜙𝜓′(𝑒𝑖𝜙) + 𝑜(𝜀) as 𝜀→ +0. (3.25)

Therefore, for such 𝜙, the point 𝜓((1 + 𝜀)𝑒𝑖𝜙) is in the circle 𝐾𝜀,𝜙, see (3.18), for all sufficiently
small 𝜀 > 0. We apply Lemma 3.4 letting

𝜁0 = 𝜓(𝑒𝑖𝜙) + 𝜀𝑒𝑖𝜙𝜓′(𝑒𝑖𝜙), 𝑟 =
𝜀

2

⃒⃒
𝜓′(𝑒𝑖𝜙)

⃒⃒
, 𝜁 = 𝜓((1 + 𝜀)𝑒𝑖𝜙),

where 𝜀 ∈ (0, 𝛿(𝜙)) is small enough. Since the circle 𝐾𝜀,𝜙 is contained in the circle{︂
𝑧 ∈ C : |𝑧| 6

⃒⃒
𝜓(𝑒𝑖𝜙)

⃒⃒
+

3

2
𝛿(𝜙)

⃒⃒
𝜓′(𝑒𝑖𝜙)

⃒⃒}︂
,

there exists a constant 𝑀𝜙 independent of 𝜀 such that

sup
𝐾𝜀,𝜙

|𝑓 | 6𝑀𝜙 for all 𝜀 ∈ (0, 𝛿(𝜙)).

Then by (3.25) and Lemma 3.4 we obtain:

𝑓
(︀
𝜓((1 + 𝜀)𝑒𝑖𝜙)

)︀
− 𝑓(𝜓(𝑒𝑖𝜙) + 𝜀𝑒𝑖𝜙𝜓′(𝑒𝑖𝜙)) = 𝑜(𝜀) as 𝜀→ +0. (3.26)

Then, by the definition of the normal derivative we find that

𝜕𝑓

𝜕𝑛

(︀
𝜓(𝑒𝑖𝜙)

)︀
= lim

𝜀→+0

𝑓(𝜓(𝑒𝑖𝜙) + 𝜀𝑒𝑖𝜙𝜓′(𝑒𝑖𝜙)) − 𝑓(𝜓(𝑒𝑖𝜙))

𝜀 |𝜓′(𝑒𝑖𝜙)|
.

This identity and relation (3.26) imply the statement of the lemma and complete the proof.
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4. Proof of Theorem 1

Let a function 𝑓 satisfies the assumptions of Theorem 1. We are going to prove that 𝐺 is a
circle and

𝑓(𝑧) = 𝑅 ln
|𝑧 − 𝑧0|
𝑅

,

where 𝑧0, 𝑅 are the center and radius of the circle 𝐺.
We consider the function 𝑢(𝑧) = 𝑓(𝜓(𝑧)), where 𝜓 is a function defined in Section 2. The

assumptions of Theorem 1 imply that 𝑢 is harmonic in the domain 𝐴 and is continuous in 𝐴,
and at that,

𝑢(𝑒𝑖𝜙) = 0 for each 𝜙 ∈ [0, 2𝜋]. (4.1)

Moreover, it follows from Condition 3 of Theorem 1 and identity (3.8) that

𝑢(𝑧) = 𝑜
(︀
|𝑧|2

)︀
as 𝑧 → +∞. (4.2)

For each fixed 𝜌 > 1, the Fourier series of the function 𝑢(𝜌𝑒𝑖𝜙) is given by (3.1), where 𝑢𝑛(𝜌)
are continuous on [1,+∞), see (3.2). By the harmonicity of 𝑢 and relation (3.4) we obtain that
the functions 𝑢𝑛(𝜌)𝑒𝑖𝑛𝜙 are harmonic in 𝐴 for all 𝑛. By (3.5) this means that

𝑢0(𝜌) = 𝑎0 + 𝑏0 ln 𝜌, 𝑢𝑛(𝜌) = 𝑎𝑛𝜌
𝑛 + 𝑏𝑛𝜌

−𝑛 as 𝑛 ̸= 0,

where 𝜌 > 1 and 𝑎𝑛, 𝑏𝑛 are complex constants. Identities (4.1) and (3.2) imply that 𝑢𝑛(1) = 0
and hence,

𝑎0 = 0 and 𝑎𝑛 + 𝑏𝑛 = 0 as 𝑛 ̸= 0. (4.3)

By (3.3) and (4.2) we get

𝑢𝑛(𝜌) = 𝑜(𝜌2) as 𝜌→ +∞.

The latter identity means that 𝑎𝑛 = 0 and 𝑏−𝑛 = 0 as 𝑛 > 2. Comparing this with (4.3), we
conclude that

𝑢(𝑧) = 𝑏0 ln |𝑧| + 𝑎1

(︂
𝑧 − 1

𝑧

)︂
+ 𝑎−1

(︂
1

𝑧
− 𝑧

)︂
, (4.4)

as |𝑧| > 1, where the bar denotes the complex conjugation. By this identity we find:

lim
𝜀→+0

𝑢 ((1 + 𝜀)𝑒𝑖𝜙) − 𝑢 (𝑒𝑖𝜙)

𝜀
= 𝑏0 + 2𝑎1𝑒

𝑖𝜙 − 2𝑎−1𝑒
−𝑖𝜙

for each 𝜙 ∈ [0, 2𝜋]. By Lemma 3.5 we then conclude that

𝑏0 + 2𝑎1𝑒
−𝑖𝜙 − 2𝑎−1𝑒

𝑖𝜙 = |ℎ(𝑒𝑖𝜙)| (4.5)

for almost each 𝜙 ∈ [0, 2𝜋].
By Fejer-Riesz theorem, see [25, App. 5], a non-negative trigonometric polynomial in the left

hand side of identity (4.5) can be represented as

𝑏0 + 2𝑎1𝑒
−𝑖𝜙 − 2𝑎−1𝑒

𝑖𝜙 = |𝛼 + 𝛽𝑒𝑖𝜙|2, 𝜙 ∈ [0, 2𝜋], (4.6)

where complex constants 𝛼, 𝛽 are such that

𝛼 + 𝛽𝑧 ̸= 0 as 𝑧 ∈ D. (4.7)

Let us prove that 𝛽 = 0. We suppose the contrary, then by (4.7) we have |𝛼| > |𝛽| > 0.
Applying now Lemma 3.1 and Corollary 3.2, we conclude that the functions

ℎ1(𝑧) =
ℎ(𝑧)

(𝛼 + 𝛽𝑧)2
, ℎ2(𝑧) =

1

ℎ1(𝑧)

belong to the class 𝐻𝑝(D) as 𝑝 ∈ (0, 1/4). Moreover, it follows from (4.5) and (4.7) that

|ℎ1(𝑒𝑖𝜙)| = |ℎ2(𝑒𝑖𝜙)| = 1
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for almost each 𝜙 ∈ (0, 2𝜋). By Smirnov theorem, see [24, Ch. 9, Sect. 4, Thm. 4] this means
that |ℎ1(𝑧)| = 1 for all 𝑧 ∈ D. Therefore,

ℎ(𝑧) = 𝛾(𝛼2 + 2𝛼𝛽𝑧 + 𝛽2𝑧2),

where 𝛾 ∈ C, |𝛾| = 1. Taking into consideration (3.10), we then obtain that 𝛽 = 0 and this
contradicts our assumption. This arguing and formulae (4.5) and (4.6) show that 𝛽 = 𝑎1 =
𝑎−1 = 0 and |ℎ(𝑒𝑖𝜙)| = 𝑏0 for almost each 𝜙 ∈ (0, 2𝜋). As above, by Smirnov theorem we
conclude that ℎ is identically constant. In view of (3.10) and (3.8), we get ℎ(𝑧) = 𝑎 in D
and 𝜓(𝑧) = 𝑎𝑧 + 𝜓0 in 𝐴. Thus, letting 𝑅 = 𝑎 and 𝑧0 = 𝜓0, we arrive at the statement of
Theorem 2.1.

5. Proof of Theorem 2

It is obvious that for all sufficiently small 𝜀 ∈ (0, 1), the inequality holds:

2

3
+

1

9(1 − 𝜀)2
< (1 − 𝜀)2. (5.1)

For such 𝜀 we denote:

𝐴𝜀 = {𝑧 ∈ C : |𝑧| > 1 − 𝜀}.
We consider a function

Φ(𝑧) = 𝑧 − 2

3𝑧
− 1

27𝑧3
, 𝑧 ∈ 𝐴𝜀. (5.2)

For all 𝑧1, 𝑧2 ∈ 𝐴𝜀 we have the estimates:

|𝑧1𝑧2| > (1 − 𝜀)2,
⃒⃒
𝑧−2
1 + (𝑧1𝑧2)

−1 + 𝑧−2
2

⃒⃒
<

3

(1 − 𝜀)2
. (5.3)

Moreover, by (5.2) we find:

Φ(𝑧1) − Φ(𝑧2) = (𝑧1 − 𝑧2)

(︂
1 +

1

𝑧1𝑧2

(︂
2

3
+

1

27

(︀
𝑧−2
1 + (𝑧2𝑧2)

−1 + 𝑧−2
2

)︀)︂)︂
.

In view of inequalities (5.1) and (5.3), by the latter relation we conclude that Φ(𝑧1) ̸= Φ(𝑧2) as
𝑧1 ̸= 𝑧2. Thus, Φ is univalent in the domain 𝐴𝜀. We let

Φ(𝐴𝜀) = {𝑧 ∈ C : 𝑧 = Φ(𝜁), 𝜁 ∈ 𝐴𝜀},
and we denote by 𝑔 the inverse function for Φ acting from Φ(𝐴𝜀) on 𝐴𝜀. It follows from
formula (5.2) that for each 𝑧 ∈ 𝐴𝜀 the inequalities hold:

|𝑧| − 2

3(1 − 𝜀)
− 1

27(1 − 𝜀)3
< |Φ(𝑧)| < |𝑧| +

2

3(1 − 𝜀)
+

1

27(1 − 𝜀)3
.

By the definition of 𝑔 we obtain that

|𝑧| − 2

3(1 − 𝜀)
− 1

27(1 − 𝜀)3
< |𝑔(𝑧)| < |𝑧| +

2

3(1 − 𝜀)
+

1

27(1 − 𝜀)3
(5.4)

for all 𝑧 ∈ Φ(𝐴𝜀).
We let

𝐺 = C ∖ Φ(𝐴), where Φ(𝐴) = {𝑧 ∈ C : 𝑧 = Φ(𝜁), 𝜁 ∈ 𝐴}.
Since the function Φ is univalent, the set𝐺 is a bounded domain with a smooth Jordan boundary
Γ = {𝑧 ∈ C : 𝑧 = Φ(𝜁), 𝜁 ∈ T}. Moreover, since

Φ(1) = −Φ(−1) =
8

27
and Φ(𝑖) = −Φ(−𝑖) =

44

27
𝑖,

the domain 𝐺 is not a circle.
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We consider the functions

𝑓1 = ln |𝑔|, 𝑓2 =
10

9
ln |𝑔| − 1

3
Re

(︂
1

𝑔2

)︂
, 𝑓3 =

10

9
ln |𝑔| +

1

6
Re

(︂
𝑔2 − 1

𝑔2

)︂
.

It follows from the definition 𝑔 that this function is holomorphic in Φ(𝐴𝜀) and is non-zero. This
yields that the functions 𝑓1, 𝑓2, 𝑓3 are harmonic in C ∖ 𝐺 and belong to the class 𝐶∞(C ∖ 𝐺).
Employing also (5.4), we conclude that the functions 𝑓1, 𝑓2, 𝑓3 satisfy all assumptions of
Theorem 2.2.
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