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SECTORIAL NORMALIZATION OF SIMPLEST GERMS OF

SEMI-HYPERBOLIC MAPS IN A HALF-NEIGHBORHOOD

P.A. SHAIKHULLINA

Abstract. We consider a problem on analytic classification of semi-hyperbolic maps on
the plane for an example of the simplest class of germs, namely, the class of germs that are
formally equivalent to F𝜆, which is the unit time shift along the vector field 𝑥2 𝜕

𝜕𝑥+𝜆𝑦 𝜕
𝜕𝑦 , 𝜆 ∈

R+). A key step in the classification is an analytic normalization of the germs on sectorial
domains forming a cut neighbourhood of the origin (C2, 0)∖{𝑥 = 0}. For this class, in
the present work, we prove a theorem on a sectorial analytic normalization in the half-
neighbourhood invariant with respect to F−1

𝜆 . We also show that a formal normalizing
change of the coordinates is asymptotic for the constructed sectorial normalizing change.
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1. Introduction

In work we consider a classical problem on local analytic classification of germs of homomor-
phisms on the plane. Let us outline briefly the history of this question.

Already in XIXth century, it was found out that as a rule, differential equations can not
be solved explicitly, by quadratures. To overcome this difficulty, in the end of XIXth century,
A. Poincaré proposed the following strategy of studying differential equations: if an equation
can not be solved, one needs to find a change of coordinates which simplifies the form of the
equation as much as possible, that is, which reduces it to a normal form. In this way, he posed
two questions: what simplest form an equation can be reduced to? how to find whether it is
possible to reduce one equation to another? The answers to these questions depend essentially
on the classes of considered equations and changes. The same questions arise for the mappings.
Both problems were solved mostly in works by Poincaré [1]–[5], Siegel [6] and Bryuno [7],
[8]. Only germs of Siegel type remained unstudied under the presence of resonance or of a
patological closedness to resonances [9]. In 80s of the last century essential developing were
made for these special cases: in works by Yoccoz [10] for Liouville germs and in works by
Voronin [11], Ecalle [12] and Martinet-Ramis [13], [14] for resonance germs.

It is turned out that in the resonance case, an obstacle for normalization of the germs is so-
called functional invariants. One of the ways of constructing functional invariants is as follows
[15], [16], [17]. A punctured neighbourhood of a singular point (fixed point) is covered by
sectorial domains. In each of them one constructs an analytic change of coordinates normalizing
the germ. The transition functions of the obtained normalizing atlas are exactly functional
invariants. Thus, the problem on sectorial normalization, that is, a problem on normalization
of a germ in a domain, for which the singular point (fixed point) is not internal one but is on the
boundary is a first and most important step in resolving the problem on analytic classification
of resonance germs.
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This program was completely realized for one-dimensional resonance mappings, saddle and
saddle-node resonance vector fields. The next by difficulty step is two-dimensional mappings
and three-dimensional vector fields.

The germs of two-dimensional mappings and three-dimensional vector fields were considered
in works [16], [18] under very restrictive conditions describing the subsets of an infinite codi-
mension in the spaces of germs. For such germs the above program was also completely realized.
However, for the typical resonance mappings on the plane a little was done.

The germ at the fixed point (0, 0) is called semi-hyperbolic if one of its multiplicators is
hyperbolic and the other is parabolic, that is, its absolute value is 1. We note that the semi-
hyperbolic germ is a resonance one of Siegel type. In work [19] there was obtained a semi-formal
classification of such germs under some conditions for genericity.

We consider the class of germs formally equivalent to germ F𝜆 of the mapping 𝐹𝜆 =
(︀

𝑥
1−𝑥

, 𝑒𝜆𝑦
)︀
,

𝜆 ∈ R+. We note that the germs considered in the work are the germs from [19] of the
simplest form, we shall call them “simplest”. In the present work we restrict ourselves by
studying the germs in this class. We prove a theorem on sectorial normalization in a “proper”
half-neighbourhood, which is invariant with respect to the inverse mapping F𝜆

−1; the half-
neighbourhood is a Cartesian product of a semi-disk and disk. In work [20], a sectorial analytical
normalization of simplest germs of the class was made in a “improper” half-neighbourhood of
the origin being not invariant with respect to the mapping 𝐹𝜆 or 𝐹−1

𝜆 . In view of [19] and [20],
this completes the first step of the above described program.

We note that even for simplest germs, the construction of sectorial normalizing mappings is
non-trivial and this is why in the present work and in work [20] we consider exactly the simplest
case to avoid extra calculations. However, similar arguing can be made for other formal normal
forms in [19].

We should stress the following aspects. At a first glance, the construction of sectorial nor-
malizing mappings in a “proper” half-neighbourhood invariant with respect to the mapping
𝐹−1
𝜆 should not be more complicated than in the other “improper” neighbourhood. However,

this is not the case since the “improper” neighbourhood contains a central manifold. We recall
that a central manifold is a holomorphic submanifold tangential at the fixed point to the eigen-
vector of the linearization of the mapping corresponding to a non-hyperbolic multiplicator. For
instance, the central manifold for 𝐹𝜆 is {𝑦 = 0}. The issue on existence of a central manifold
is non-trivial. For instance, the answer to a similar question for saddle-node vector field can
be formulated only in terms of Martinet-Ramis functional invariants [14]. For typical semi-
hyperbolic mappings the answer will be of course obtained once the above mentioned program
is completed; this work is a part of this program. At the same time, we can pose a question on
existence of a sectorial central manifold lying in a sector with the vertex at the origin. In an
“improper” neighbourhood for the germs from [20] such sectorial manifold exists [19] and this
simplifies essentially the problem on sectorial normalization. In the other semi-neighbourhood
such central manifold not necessarily exists. A corresponding example is given by the shift in
the unit time along the vector field from the known Euler example [17].

Earlier in works [21], [22], Ueda already studied the germs of semi-hyperbolic mappings and
there was established the existence of a central manifold in an “improper” half-neighbourhood.
In one particular case, namely, as the central manifold in such half-neighbourhood exists, in
these works there were constructed sectorial normalizing mappings.

2. Definitions and main result

Definition 1. The germ F of a holomorphism 𝐹 : (C2, (0, 0)) → (C2, (0, 0)) is called semi-
hyperbolic if one of its multiplicators is equal to 1, while the other is hyperbolic: 𝐹 (𝑥, 𝑦) =
(𝑥 + . . . ,Λ𝑦 + . . .), where |Λ| ≠ 0, 1.
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In particular, the germ F𝜆 of the mapping F𝜆(𝑥, 𝑦) ↦→
(︀

𝑥
1−𝑥

, 𝑒𝜆𝑦
)︀
, 𝜆 ∈ R+, being the unit

shift along the vector field 𝑥2 𝜕
𝜕𝑥

+ 𝜆𝑦 𝜕
𝜕𝑦

, is semi-hyperbolic.

As usually, two mappings 𝐹 and 𝐹 with different domains 𝑈 and �̃� are called analytically
equivalent if there exists a holomorphic change of the coordinates 𝐻 : �̃� → 𝑈 adjoining 𝐹 with
𝐹 :

𝐹 ∘𝐻 = 𝐻 ∘ 𝐹 . (1)

At that, the equivalence is called strict if the change of coordinate 𝐻 in (1) reads as

𝐻(𝑥, 𝑦) =
(︀
𝑥 + 𝑜

(︀
𝑥2
)︀
, 𝑦 + 𝑜 (𝑥)

)︀
, 𝑥 → 0. (2)

The changes of the coordinates of such type are called normed. Two mappings are called
strictly formally equivalent if there exists an invertible formal mapping 𝐻 of form (2), for

which (1) holds as the identity of formal power series. Two germs F and F̃ are called strictly
analytically (formally) equivalent if there exist their strictly analytically (formally) equivalent
representatives 𝐹 and 𝐹 .

Let F𝜆 be a class of germs of holomorphic mappings strictly equivalent to the germ F𝜆. In
this work we restrict ourselves by studying a strict analytical classification of the germs in the
class F𝜆. The germ F𝜆 is called a normal form of class F𝜆.

Figure 1. Sectorial domains.

The domains Ω± of form

Ω+ =
{︁

0 < |𝑥| < 𝜀, arg 𝑥 ∈
(︁
−𝛿,

𝜋

2

)︁}︁
× {|𝑦| < 𝜀},

Ω− =
{︁

0 < |𝑥| < 𝜀, arg 𝑥 ∈
(︁
−𝜋

2
, 𝛿
)︁}︁

× {|𝑦| < 𝜀}.

are called an upper right or lower right sectorial domain.
As it was shown in work [19], for all F ∈ F𝜆 there exists the unique semi-formal normalized

change of coordinates H adjoining the normal form F𝜆 with the germ F. This change H is a
formal series in the variable “𝑥” with coefficients holomorphic in “𝑦”.

The main result of the work is the following theorem.

Theorem 1 (On sectorial normalization in right half-neighbourhood). Let the germ F be in
the class F𝜆, then

1. There exists a sectorial domain Ω± such that there exists the unique holomorphic normed
mapping 𝐻± adjoining normal form 𝐹𝜆 with a representative of the germ 𝐹 on Ω±;

2. Let H be a semi-formal normed change of coordinates normalizing F, then H is an asymp-
totic series (as 𝑥 → 0) for a holomorphic normalizing mapping 𝐻±.
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3. Proof of theorem on sectorial normalization

3.1. Preliminary normalization. It follows from theorem on semi-formal normalization
[19] that if H𝑁 is a partial sum of normalizing semi-formal series H, then H𝑁 is a holomorphic
change of coordinates and it maps the germ F into the germ F𝑁 such that

𝐹𝑁(𝑥, 𝑦) = 𝐹𝜆(𝑥, 𝑦) +
(︀
𝑂
(︀
𝑥𝑁

)︀
, 𝑂

(︀
𝑥𝑁

)︀)︀
as 𝑥 → 0. (3)

The mapping 𝐹𝑁 obtained in such way is called preliminary normal form for the germ F.
We choose arbitrary 𝑁 > 6; the parameter 𝑁 will be fixed later in the further calculations,

see Lemmata 5-7. We seek a holomorphic change of variables 𝐻𝑁 adjoining normal form 𝐹𝜆

with a preliminary normal form 𝐹𝑁 :

𝐹𝑁 ∘𝐻𝑁 = 𝐻𝑁 ∘ 𝐹𝜆.

It is more convenient to make the analytic normalization in the coordinates

(𝜉, 𝑧) = 𝐵(𝑥, 𝑦) =

(︂
𝜉 = −1

𝑥
, 𝑧 = 𝑦

)︂
.

In these coordinates, the preliminary normal formal 𝐹𝑁 in (3) reads as

𝐹𝑁(𝜉, 𝑧) = 𝐹0(𝜉, 𝑧) + (∆1𝑁 ,∆2𝑁)

∆1𝑁 = 𝑂
(︀
𝜉−𝑁1

)︀
,∆2𝑁 = 𝑂

(︀
𝜉−𝑁1

)︀
, |𝜉| → ∞,

(4)

where 𝐹0
𝑑𝑒𝑓
= 𝐵 ∘ 𝐹𝜆 ∘𝐵−1, 𝐹0(𝜉, 𝑧) = (𝜉 + 1, 𝑒𝜆𝑧), 𝑁1 = 𝑁 − 2, see [20].

A polynomial in “𝑥” transformation H𝑁 adjoining 𝐹𝑁 with 𝐹 written in terms of the coordi-
nates (𝜉, 𝑧) is denoted by H̃𝑁 .

Let the holomorphic transformation

�̃�𝑁
𝑑𝑒𝑓
= 𝐵 ∘𝐻𝑁 ∘𝐵−1

adjoining normal form 𝐹0 with 𝐹𝑁 reads as

�̃�𝑁(𝜉, 𝑧) = (𝜉 + ℎ𝑁(𝜉, 𝑧), 𝑧 + 𝑔𝑁(𝜉, 𝑧)).

Then the functions ℎ𝑁(𝜉, 𝑧) and 𝑔𝑁(𝜉, 𝑧) satisfy the pair of functional equations

ℎ𝑁 ∘ 𝐹0 − ℎ𝑁 = ∆1𝑁 ∘ �̃�𝑁 , 𝑔𝑁 ∘ 𝐹0 − 𝑒𝜆𝑔𝑁 = ∆2𝑁 ∘ �̃�𝑁 . (5)

Assuming that ℎ𝑁 , 𝑔𝑁 , ∆1𝑁 , ∆2𝑁 are small and neglecting the terms of orders higher than one,
by the functional equations we obtain so-called homological equations:

ℎ ∘ 𝐹0 − ℎ = ∆1𝑁 , (6)

𝑔 ∘ 𝐹0 − 𝑒𝜆𝑔 = ∆2𝑁 . (7)

We prove theorem on sectorial normalization as follows.

Step 1. Construction of a pair (ℎ, 𝑔) of solutions to homological equations in some sectorial do-
mains.

Step 2. Construction of auxiliary operators, namely, the operator resolving homological equations
ℒ : (∆1𝑁 ,∆2𝑁) → (ℎ, 𝑔) and the substitution operator

ℛ : (ℎ, 𝑔) → (𝛿1𝑁 , 𝛿2𝑁) = (∆1𝑁(𝜉 + ℎ, 𝑧 + 𝑔),∆2𝑁(𝜉 + ℎ, 𝑧 + 𝑔)).

Hence, the fixed point (ℎ𝑁 , 𝑔𝑁) of the operator ℋ = ℒ ∘ ℛ is the unique solution �̃�𝑁 =
𝑖𝑑 + (ℎ𝑁 , 𝑔𝑁) of the functional equations

ℋ[(ℎ𝑁 , 𝑔𝑁)] = (ℎ𝑁 , 𝑔𝑁).

The contracting property of the operator ℋ will be ensured by an appropriate choice of
the parameters of the sectorial domains and corresponding metric spaces. The theorem
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on contracting mappings ensures the existence and uniqueness of the normalizing sectorial
mapping for 𝐹𝑁 as well as appropriate estimates for this mapping.

Step 3. The composition of a partial sum of a semi-formal normalizing change of coordinates H𝑁
and of a holomorphic normalizing sectorial mapping 𝐻𝑁 is a sectorial normalizing mapping
𝐻. The asymptotics in Statement 2 of the theorem is implied by the uniqueness of the
sectorial normalizing mapping and an arbitrary choice of 𝑁 .

3.2. Solutions for homological equations.

Definition 2. A solution to homological equation in some domain 𝑊 is a holomorphic func-
tion 𝑢 satisfying this equation in 𝑊 . The norm of the solution on 𝑊 is introduced in a standard
way:

‖𝑢‖𝑊 = sup
𝑊

|𝑢(𝜉, 𝑧)|. (8)

Definition 3. We denote by D𝑚(𝑊 ) the class of functions 𝑑 holomorphic in 𝑊 and contin-
uous on 𝑊 with a finite norm

‖𝑑‖𝑊,𝑚 = sup
𝑊

⃒⃒
𝑑(𝜉, 𝑧)(1 + |𝜉|2)

𝑚
2

⃒⃒
< +∞, 𝑚 > 3. (9)

We shall employ the parameter 𝑚 for the brevity of writing. Its choice will be specified later
while constructing the solutions to the functional equations.

Definition 4. The domain 𝑆𝜉 = {Re 𝜉 < −𝑅 < −1} is called the left sectorial domain in 𝜉-
plane. The domain 𝑆±

𝜉 obtained as an intersection of 𝑆𝜉 and the domain {−𝛿 < ±(𝜋−arg 𝜉) <
𝜋
2
} is called upper left, respectively, lower left sectorial domain in the plane 𝜉. The parameter

of opening 𝛿 ∈ (𝜋
4
; 𝜋
2
) will be determined later in Proposition 3.

Definition 5. A left (upper left or lower left) sectorial domain in (𝜉, 𝑧)-plane is a Cartesian
product of 𝑆𝜉, respectively, 𝑆

±
𝜉 , and the disk {|𝑧| < 𝜀}. We denote these domains by 𝑆 and 𝑆±,

respectively.

Lemma 1 (On solution of first homological equation). Let ∆1𝑁 be in the class D𝑚(𝑆), then
there exists a holomorphic solution ℎ of the first homological equation in the left sectorial domain
𝑆 such that

1. ‖ℎ‖𝑆 6 𝑐1‖∆1𝑁‖𝑆,𝑚 where 𝑐1 = 𝑐1(𝑚);
2. ℎ(𝜉, 𝑧) = 𝑂(|𝜉|−𝑚+1) as |𝜉| → ∞, (𝜉, 𝑧) ∈ 𝑆;
3. the solution of the first homological equation in the left sectorial domain is unique in the

class of holomorphic bounded functions obeying condition 2.

Lemma 2 (On solution of second homological equation). Let ∆2𝑁 be in the class D𝑚(𝑆),
then there exists holomorphic solution 𝑔± of the second homological equation in the domain 𝑆
such that

1. ‖𝑔±‖𝑆 6 𝑐2(𝑚,𝜆)‖∆2𝑁‖𝑆,𝑚, where 𝑐2 = 𝑐2(𝑚,𝜆);
2. 𝑔±(𝜉, 𝑧) = 𝑂(|𝜉|−𝑚+3) as |𝜉| → +∞, (𝜉, 𝑧) ∈ 𝑆±;
3. Let the parameter 𝛿 ∈ (𝜋

4
; 𝜋
2
) be such that tan 𝛿 > 𝜆

2𝜋
, then the solution of the second

homological equation in the upper left (lower left) sectorial domain is unique in the class
of holomorphic bounded functions obeying condition 2 respectively in 𝑆±.

Proof of Lemma 1. The solution of the first homological equation can be represented as

ℎ(𝜉, 𝑧) =
+∞∑︁
𝑛=1

∆1𝑁

(︀
𝜉 − 𝑛, 𝑒−𝜆𝑛𝑧

)︀
. (10)

It is easy to confirm that all functions in the right hand side are well-defined, the series converges
uniformly in 𝑆 and its sum is a holomorphic function on 𝑆 and this is the function ℎ indeed
solves the first homological equation in 𝑆.
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Let us show the uniqueness. Assume that ℎ1 and ℎ2 are solutions to the first homological
equation in the domain 𝑆 obeying condition 2. We let 𝑟 = ℎ1 − ℎ2. Then in the domain 𝑆 the
function 𝑟 satisfies:

𝑟(𝜉 + 1, 𝑒𝜆𝑧) − 𝑟(𝜉, 𝑧) = 0 (11)

and 𝑟 can be continued on C2 as follows. Let (𝜉, 𝑧) be a point in C2 outside 𝑆. Then there
exist 𝑛1 = [Re 𝜉 + 𝑅] + 1 and 𝑛2 = [log𝑒𝜆

1
𝜀
] + 1 such that for 𝑛 = max{𝑛1;𝑛2}, the point

(𝜉0, 𝑧0) = (𝜉 − 𝑛, 𝑒−𝜆𝑛𝑧) is contained in the domain 𝑆 and we can define the value of the
function 𝑟 at the point (𝜉, 𝑧) via the value at the point (𝜉0, 𝑧0), namely,

𝑟(𝜉, 𝑧) = 𝑟(𝜉 − 𝑛, 𝑒−𝜆𝑛𝑧) = 𝑟(𝜉0, 𝑧0)

Since 𝑟 is holomorphic and bounded in 𝑆 and satisfies (11), its continuation on C2 is holomorphic
and bounded on C2. By Liouville theorem [23] we then get that 𝑟 = 𝑐𝑜𝑛𝑠𝑡. In view of condition 2
we hence get 𝑟 ≡ 0. The proof is complete.

Proof of Lemma 2. We consider the restriction of the second homological equation on

𝑆0
𝑑𝑒𝑓
= {(𝜉, 𝑧) ∈ 𝑆 : 𝑧 = 0}.

We observe that it follows from the definition of the left sectorial domain that 𝑆0 = 𝑆𝜉. We let

𝑔0(𝜉)
𝑑𝑒𝑓
= 𝑔(𝜉, 0), ∆0(𝜉)

𝑑𝑒𝑓
= ∆2𝑁(𝜉, 0).

Then the function 𝑔0 can be found as a solution to the equation

𝑔0(𝜉 + 1) − 𝑒𝜆𝑔0(𝜉) = ∆0(𝜉), 𝜉 ∈ 𝑆𝜉. (12)

We multiply equation (12) by 𝑒−𝜆(𝜉+1+𝑅) and we let

𝑑(𝜉)
𝑑𝑒𝑓
= 𝑒−𝜆(𝜉+1+𝑅)∆0(𝜉). (13)

Then equation (12) becomes

𝑢(𝜉 + 1) − 𝑢(𝜉) = 𝑑(𝜉), 𝜉 ∈ 𝑆𝜉. (14)

The solution of this simplest functional equation in a curved strip like domain was considered
in work [24]. Following Theorem 1 in this work, in 𝑆𝜉 we define a strip Π of width 3

2
as follows:

the vertical straight line 𝐿+
𝑑𝑒𝑓
= 𝜕𝑆𝜉 = {Re 𝜉 = −𝑅} is the right boundary of the strip and the

vertical straight line 𝐿− = 𝐿+ − 3
2

is the left boundary and at that, 𝜕Π = 𝐿+ − 𝐿−.
Since ∆2𝑁 is in the class D𝑚(𝑆), the function 𝑑 in the right hand in equation (14) belongs

to the class D𝑚(Π). Then Theorem 1 in [24] implies the following lemma.

Lemma 3 (Main lemma). The function

𝑢(𝜉) =
1

2𝜋𝑖

+∞∑︁
𝑛=0

⎛⎝∫︁
𝐿−

𝑑(𝑡)𝑑𝑡

𝑡− 𝜉 − 𝑛
+

∫︁
𝐿+

𝑑(𝑡)𝑑𝑡

𝑡− 𝜉 + 𝑛 + 1

⎞⎠
solves equation (14) with a right hand side 𝑑 from the class D𝑚(Π) in the strip Π and

1. There exists 𝑐(𝑚) such that ‖𝑢‖Π 6 𝑐(𝑚)‖𝑑‖Π,𝑚;
2. Let 𝑀𝑅

0 = 1
2

∫︀
𝐿−

𝑑(𝑡)𝑑𝑡, then

sup
Π

|𝑢(𝜉) ∓𝑀𝑅
0 | 6

𝐶(𝑚)‖𝑑‖Π,𝑚

|𝜉|𝑚−3
, 𝜉 ∈ Π, ±Im 𝜉 > |Re 𝜉|;

3. Solution of equation (14) is unique in the class of holomorphic bounded functions satisfying
condition 2 in the strip Π.
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We let

𝑀0(𝑎) =
1

2

∫︁
Re 𝑡=𝑎

∆0(𝑡)𝑒
−𝜆(𝑡+1)𝑑𝑡.

We note that as 𝑎 = −𝑅− 3
2
, we have 𝑀0 = 𝑀𝑅

0 𝑒
𝜆𝑅.

Proposition 1. The choice of value 𝑀0 is independent on 𝑎 < −𝑅.

Proof. The statement can be obtained from the Cauchy theorem in the standard way since the
condition ∆2𝑁 ∈ D𝑚(𝑆) ensures uniform estimates for the integrand as Im 𝜉 → ∞, 𝜉 ∈ 𝑆.

Let 𝑢 be a solution of equation (14) with the right hand side 𝑑 ∈ D𝑚(Π) defined in (13) in
Lemma 3.

We let

𝑔0(𝜉)
𝑑𝑒𝑓
= 𝑢(𝜉)𝑒𝜆(𝜉+𝑅), 𝜉 ∈ Π, (15)

and, in view of (12), we continue 𝑔0 from strip Π to the half-plane 𝑆𝑙 by the formula:

𝑔0(𝜉)
𝑑𝑒𝑓
= 𝑒−𝜆𝑘𝑔0(𝜉 + 𝑘) −

𝑘−1∑︁
𝑛=0

𝑒−𝜆(𝑛+1)∆0(𝜉 + 𝑛), 𝑘 = [−𝑅− Re 𝜉], 𝜉 ∈ 𝑆𝜉∖Π. (16)

Proposition 2. The function 𝑔0 defined by formulae (15) and (16) are holomorphic bounded
solution of equation (12) on 𝑆𝜉 and

1. There exists 𝑐 = 𝑐(𝑚,𝜆) such that ‖𝑔0‖𝑆𝑙
6 𝑐‖∆0‖𝑆𝜉,𝑚;

2. |𝑔0(𝜉) ∓𝑀0𝑒
𝜆𝜉| = 𝑂(|𝜉|−𝑚+3), 𝜉 ∈ 𝑆±

𝑙 , |𝜉| → ∞.

Remark 1. Since generally speaking 𝑀0 is non-zero, the estimate from Statement 2 in
Proposition 2 is not extended on 𝑆𝜉 = 𝑆+

𝜉 ∪ 𝑆−
𝜉 .

Proof of Proposition 2. Since the width of the strip Π is greater than 1, for each point 𝜉 to the
left of the strip (𝜉+𝑘), 𝑘 = [−𝑅−Re 𝜉] is located in the strip Π. Hence, the solution 𝑔0 defined
by formula (16) is well-defined on 𝑆𝜉 and the following facts hold.

◇ The function 𝑔0 satisfies equation (12) that can be confirmed by straightforward calcula-
tions.

◇ The function 𝑔0 is holomorphic as a finite sum of holomorphic functions on each strip
{𝜉 : Re 𝜉 ∈ (−𝐴− 1;−𝐴), 𝐴 ∈ N}. We note that the function 𝑔0 defined by formulae (15) and
(16) satisfies equation (12) and hence, all points in the straight line {𝜉 ∈ 𝑆𝜉 : Re 𝜉 ∈ Z−} are
removable and therefore, 𝑔0 is holomorphic on 𝑆𝜉.

◇ Lemma 3 implies the following estimate for 𝑔0 on the strip Π:

‖𝑔0‖Π =
⃦⃦
𝑢(𝜉)𝑒𝜆(𝜉+𝑅)

⃦⃦
Π
6 𝑐(𝑚)‖∆0(𝜉)𝑒−𝜆(𝜉+𝑅+1)‖Π,𝑚 6 𝑐(𝑚)‖∆0‖Π,𝑚.

Let us estimate the norm of 𝑔0 continued on 𝑆𝜉∖Π; we recall that 𝜆 ∈ R+, that is, 𝑒−𝜆 < 1:

‖𝑔0‖𝑆𝜉∖Π 6𝑒−𝜆(𝑘+1)‖𝑔0‖Π +
𝑒−𝜆 − 𝑒−𝜆(𝑘+1)

1 − 𝑒−𝜆
‖∆0‖𝑆𝜉,𝑚

6𝑐(𝑚)‖∆0‖Π,𝑚 +
1

𝑒𝜆 − 1
‖∆0‖𝑆𝜉,𝑚

6

(︂
𝑐(𝑚) +

1

𝑒𝜆 − 1

)︂
‖∆0‖𝑆𝜉,𝑚 = 𝑐(𝑚,𝜆)‖∆0‖𝑆𝜉,𝑚.

Hence,

‖𝑔0‖𝑆𝜉
6 𝑐(𝑚,𝜆)‖∆0‖𝑆𝜉,𝑚.

This proves the first statement of the proposition.
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◇ Statement 2 of Lemma 3 provides an asymptotic estimate for the solution in the strip Π;
we recall that 𝑔0(𝜉) = 𝑢(𝜉)𝑒𝜆(𝜉+𝑅), ∆0(𝜉) = 𝑑(𝜉)𝑒𝜆(𝜉+𝑅+1) and 𝑀0𝑒

𝜆𝜉 = 𝑀𝑅
0 𝑒

𝜆(𝜉+𝑅)):

|𝑔0(𝜉) ∓𝑀0𝑒
𝜆𝜉| 6 𝐶(𝑚)‖∆0‖Π,𝑚

|𝜉|𝑚−3
, ±Im 𝜉 > |Re 𝜉|, 𝜉 ∈ Π. (17)

We continue the function 𝑔0 from the strip Π on 𝑆𝜉 by formula (16) keeping for the continuation
the same notation. Then, if |Im 𝜉| > |Re 𝜉|, then⃒⃒

𝑔0(𝜉) ∓𝑀0𝑒
𝜆𝜉
⃒⃒

=

⃒⃒⃒⃒
⃒𝑒−𝜆𝑘𝑔0(𝜉 + 𝑘) ∓𝑀0𝑒

𝜆(𝜉+𝑘)𝑒−𝜆𝑘 −
𝑘−1∑︁
𝑛=0

𝑒−𝜆(𝑛+1)∆0(𝜉 + 𝑛)

⃒⃒⃒⃒
⃒

6
⃒⃒
𝑒−𝜆𝑘

(︀
𝑔0(𝜉 + 𝑘) ∓𝑀0𝑒

𝜆(𝜉+𝑘)
)︀⃒⃒

+

⃒⃒⃒⃒
⃒
𝑘−1∑︁
𝑛=0

𝑒−𝜆(𝑛+1)∆0(𝜉 + 𝑛)

⃒⃒⃒⃒
⃒

for each point 𝜉 in the domain 𝑆𝜉. Since the point 𝜉 + 𝑘 is inside the strip Π, the first term
satisfies inequality (17). Estimating the second term, we finally get:⃒⃒

𝑔0(𝜉) ∓𝑀0𝑒
𝜆𝜉
⃒⃒
6

𝐶(𝑚)‖∆0‖Π,𝑚

|𝜉 + 𝑘|𝑚−3𝑒𝜆𝑘
+

𝑘−1∑︁
𝑛=0

‖∆0‖𝑆𝜉,𝑚

|Im 𝜉|𝑚𝑒𝜆𝑛
, ±Im 𝜉 > |Re 𝜉|, 𝜉 ∈ 𝑆𝜉.

We note that in the considered case, for sufficiently great imaginary part of 𝜉 we have:

|𝜉 + 𝑘| > |Im 𝜉| > |𝜉|
2
.

Hence,

|𝑔0(𝜉) ∓𝑀0𝑒
𝜆𝜉| 6

𝐶(𝑚,𝜆)‖∆0‖𝑆𝜉,𝑚

|𝜉|𝑚−3
, ±Im 𝜉 > |Re 𝜉|, 𝜉 ∈ 𝑆𝜉. (18)

If 𝜉 is located inside the sector |Im 𝜉| 6 tan 𝛿|Re 𝜉|, Re 𝜉 < −𝑅, then it is sufficient to prove the
asymptotics of form 𝑂(|Re 𝜉|−𝑚+3) since as |Im 𝜉| 6 tan 𝛿|Re 𝜉|, we have |𝜉| 6 (1 + tan 𝛿)|Re 𝜉|,
that is, |Re 𝜉| > |𝜉|

1+tan 𝛿
.

We construct a solution 𝑔0 to equation (12) in 𝑆𝜉 by the above described scheme: let 𝜉 ∈ 𝑆𝜉,
then there exists a natural number 𝑘 = [−Re 𝜉 − 𝑅] such that 𝜉 + 𝑘 is located in the strip Π.
At that, since 𝜉 + 𝑘 is located in the strip Π, then 𝑒−𝜆(𝜉+𝑘) and 𝑔0(𝜉 + 𝑘) are bounded thanks
to Lemma 3. Hence,

|𝑔0(𝜉) ∓𝑀0𝑒
𝜆𝜉| =

⃒⃒⃒⃒
⃒𝑒−𝜆𝑘

(︀
𝑔0(𝜉 + 𝑘) ∓𝑀0𝑒

𝜆(𝜉+𝑘)
)︀
−

𝑘−1∑︁
𝑛=0

𝑒−𝜆(𝑛+1)∆0(𝜉 + 𝑛)

⃒⃒⃒⃒
⃒

6
𝑐‖∆0‖Π,𝑚

𝑒𝜆𝑘
+

𝑘−1∑︁
𝑛=0

2𝑚‖∆0‖𝑆𝜉,𝑚𝑒
−𝜆(𝑛+1)

(1 + |Re 𝜉 + 𝑛|)𝑚

6
𝑐‖∆0‖Π,𝑚𝑒

𝜆𝑅

𝑒𝜆|Re 𝜉| +
𝑘−1∑︁
𝑛=0

2𝑚‖∆0‖𝑆𝜉,𝑚𝑒
−𝜆(𝑛+1)

(1 + |Re 𝜉 + 𝑛|)𝑚
.

We have
𝜕

𝜕𝑛

(︀
𝑒−𝜆(𝑛+1)(1 + |Re 𝜉| − 𝑛|)−𝑚

)︀
= 0

as

𝑛0 =
−𝑚

𝜆
+ 1 + |Re 𝜉|.

For sufficiently large |Re 𝜉| we also have 𝑛0 ∈ R+, 𝑘 6 |Re 𝜉| and therefore,

𝑘−1∑︁
𝑛=0

𝑒−𝜆(𝑛+1)(1 + |Re 𝜉 + 𝑛|)−𝑚 =
𝑘−1∑︁
𝑛=0

𝑒−𝜆(𝑛+1)(1 + |Re 𝜉| − 𝑛)−𝑚 6 |Re 𝜉| ·
(︂
𝜆

𝑚

)︂𝑚

𝑒𝑚−2𝜆𝑒−|Re 𝜉|.



80 P.A. SHAIKHULLINA

Then for some constant 𝐶(𝑚,𝜆, 𝛿) the inequalities hold:

|𝑔0(𝜉) ∓𝑀0𝑒
𝜆𝜉| 6

𝐶(𝑚,𝜆, 𝛿)‖∆0‖𝑆𝜉,𝑚

|𝜉|𝑚
, |Im 𝜉| < tan 𝛿|Re 𝜉|, 𝜉 ∈ 𝑆𝜉. (19)

Inequalities (18), (19) and the condition 𝛿 ∈ (𝜋
4
; 𝜋
2
) yield the second statement of the proposition.

The proof is complete.

Proposition 3. For each 𝛿 ∈ (𝜋
4
; 𝜋
2
) such that tan 𝛿 > 𝜆

2𝜋
, a holomorphic bounded on 𝑆𝜉

solution to equation (12) satisfying Statement 2 of Proposition 2 is unique.

Proof. Let 𝑔±1 and 𝑔±2 are holomorphic bounded solutions of the equation:

𝑔0(𝜉 + 1) − 𝑒𝜆𝑔0(𝜉) = ∆0(𝜉), 𝜉 ∈ 𝑆𝜉,

and satisfy Statement 2 of Proposition 2 on 𝑆±
𝜉 . We let

𝑔±(𝜉)
𝑑𝑒𝑓
= 𝑔±1 (𝜉) − 𝑔±2 (𝜉).

Then
𝑔±(𝜉 + 1) − 𝑒𝜆𝑔±(𝜉) = 0, 𝜉 ∈ 𝑆±

𝜉 .

We denote 𝑢±(𝜉)
𝑑𝑒𝑓
= 𝑔±(𝜉)𝑒−𝜆𝜉. Then the function 𝑢± is holomorphic on 𝑆𝜉 and is 1-periodic.

We consider the domain 𝑆+
𝜉 . For each 𝜉 in 𝑆+

𝜉 there exists a natural 𝑛 such that 𝜉 = 𝜉 + 𝑛
is located inside a broken strip:

Π+ =

{︂−𝑅− 1 6 Re 𝜉 6 −𝑅, as Im 𝜉 > −𝑅 tan 𝛿

𝑐 tan 𝛿 Im 𝜉 − 1 6 Re 𝜉 6 𝑐 tan 𝛿 Im 𝜉, as Im 𝜉 6 −𝑅 tan 𝛿

By 1-periodicity we have 𝑢+(𝜉) = 𝑢+(𝜉). We are going to show the boundedness of the function

Figure 2. Strip Π+.

𝑢+ on the strip Π+. We let
𝐽 : 𝜉 ↦→ 𝑡 = 𝑒2𝜋𝑖𝜉. (20)

We note that

𝐽(Π+ ∩ {Im 𝜉 > −𝑅 tan 𝛿}) = {0 < |𝑡| < 𝑒2𝜋𝑅}
𝐽(Π+ ∩ {Im 𝜉 6 −𝑅 tan 𝛿}) = {|𝑡| > 𝑒2𝜋𝑅}.

In coordinates (20), the function 𝑢+ reads as

�̃�+(𝑡)
𝑑𝑒𝑓
= 𝐽−1 ∘ 𝑢+ ∘ 𝐽 = 𝑡

−𝜆
2𝜋𝑖 𝑔+

(︂
1

2𝜋𝑖
ln 𝑡

)︂
.

By 1-periodicity of the function 𝑢+, the function �̃�+ is well-defined and is holomorphic on
C* = 𝐽(𝑆𝜉). Moreover,

|𝑡| = |𝑒2𝜋𝑖𝜉| = 𝑒−2𝜋Im 𝜉.
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In the image
{︀

0 < |𝑡| < 𝑒2𝜋𝑅
}︀

of the upper part of the strip we have:⃒⃒⃒
𝑡
−𝜆
2𝜋𝑖

⃒⃒⃒
= 𝑒−𝜆Re 𝜉 = 𝑒−𝜆Re 𝜉 6 𝑒𝜆(𝑅+1),

|�̃�+(𝑡)| 6
⃒⃒⃒⃒
𝑔+

(︂
1

2𝜋𝑖
ln 𝑡

)︂⃒⃒⃒⃒
𝑒𝜆(𝑅+1) 6 𝐶𝑜𝑛𝑠𝑡 as

{︀
0 < |𝑡| < 𝑒2𝜋𝑅

}︀
. (21)

Then in the image of the lower part of the strip, that is, as
{︀
|𝑡| > 𝑒2𝜋𝑅

}︀
, we have:

|𝑡
−𝜆
2𝜋𝑖 | = 𝑒−𝜆Re 𝜉 = 𝑒−𝜆Re 𝜉 6 𝑒−

𝜆Im 𝜉
tan 𝛿 𝑒𝜆 = 𝑒−

𝜆Im 𝜉
tan 𝛿 𝑒𝜆 = 𝑒𝜆|𝑡|

𝜆
2𝜋 tan 𝛿 ,

|�̃�+(𝑡)| 6 |𝑡|
𝜆

2𝜋 tan 𝛿

⃒⃒⃒⃒
𝑔+

(︂
1

2𝜋𝑖
ln 𝑡

)︂⃒⃒⃒⃒
6 𝐶𝑜𝑛𝑠𝑡|𝑡|

𝜆
2𝜋 tan 𝛿 as |𝑡| > 𝑒2𝜋𝑅.

Since tan 𝛿 > 𝜆
2𝜋

, by the Cauchy estimates for the coefficients of the Taylor series [23] we infer
that 𝑡 = ∞ is a removable singular point of the function �̃�+ and hence, �̃�+ is bounded as
|𝑡| > 𝑒2𝜋𝑅. In view of (21), the function �̃�+ is also bounded on C*.

Since �̃�+ is holomorphic on C*, by the Riemann theorem on a removable singularity [23]
we conclude that �̃�+ is holomorphic and bounded on C. Then Liouville theorem implies that
�̃�+ = 𝑐𝑜𝑛𝑠𝑡 . Then 𝑔+(𝜉) = 𝑐𝑜𝑛𝑠𝑡 · 𝑒𝜆𝜉 by the asymptotic properties of the function 𝑔+, see
Statement 2 in Proposition 2. Since the rays {𝜉 : Re 𝜉 = 𝑐𝑜𝑛𝑠𝑡 6 −𝑅, Im 𝜉 > 0} belong to
the domain 𝑆+

𝜉 , we infer that 𝑔+ ≡ 0.

In the same way we consider the domain 𝑆−
𝜉 = {Re 𝜉 6 −𝑅, Im 𝜉 6 − tan 𝛿 Re 𝜉}. For each

𝜉 ∈ 𝑆−
𝜉 there exists a natural 𝑛 such that 𝜉 = 𝜉 + 𝑛 is located inside the broken strip Π−:

Π− =

{︂−𝑅− 1 6 Re 𝜉 6 −𝑅, if Im 𝜉 < 𝑅 tan 𝛿,

− 𝑐 tan 𝛿 Im 𝜉 − 1 6 Re 𝜉 6 −𝑐 tan 𝛿 Im 𝜉, if Im 𝜉 > 𝑅 tan 𝛿.

We apply mapping (20) (𝐽 : 𝜉 ↦→ (𝑡 = 𝑒2𝜋𝑖𝜉)):

𝐽(Π− ∩ {Im 𝜉 < 𝑅 tan 𝛿}) = {|𝑡| > 𝑒−𝑅 tan 𝛿},
𝐽(Π− ∩ {Im 𝜉 > 𝑅 tan 𝛿}) = {0 < |𝑡| 6 𝑒−𝑅 tan 𝛿},

�̃�−(𝑡)
𝑑𝑒𝑓
= 𝐽−1 ∘ 𝑢+ ∘ 𝐽 = 𝑡

−𝜆
2𝜋𝑖 𝑔−

(︂
1

2𝜋𝑖
ln 𝑡

)︂
.

Similar to the above arguing, by 1-periodicity of the function 𝑢−, the function �̃�− is well-defined
and holomorphic on C*. Moreover, by the boundedness of 𝑔− we have:

|�̃�−(𝑡)| 6 𝐶𝑜𝑛𝑠𝑡

{︃
𝑒𝜆(𝑅+1) if |𝑡| > 𝑒−𝑅 tan 𝛿,

𝑒𝜆|𝑡|
−𝜆

2𝜋 tan 𝛿 if 0 < |𝑡| 6 𝑒−𝑅 tan 𝛿

It follows from the Cauchy estimates for the coefficients of the Laurent series [23] that 𝑡 = 0
is a removable singular point �̃�− and this is why �̃�− can be continued to a holomorphic and
bounded on C function. This is why �̃�− = 𝑐𝑜𝑛𝑠𝑡 on C. As above, this imples 𝑔− ≡ 0. This
completes the proof of Lemma 2.

We let 𝑔±0 (𝜉)
𝑑𝑒𝑓
= 𝑔0(𝜉) ∓ 𝑀0𝑒

𝜆𝜉. We have constructed the solutions to the reduced second
homological equation (12) in the domain 𝑆𝜉. We deduct equation (12) from the second homo-
logical equation. We obtain one more equation:

𝑟(𝜉 + 1, 𝑒𝜆𝑧) − 𝑒𝜆𝑟(𝜉, 𝑧) = 𝜌𝑁(𝜉, 𝑧), (𝜉, 𝑧) ∈ 𝑆, (22)

where

𝜌𝑁(𝜉, 𝑧)
𝑑𝑒𝑓
= ∆2𝑁(𝜉, 𝑧) − ∆0(𝜉), 𝑟(𝜉, 𝑧)

𝑑𝑒𝑓
= 𝑔(𝜉, 𝑧) − 𝑔0(𝜉).
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It follows from the Schwarz lemma [23] that 𝜌𝑁(𝜉, 𝑧) = 𝑧∆̃𝑁(𝜉, 𝑧), where ∆̃𝑁 is in the class
D𝑚(𝑆). We seek a solution to equation (22) in the left sectorial domain 𝑆 as 𝑟(𝜉, 𝑧) = 𝑧𝑔(𝜉, 𝑧),
where 𝑔(𝜉, 𝑧) satisfies the equation

𝑔
(︀
𝜉 + 1, 𝑒𝜆𝑧

)︀
− 𝑔(𝜉, 𝑧) = 𝑒−𝜆∆̃𝑁(𝜉, 𝑧), (𝜉, 𝑧) ∈ 𝑆. (23)

Since the function 𝑒−𝜆∆̃𝑁 is in the class D𝑚(𝑆), the following proposition is in fact a reformu-
lation of Lemma 1.

Proposition 4. The function 𝑔(𝜉, 𝑧) =
+∞∑︀
𝑛=1

𝑒−𝜆∆̃𝑁

(︀
𝜉 − 𝑛, 𝑒−𝜆𝑛𝑧

)︀
is a solution to equation

(23) and 𝑔 is holomorphic in 𝑆 and

1. For some constant 𝑐 = 𝑐(𝑚) an inequality holds: ‖𝑔‖𝑆 6 𝑐‖∆̃𝑁‖𝑆,𝑚;
2. 𝑔(𝜉, 𝑧) = 𝑂(|𝜉|−𝑚+1) as |𝜉| → ∞, (𝜉, 𝑧) ∈ 𝑆;
3. The solution of equation (23) is unique in 𝑆 in the class of holomorphic bounded functions

obeying condition 2.

Propositions 2–4 provide a needed solution to the second homological equation in the domain
𝑆 of form:

𝑔±(𝜉, 𝑧) = 𝑔±0 (𝜉) + 𝑧𝑔(𝜉, 𝑧), (𝜉, 𝑧) ∈ 𝑆,

where 𝑔±0 comes from Propositions 2,3, and 𝑔 is from Proposition 4.
We note that since for each pair (𝜉, 𝑧) in 𝑆 we have Re 𝜉 < −𝑅, there exists 𝐶(𝜆) such that

‖𝑀0𝑒
𝜆𝜉‖𝑆 = sup

𝑆

⃒⃒⃒⃒
⃒⃒12

∫︁
𝐿

∆0(𝑡)𝑒
−𝜆(𝑡−𝜉)𝑑𝑡

⃒⃒⃒⃒
⃒⃒ 6 𝐶(𝜆)‖∆0‖𝑆,𝑚,

where 𝐿 = {Re 𝑡 = −𝑅 − 3
2
}. Hence, we have proved Lemma 2; other estimates follow corre-

sponding estimates in Propositions 2-4.

3.3. Solutions of functional equations. This section is devoted to the second step in the
proof of the theorem on sectorial normalization. Here we construct auxiliary operators ℒ and
ℛ and we also prove the contracting property of the operator ℋ = ℒ∘ℛ under an appropriate
choice of the parameters of the sectorial domains.

For a vector function 𝑑 = (𝑑1, 𝑑2) holomorphic in the left sectorial domain 𝑆 we let:

‖𝑑‖𝑆,𝑚
𝑑𝑒𝑓
= ‖𝑑1‖𝑆,𝑚 + ‖𝑑2‖𝑆,𝑚. (24)

We denote by B𝑚(𝑆) a normed space consisting of the vector functions 𝑑 = (𝑑1, 𝑑2) holomorphic
on 𝑆 with a finite norm ‖𝑑‖𝑆,𝑚 < ∞ defined by (24).

For a vector function 𝑓 = (ℎ, 𝑔) holomorphic on the left sectorial domain 𝑆 we let

‖𝑓‖𝑆
𝑑𝑒𝑓
= ‖ℎ‖𝑆 + ‖𝑔‖𝑆. (25)

We denote by A(𝑆) the space of vector functions 𝑓 = (ℎ, 𝑔) holomorphic on 𝑆 with norm (25).
We observe that the spaces B𝑚(𝑆) and A(𝑆) are Banach.

Resolving operator for homological equations ℒ±. We denote by ℒ± the operator resolving
homological equations (6) and (7) with the right hand side 𝑑 in the class B𝑚(𝑆), that is, the
operator mapping vector functions 𝑑 in the class B𝑚(𝑆) into the vector function 𝑓± in the class
A(𝑆)):

𝑓± = ℒ±[𝑑]

and acting accroding Lemmata 1 and 2. Then the following lemma follows immediately Lem-
mata 1 and 2.



SECTORIAL NORMALIZATION OF SEMI-HYPERBOLIC MAPS. . . 83

Lemma 4. For each 𝑚 ∈ (3;𝑁 − 2) the operator ℒ± is well-defined as acting from B𝑚(𝑆)
into A(𝑆) and for some C(𝑚,𝜆) we have

‖ℒ±[𝑑]‖𝑆 6 C(𝑚,𝜆)‖𝑑‖𝑆,𝑚

for all 𝑑 ∈ B𝑚(𝑆).

Substitution operator ℛ. Let 𝛿 ∈ (𝜋
4
; 𝜋
2
) be such that tan 𝛿 > 𝜆

2𝜋
. Hereinafter the vector function

∆𝑁 = (∆1𝑁 ,∆2𝑁) is assumed to be fixed.
We choose the parameters 𝑅0 > 1, 𝜀0 > 0 and find 𝑆𝑅0𝜀0 such that ∆𝑁 is holomorphic on

𝑆𝑅0𝜀0 . Then it follows from asymptotics (4) that ∆𝑁 is in the class B𝑁−2(𝑆𝑅0𝜀0).

We choose a positive number 𝜀1 <
𝜀0
2

and 𝑅1 > max
{︁
𝑅0 + 1; 1

𝜀0

}︁
, then for each 𝜉 ∈ {Re 𝜉 6

−𝑅1} the Cartesian product of the unit disk centered at the point 𝜉 and of the circle |𝑧| < 𝜀0
is entirely contained in 𝑆𝑅0𝜀0 . We choose 𝑅 > 𝑅1, 𝜀 < 𝜀1 and construct a sectorial domain 𝑆𝑅𝜀.

Let 𝜔 = min{1
2
; 𝜀0

2
}. We denote by

M𝜔(𝑆𝑅𝜀) = {𝑓 ∈ A(𝑆𝑅𝜀) : ‖𝑓‖𝑆𝑅𝜀
6 𝜔}

a ball of radius 𝜔 centered at zero in the metric space A(𝑆𝑅𝜀) with metric induced by norm
(25).

By ℛ we denote an operator acting by the rule ℛ[(ℎ, 𝑔)] = (𝑑1, 𝑑2), where

𝑑1(𝜉, 𝑧) = ∆1𝑁(𝜉 + ℎ(𝜉, 𝑧), 𝑧 + 𝑔(𝜉, 𝑧)), 𝑑2(𝜉, 𝑧) = ∆2𝑁(𝜉 + ℎ(𝜉, 𝑧), 𝑧 + 𝑔(𝜉, 𝑧)).

Lemma 5. For all 𝑚 ∈ (3;𝑁 − 2) the operator ℛ is well-defined and acts M𝜔(𝑆𝑅𝜀) into
B𝑚(𝑆𝑅𝜀) and

1. ‖ℛ[𝑓 ]‖𝑆𝑅𝜀,𝑚 6 𝑐1 for all 𝑓 ∈ M𝜔(𝑆𝑅𝜀) with some 𝑐1 = 𝑐1(𝑚,𝑅, 𝜀0);
2. The operator ℛ is Lipschitz with a constant 𝑐2 = 𝑐2(𝑚,𝑅, 𝜀0).

A detailed proof of this lemma was given in work [20].

Proposition 5. For each 𝑚 ∈ (3;𝑁 − 3) and for some 𝑐 = 𝑐(𝑁) the inequality holds:

c(𝑅,𝑚) = max{𝑐1, 𝑐2} 6 𝑐𝑅−𝑁+3+𝑚‖∆𝑁‖𝑆𝑅0𝜀0
,(𝑁−2)

Proof. The statement follows the estimate for 𝑚-norm of the operator ℛ via (𝑁−2)-norm.

Contracting property of the composition of operators ℋ± 𝑑𝑒𝑓
= ℒ± ∘ℛ. We first specify the choice

of sectorial domains.
We choose some 𝜀0 > 0, 𝑅0 > 1, 3 < 𝑚 < 𝑁 − 3 and construct 𝑆𝑅0𝜀0 . Then we calculate

‖∆𝑁‖𝑆𝑅0𝜀0
,(𝑁−2) and C(𝑚,𝜆) by Lemma 4. We let

𝜔 = min

{︂
1

2
;
𝜀0
2

}︂
, 0 < 𝜀1 <

𝜀0
2
.

Let 𝑐(𝑁) be from Proposition 5. We denote

𝑅1 = max

{︂
𝑅0 + 1;

1

𝜀0
;
(︁
𝑐(𝑁)𝜔−1C(𝑚,𝜆)‖∆𝑁‖𝑆𝑅0𝜀0

,(𝑁−2)

)︁ 1
𝑁−𝑚−3

}︂
.

We finally choose 𝑅 > 𝑅1 and a positive 𝜀 6 𝜀1. Then we construct A(𝑆𝑅𝜀), B𝑚(𝑆𝑅𝜀) and
M𝜔(𝑆𝑅𝜀).

Lemma 6. Under the above choice of the parameters, the operator ℋ± acts from M𝜔(𝑆𝑅𝜀)
into M𝜔(𝑆𝑅𝜀) and is contracting.
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Proof. It follows from Lemma 5 that the operator ℛ acts from M𝜔(𝑆𝑅𝜀) into B𝑚(𝑆𝑅𝜀) with the
constant 𝑐1 (Statement 1) and is Lipschitz with constant 𝑐2 (Statement 2), and also Proposi-
tion 5 holds.

It follows from Lemma 4 that the linear operators ℒ± resolving homological equations act
from B𝑚(𝑆𝑅𝜀) into A(𝑆𝑅𝜀) and is bounded by the constant C(𝑚,𝜆). Hence, for each 𝑓 in
M𝜔(𝑆𝑅𝜀), the results of the action of the operator ℛ[𝑓 ] belongs to B𝑚(𝑆𝑅𝜀) and the operators
ℋ± satisfy the inequalities

‖ℋ±[𝑓 ]‖𝑆𝑅𝜀
6 ‖ℒ±‖𝑆𝑅𝜀

· ‖ℛ[𝑓 ]‖𝑆𝑅𝜀,𝑚 6 C(𝑚,𝜆)c(𝑅,𝑚) (26)

for all 𝑓 ∈ M𝜔(𝑆𝑅𝜀). Thanks to the linearity of the operator ℒ± we also have:

‖ℋ±[𝑓1] −ℋ±[𝑓2]‖𝑆𝑅𝜀
= ‖ℒ±(ℛ[𝑓1] −ℛ[𝑓2])‖𝑆𝑅𝜀

6 C(𝑚,𝜆)c(𝑅,𝑚)‖𝑓1 − 𝑓2‖𝑆𝑅𝜀
. (27)

for all 𝑓1,2 ∈ M𝜔(𝑆𝑅𝜀). By the choice of 𝑅 in Proposition 5 the relation holds:

c(𝑅,𝑚)C(𝑚,𝜆) 6 𝜔 6
1

2
. (28)

Inequalities (26) and (28) imply that the operators ℋ± are well-defined and it follows from (27)
and (28) that it is a contracting mapping. The proof is complete.

We construct the domains 𝑆±
𝑅𝜀. We recall that 𝛿 ∈

(︀
𝜋
4
; 𝜋
2

)︀
and tan 𝛿 > 𝜆

2𝜋
. We also recall that

∆𝑁 is the function in the right hand side in functional equations (5). The choice of the class
B𝑁−2 with the parameter 𝑁 − 2 is due to asymptotics (4).

Lemma 7. The following facts hold true on the sectorial domain 𝑆𝑅𝜀.

1. There exists a holomorphic bounded mapping �̃�±
𝑁 adjoining 𝐹0 with 𝐹𝑁 of the form:

�̃�±
𝑁(𝜉, 𝑧) = (𝜉 + ℎ𝑁(𝜉, 𝑧), 𝑧 + 𝑔±𝑁(𝜉, 𝑧));

2. �̃�±
𝑁(𝜉, 𝑧) = (𝜉 + 𝑜(|𝜉|−𝑁+6), 𝑧 + 𝑜(|𝜉|−𝑁+6)) as |𝜉| → ∞, (𝜉, 𝑧) ∈ 𝑆±

𝑅𝜀;

3. The normalizing mapping adjoining 𝐹0 with 𝐹𝑁 in the sectorial domain 𝑆±
𝑅𝜀 is unique in

the class of holomorphic bounded functions obeying Statement 2.

Proof. The space A(𝑆𝑅𝜀) equipped with norm (25) is Banach and this is why the space M𝜔(𝑆𝑅𝜀)
with the induced metric is complete. Since by Lemma 6 the operator ℋ± acts from M𝜔(𝑆𝑅𝜀)
into M𝜔(𝑆𝑅𝜀) and is contracting, by the contracting mapping principle, in the domain 𝑆𝑅𝜀 there
exists unique

(︀
ℎ±
𝑁 , 𝑔

±
𝑁

)︀
such that (︀

ℎ±
𝑁 , 𝑔

±
𝑁

)︀
= ℋ± (︀

ℎ±
𝑁 , 𝑔

±
𝑁

)︀
. (29)

This implies that there exists the unique mapping �̃�±
𝑁(𝜉, 𝑧) = (𝜉 + ℎ±(𝜉, 𝑧), 𝑧 + 𝑔±𝑁(𝜉, 𝑧))

satisfying the pair of functional equations (5), that is, the one adjoining 𝐹0 with 𝐹𝑁 . Since
(ℎ±

𝑁 , 𝑔
±
𝑁) ∈ M𝜔(𝑆𝑅𝜀), then �̃�𝑁 is holomorphic in 𝑆𝑅𝜀. This proves the first statement; the

identity ℎ+
𝑁 = ℎ−

𝑁 on the intersection of 𝑆+
𝑅𝜀 and 𝑆−

𝑅𝜀 can be shown exactly in the same way as
Proposition 3 was proved.

It follows from Lemma 5 that the operator ℛ acts from M𝜔(𝑆𝑅𝜀) into B𝑚(𝑆𝑅𝜀) and hence,
Lemmata 1 and 2 imply Statement 2.

Statement 3 can be proved similarly to Proposition 3. The proof is complete.

3.4. Proof of theorem on sectorial normalization in right half-neighbourhood. All
arguing in this section are made under the choice of the parameters made in the proof of
Lemma 7.

Existence of solution. Lemma 7 provides the holomorphic normalizing change of coordinates
�̃�±

𝑁 adjoining normal form 𝐹0 with a preliminary normal form 𝐹𝑁 on a sectorial domain 𝑆𝑅𝜀.

Then �̃�±
𝑁 ∘ H̃𝑁 is a holomorphic mapping adjoining 𝐹0 with the mapping 𝐹 in 𝑆𝑅𝜀.
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Normalization. It follows from the construction that the mapping �̃�±
𝑁 ∘ H̃𝑁 is normalized on

𝑆±
𝑅𝜀.

We note that the normalization of the mapping �̃�±
𝑁 ∘ H̃𝑁 in the sectorial domains 𝑆±

𝑅𝜀 implies
their invertibility for a sufficiently large parameter 𝑅.

Uniqueness. Assume that there exist two holomorphic bounded and normalized mappings ad-
joining 𝐹0 with 𝐹 on the domain 𝑆±

𝑅𝜀. We denote them by 𝐻± and 𝐺±. The normalization
implies the existence of the inverse mapping (𝐺±)−1, which acts from 𝐺±(𝑆±

𝑅𝜀) into 𝑆±
𝑅𝜀. The

mapping Φ± = 𝐻± ∘ (𝐺±)−1 is called a transition functions. It follows from the definition of
the transition function that it commutes with normal form 𝐹0:

𝐹0 ∘ Φ± = 𝐹0 ∘𝐻± ∘ (𝐺±)−1 = 𝐻± ∘ 𝐹 ∘ (𝐺±)−1 = 𝐻± ∘ (𝐺±)−1 ∘ 𝐹0 = Φ± ∘ 𝐹0.

Let the transition function read as Φ±(𝜉, 𝑧) = (𝜉+ℎ(𝜉, 𝑧), 𝑧+𝑔±(𝜉, 𝑧)), be holomorphic, bounded
and also be normalized. The commutation with the normal form implies that

ℎ(𝜉, 𝑧) = ℎ
(︀
𝜉 + 1, 𝑒𝜆𝑧

)︀
, (30)

𝑒𝜆𝑔±(𝜉, 𝑧) = 𝑔±
(︀
𝜉 + 1, 𝑒𝜆𝑧

)︀
. (31)

We note that the derivative 𝜕𝑔±

𝜕𝑧
satisfies the same relation as the function ℎ:

𝜕𝑔±

𝜕𝑧
(𝜉, 𝑧) =

𝜕𝑔±

𝜕𝑧

(︀
𝜉 + 1, 𝑒𝜆𝑧

)︀
. (32)

The Cauchy estimates [23] and the normalization imply that the derivative 𝜕𝑔±

𝜕𝑧
is also holo-

morphic and bounded on probably smaller sectorial domain with a similar asymptotics.
We observe that equations (30) and (32) reproduces exactly equation (11) in the proof of the

uniqueness of the first homological equation in Lemma 1. Reproducing the same arguing, we
obtain:

ℎ(𝜉, 𝑧) =
𝜕𝑔±

𝜕𝑧
(𝜉, 𝑧) = 0, (𝜉, 𝑧) ∈ C2.

This implies that 𝑔± is independent of 𝑧 and for 𝑔±(𝜉, 𝑧) = 𝑔±(𝜉) we have:

𝑒𝜆𝑔±(𝜉) = 𝑔±(𝜉 + 1), 𝜉 ∈ 𝑆±
𝜉 . (33)

Exactly the same equation in the domains 𝑆±
𝜉 has already been considered in the proof of the

uniqueness of the reduced homological equation, see Proposition 4). This implies that 𝑔± ≡ 0
on 𝑆±

𝜉 .

Asymptotics. Let �̃�±
𝑁 and H̃𝑁 be the above constructed mappings. The above proven existence

and uniqueness of the analytic continuation implies that �̃�± 𝑑𝑒𝑓
= �̃�±

𝑁 ∘ H̃𝑁 is independent of 𝑁 .

We note that in construction of ~H𝑁 and �̃�𝑁 the parameter 𝑁 > 6 can be chosen arbitrarily.
Hence, since

�̃�±
𝑁 = 𝑖𝑑 +

(︀
𝑂
(︀
|𝜉|−𝑁+6

)︀
, 𝑂

(︀
|𝜉|−𝑁+6

)︀)︀
, |𝜉| → ∞,

then for all 𝑁 > 6 we have

�̃�± = H̃𝑁 + 𝑂
(︀
|𝜉|−𝑁+6

)︀
, |𝜉| → ∞.

This yields that ~H is an asymptotic series for �̃�±.
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End of the proof. We have constructed holomorphic sectorial normalizing mappings

�̃�±
𝑁 = (𝜉 + ℎ𝑁(𝜉, 𝑧), 𝑧 + 𝑔±𝑁(𝜉, 𝑧))

in sectorial domains

𝑆±
𝑅𝜀 =

{︁
𝜉 : Re 𝜉 < −𝑅 < −1;−𝛿 < ±(𝜋 − arg 𝜉) <

𝜋

2

}︁
× {|𝑧| < 𝜀}.

We note that the functions ℎ𝑁 and 𝑔±𝑁 satisfy functional equations (5).
We continue ℎ𝑁 and 𝑔±𝑁 on sectorial domains

𝑆±
𝑅𝜀 =

{︁
𝜉 : |𝜉| > 𝑅 > 1;−𝛿 < ±(𝜋 − arg 𝜉) <

𝜋

2

}︁
× {|𝑧| < 𝜀}.

by the functional equations. We denote 𝜉𝑗 = 𝜉 − 𝑗, 𝑧𝑗 = 𝑒−𝜆𝑗𝑧. Then for each 𝜉 ∈ 𝑆±
𝑅𝜀∖𝑆

±
𝑅𝜀

there exists 𝑘 = [Re 𝜉−𝑅+ 1] such that (𝜉𝑘, 𝑧𝑘) ∈ 𝑆±
𝑅𝜀. Then ℎ𝑁 and 𝑔±𝑁 can be well continued

by induction to holomorphic and bounded on 𝑆±
𝑅𝜀 functions by means of the formulae:

ℎ𝑁(𝜉, 𝑧) = ℎ𝑁(𝜉𝑘, 𝑧𝑘) +
𝑘∑︁

𝑛=1

∆1𝑁(𝜉𝑛 + ℎ𝑁(𝜉𝑛, 𝑧𝑛), 𝑧𝑛 + 𝑔𝑁(𝜉𝑛, 𝑧𝑛)),

𝑔𝑁(𝜉, 𝑧) = 𝑒𝜆𝑘𝑔𝑁(𝜉𝑘, 𝑧𝑘) +
𝑘∑︁

𝑛=1

𝑒𝜆(𝑛−1)∆1𝑁(𝜉𝑛 + ℎ𝑁(𝜉𝑛, 𝑧𝑛), 𝑧𝑛 + 𝑔𝑁(𝜉𝑛, 𝑧𝑛)).

It follows from the estimates for �̃�𝑁 on 𝑆𝑅𝜀 and the boundedness of 𝑘, which exceeds 𝑅, that
the continued in this way on 𝑆𝑅𝜀 mapping is unique, holomorphic, bounded and preserves its
asymptotic properties on 𝑆±

𝑅𝜀.

Choosing the parameters of the domains 𝑆±
𝑅𝜀 large enough, namely, the radius 𝑅 and opening

𝛿, and choosing the radius 𝜀 small enough, without loss of generality we can assume that the pre-
image of the left upper (left lower) sectorial domain 𝑆+

𝑅𝜀 (respectively, 𝑆−
𝑅𝜀) under the mapping

𝐵 : (𝑥, 𝑦) ↦→
(︀
𝜉 = − 1

𝑥
, 𝑧 = 𝑦

)︀
is the right upper sectorial domain Ω+ (respectively, Ω−), and

the constructed mapping 𝐻± = 𝐵−1 ∘ �̃�± ∘𝐵 satisfies Theorem 1. This completes the proof of
the theorem.
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