
ISSN 2304-0122 Ufa Mathematical Journal. Vol. 12. No 2 (2020). P. 35-49.

doi:10.13108/2020-12-2-35

GROWTH OF SUBHARMONIC FUNCTIONS ALONG LINE

AND DISTRIBUTION OF THEIR RIESZ MEASURES

A.E. SALIMOVA, B.N. KHABIBULLIN

Abstract. Let 𝑢 ̸≡ −∞ and 𝑀 ̸≡ −∞ be two subharmonic functions on a complex plane
C with Riesz measures 𝜈𝑢 and 𝜇𝑀 , respectively, such that 𝑢(𝑧) 6 𝑂(|𝑧|) and 𝑀(𝑧) 6 𝑂(|𝑧|)
as 𝑧 → ∞, and 𝑞 is some positive continuous function on a real axis R, and mes is a linear
Lebesgue measure on R. We assume that the following condition for the growth of function
𝑢 along the imaginary axis 𝑖R of the form

𝑢(𝑖𝑦) 6
1

2𝜋

2𝜋∫︁
0

𝑀
(︀
𝑖𝑦 + 𝑞(𝑦)𝑒𝑖𝜃

)︀
d𝜃 + 𝑞(𝑦) for all𝑦 ∈ R ∖ 𝐸,

where 𝐸 ⊂ R is some small set, for instance, mes
(︀
𝐸 ∩ [−𝑟, 𝑟]

)︀
6 𝑞(𝑟) as 𝑟 > 0. Under such

restrictions for the function 𝑢 it is natural to expect that the Riesz measure 𝜈𝑢 is in some
sense majorized by the Riesz measure 𝜇𝑀 of the function 𝑀 or by integral characteristics
of the function 𝑀 . We provide a rigorous quantitative form of such majorizing. The need
in such estimates arises naturally in the theory of entire functions in its applications to
the completeness issues of exponential systems, analytic continuation, etc. Our results are
formulated in terms of special logarithmic characteristics of measures 𝜈𝑢 and 𝜇𝑀 arisen
earlier in classical works by P. Malliavin, L.A. Rubel and other for sequences of points
and also in terms of special logarithmic characteristics of the behavior of the function 𝑀
along the imaginary axis and of the function 𝑞 along the real axis. The obtained results
are new also for distribution of the zeroes of entire functions of exponential type under
restrictions for the growth of such function along a line. The latter is demonstrated by
a new uniqueness theorem for entire functions of exponential type employing so-called
logarithmic block-densities of the distribution of the points on the complex plane.

Keywords: subharmonic function of a finite type, Riesz measure, entire function of expo-
nential type, distribution of zeroes, uniqueness theorem
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1. Introduction

1.1. Main problem and origination. Let 𝑢 ̸≡ −∞ and 𝑀 ̸≡ −∞ be subharmonic func-
tions of finite type (of order 1) on the complex plane C, which means the finitness of the
type

type[𝑢] := lim sup
𝑧→∞

𝑢(𝑧)

|𝑧|
(1.1)

and type type[𝑀 ] < +∞ with Riesz measures 𝜈𝑢 := 1
2𝜋

∆𝑢 and 𝜇𝑀 := 1
2𝜋

∆𝑀 , respectively,
where ∆ is Laplace operator acting in the sense of generalized functions [1], [2]. We assume
that the growth of the function 𝑢 along some straight line 𝐿 ⊂ C is majorized by the function
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𝑀 or, more generally, by some means of the function 𝑀 over circumferences with centers in
𝐿, with certain additive terms to 𝑀 and not everywhere in 𝐿 but outside some exceptional
set 𝐸 ⊂ 𝐿. In this case it is natural to expect that the Riesz measure 𝜈𝑢 should be majorized
somehow by the Riesz measure 𝜇𝑀 related with the radii of the above circumference, with the
characteristics of additive term and the smallness of the exceptional set 𝐸. Our main aim is to
provide quantitative characteristics of such majorizing the measure 𝜈𝑢 by the measure 𝜇𝑀 in
terms of special logarithmic characteristics/densities of the measures 𝜈𝑢 and 𝜇𝑀 . Theorem 1
formulated below in Section 1.3 as well as its variations, Proposition 1, Corollary 1, Theorem 2
in Section 3 are new results even for a special choice 𝑢 = ln |𝑓 | and 𝑀 = ln |𝑔| in the case of entire
functions of exponential type 𝑓 ̸= 0 and 𝑔 ̸= 0 with type

[︀
ln |𝑓 |

]︀
< +∞ and type

[︀
ln |𝑔|

]︀
< +∞,

as the Riesz measures 𝜈𝑢 and 𝜇𝑀 the sequences of zeroes or roots Zero𝑓 and Zero𝑔 of respectively
functions 𝑓 and 𝑔 serve; these zeroes are taken in some order counting their multiplicities. For
entire functions of exponential type we establish a final uniqueness theorem 3.

Exactly in formulation for entire functions of exponential type 𝑓 and 𝑔, a version of our
main problem was considered in joint work by P. Malliavin and L.A. Rubel [3], in which as
the straight line 𝐿, the imaginary axis 𝑖R ⊂ C served, where R ⊂ C was the real axis. We
follow the same choice. In [3], for an arbitrary entire function of exponential type 𝑔 with
zeroes in the right half-plane Crh := {𝑧 ∈ C : Re 𝑧 > 0} located exceptionally on real semi-axis
R+ := {𝑥 ∈ R : 𝑥 > 0}, there was provided a complete description of all positive sequences of
the points Z = {z𝑘}𝑘=1,2,... ⊂ R+, for each of them there exists an entire function of exponential
type 𝑓 ̸= 0 vanishing on Z and obeying the constraint ln |𝑓(𝑖𝑦)| 6 ln |𝑔(𝑖𝑦)| for all 𝑦 ∈ R. To
this problem, one of the main section in the joint monograph by L.A. Rubel and J.E. Colliander
was devoted [4, Sect. 22]. In the series of works by the second author in 1988–1991, all these
results were extended for arbitrary sequences complex sequences Z ⊂ C with an upper bound
ln |𝑓(𝑖𝑦)| 6 𝑀(𝑖𝑦) for all 𝑦 ∈ R via special subharmonic majorizing function 𝑀 instead of
ln |𝑔|, namely, for an arbitrary small 𝜀 > 0 for 𝑀(𝑧) = 𝜀|𝑧|, 𝑧 ∈ C originally in the paper by
I.F. Krasichkov-Ternovskii [5, Thms. 8.3, 8.5, Cor. 5.6] only for sequences Z in the vicinity of
𝑖R; for arbitrary Z ⊂ C in [6, Main thm.] with an addition in [7, Main thm., Thm. 1], and also
in much more general form with the majorant of form 𝑀(𝑧) = ln |𝑔(𝑧)|+𝜀|𝑧|, where 𝑔 ̸= 0 is an
entire function of exponential type in [8, Thm. 1] and in [9, Main thm.], or even more generally
and strictly, with majorants of 𝑀 = ln |𝑔| with 𝜀 = 0 but for the sequences Z ⊂ C separated
by a pair of vertical angles from the imaginary axis in [10, Main thm.]. The situation with a
subharmonic majorizing function 𝑀 of a finite type and order 1 harmonic in a pair of vertical
angles containing 𝑖R ∖ {0} was to some extent studied in the thesis of the second co-author
[11, Ch. II], but in scientific journals the latter results with arbitrary subharmonic majorant 𝑀
of a finite type were not published. The most part of the above results were presented in the
monograph [12, 3.2] with detailed historical comments.

1.2. Notations and definitions. In this subsection we provide preliminary information
needed for formulation our main theorem 1. We denote by sbh the set of all subharmonic
functions on C and sbh* := {𝑢 ∈ sbh : 𝑢 ̸≡ −∞}.

According the context, by the same symbol 0 we denote the number zero, the zero function,
zero measure, etc.; ∅ is the empty set. Everywhere the positivity is treated as > 0, and
negativity is 6 0.

The symbol Meas+ stands for the class of all positive Borel measures on C, mes is the
linear Lebesgue measure on R, 𝐶(𝑋) is the class of all continuous functions 𝑓 : 𝑋 → R on a
topological space 𝑋. For a mes-measurable subset 𝑋 ⊂ R, by 𝐿1

loc(𝑋) we denote the class of all
locally mes-integrable functions with values in extended real axis R±∞ := {−∞}∪R∪ {+∞},
where R±∞ is equipped with the natural ordering −∞ 6 𝑥 6 +∞, 𝑥 ∈ R±∞, and an ordering
topology or topology of finite compactification on R with two ends ±∞. In the same way we
define 𝐿1

loc(𝑌 ) for 𝑌 ⊂ 𝑖R.
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Let 𝑋 ⊂ R±∞. A function 𝑓 : 𝑋 → R±∞ is increasing of for all 𝑥1, 𝑥2 ∈ 𝑋, the inequality
𝑥1 6 𝑥2 implies 𝑓(𝑥1) 6 𝑓(𝑥2); 𝑓 is decreasing if −𝑓 is increasing.

An interval is a connected subset in R±∞. Stiltjes integrals over a bounded interval 𝐼 in R
with end-points 𝑎 := inf 𝐼 < sup 𝐼 =: 𝑏 over functions of a bounded variation 𝑚 : R → R on
this interval 𝐼 is treated as

𝑏∫︁
𝑎

. . . d𝑚 :=

∫︁
(𝑎,𝑏]

. . . d𝑚, 𝐼 = (𝑎, 𝑏], −∞ < 𝑎 < 𝑏 < +∞. (1.2)

if else is not said. Here 𝐷(𝑧, 𝑟) := {𝑧′ ∈ C : |𝑧′ − 𝑧| < 𝑟} is an open circle, 𝐷(𝑧, 𝑟) := {𝑧′ ∈
C : |𝑧′ − 𝑧| 6 𝑟} is a closed circle, 𝜕𝐷(𝑧, 𝑟) := 𝐷(𝑧, 𝑟) ∖ 𝐷(𝑧, 𝑟) is a circumference of radius
𝑟 ∈ R+ centered at 𝑧 ∈ C; 𝐷(𝑟) := 𝐷(0, 𝑟), 𝐷(𝑟) := 𝐷(0, 𝑟), 𝜕𝐷(𝑟) := 𝜕𝐷(0, 𝑟). We define
integrasl means over circumference 𝜕𝐷(𝑧, 𝑟) of a function 𝑣 : 𝜕𝐷(𝑧, 𝑟) → R±∞:

C𝑣(𝑧, 𝑟) :=: 𝐶(𝑧, 𝑟; 𝑣) :=
1

2𝜋

2𝜋∫︁
0

𝑣(𝑧 + 𝑟𝑒𝑖𝜃) d𝜃, C𝑣(𝑟) := C𝑣(0, 𝑟), (1.3C)

over circle𝐷(𝑧, 𝑟) for a function 𝑣 : 𝐷(𝑧, 𝑟) → R±∞:

B𝑣(𝑧, 𝑟) :=: 𝐵(𝑧, 𝑟; 𝑣) :=
2

𝑟2

𝑟∫︁
0

C𝑣(𝑧, 𝑡)𝑡 d𝑡, B𝑣(𝑟) := B𝑣(0, 𝑟), (1.3B)

and also a supremum of a function 𝑣 : 𝜕𝐷(𝑧, 𝑟) → R±∞ on circumference 𝜕𝐷(𝑧, 𝑟):

M𝑣(𝑧, 𝑟) :=: 𝑀(𝑧, 𝑟; 𝑣) := sup
𝑧′∈𝜕𝐷(𝑧,𝑟)

𝑣(𝑧′), M𝑣(𝑟) := M𝑣(0, 𝑟), (1.3M)

and as 𝑣 ∈ sbh, this coincides with sup𝐷(𝑧,𝑟) 𝑣. Of course, in (1.3), for (1.3C) and (1.3B) we

assume the existence of all integrals, which always holds for the functions 𝑣 ∈ sbh* [2, Def.
2.6.7, Thm.2.6.8], [1, 2.7] obeying

B𝑣(𝑧, 𝑟) 6 C𝑣(𝑧, 𝑟) 6 M𝑣(𝑧, 𝑟) for all 𝑧 ∈ C, 𝑟 ∈ R+. (1.4)

In all results in [3]–[12] mentioned above in Section 1.1, two objects played a key role. First,
these are special integrals over intervals on real or imaginary axis, often called logarithmic
integrals.

Definition 1. For a function 𝑣 ∈ 𝐿1
loc(R) we let

𝐽R(𝑟, 𝑅; 𝑣) :=
1

2𝜋

𝑅∫︁
𝑟

𝑣(𝑥) + 𝑣(−𝑥)

𝑥2
d𝑥, 0 < 𝑟 < 𝑅 < +∞, (1.5r)

and for a function 𝑣 ∈ 𝐿1
loc(𝑖R) we let

𝐽𝑖R(𝑟, 𝑅; 𝑣) :=
1

2𝜋

𝑅∫︁
𝑟

𝑣(−𝑖𝑦) + 𝑣(𝑖𝑦)

𝑦2
d𝑦, 0 < 𝑟 < 𝑅 < +∞. (1.5i)

The second object is logarithmic measures of the intervals for the sequences of points Z =
{z𝑘}𝑘=1,2,... ⊂ C. We identify each sequence Z with a counting measure 𝑛Z ∈ Meas+ defined as

𝑛Z(𝑆) :=
∑︁
z𝑘∈𝑆

1 for all 𝑆 ⊂ C, (1.6)

and we define these logarithmic measures for an arbitrary measure in Meas+.
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Definition 2. Given a measure 𝜇 ∈ Meas+,

𝑙rh𝜇 (𝑟, 𝑅) :=

∫︁
𝑟<|𝑧|6𝑅
Re 𝑧>0

Re
1

𝑧
d𝜇(𝑧), 0 < 𝑟 < 𝑅 < +∞, (1.7r)

𝑙lh𝜇 (𝑟, 𝑅) :=

∫︁
𝑟<|𝑧|6𝑅
Re 𝑧<0

Re
(︁
−1

𝑧

)︁
d𝜇(𝑧), 0 < 𝑟 < 𝑅 < +∞, (1.7l)

are a right and left logarithmic measures of intervals (𝑟, 𝑅] ⊂ R+ for the measure 𝜇 respectively.
They generate a logarithmic submeasure of intervals

𝑙𝜇(𝑟, 𝑅) := max
{︀
𝑙lh𝜇 (𝑟, 𝑅), 𝑙rh𝜇 (𝑟, 𝑅)

}︀
, 0 < 𝑟 < 𝑅 < +∞. (1.7m)

1.3. Main result.

Theorem 1. Assume that functions

𝑀 ∈ sbh*, type[𝑀 ]
(1.1)
< +∞, 𝜇 := 𝜇𝑀 :=

1

2𝜋
∆𝑀 ∈ Meas+, (1.8M)

𝑢 ∈ sbh*, type[𝑢] < +∞, 𝜈 := 𝜈𝑢 :=
1

2𝜋
∆𝑢 ∈ Meas+, (1.8u)

𝑞0 : R→ R+ ∪ {+∞}, 𝑞0 ∈ 𝐿1
loc(R), (1.80)

𝑞 : R→ R+, 𝑞 ∈ 𝐶(R), lim sup
|𝑦|→+∞

𝑞(𝑦)

|𝑦|
< 1, (1.8q)

and some mes-measurable subset 𝐸 ⊂ R+ with

𝐸𝑟 := 𝐸 ∩ [0, 𝑟], 𝑞𝐸(𝑟) := mes(𝐸𝑟) ln
𝑒𝑟

mes(𝐸𝑟)
=: 𝑞𝐸(−𝑟), (1.9E)

the inequalities hold:

𝑢(𝑖𝑦) + 𝑢(−𝑖𝑦) 6 C𝑀

(︀
𝑖𝑦, 𝑞(𝑦)

)︀
+ C𝑀

(︀
−𝑖𝑦, 𝑞(−𝑦)

)︀
(1.9C)

+ 𝑞0(𝑦) + 𝑞0(−𝑦) for each 𝑦 ∈ R+ ∖ 𝐸.

Then for all numbers 𝑟0 > 0 and 𝑁 ∈ R+ there exists a number 𝐶 ∈ R+, for which

max
{︀
𝑙𝜈(𝑟, 𝑅), 𝐽𝑖R(𝑟, 𝑅;𝑢)

}︀
6min

{︀
𝑙rh𝜇 (𝑟, 𝑅), 𝑙lh𝜇 (𝑟, 𝑅), 𝐽𝑖R(𝑟, 𝑅;𝑀)

}︀
+ 𝐶𝐽R(𝑟, 𝑅; 𝑞0 + 𝑞𝐸) + 𝐶𝐼𝑁(𝑟, 𝑅; 𝑞) + 𝐶

(1.10)

for all 𝑟0 6 𝑟 < 𝑅 < +∞, where

𝐼𝑁(𝑟, 𝑅; 𝑞) :=

𝑅∫︁
𝑟

𝑡𝑁 sup
𝑠>𝑡

𝑞(𝑠) + 𝑞(−𝑠)

𝑠2+𝑁
d𝑡. (1.11)

Remark 1. For the functions in (1.8M) and (1.8u), their Riesz measures 𝜇 and 𝜈 are of a
finite type or of a finite upper density with order 1, which means that

type[𝜇] := lim sup
𝑟→+∞

𝜇rad(𝑟)

𝑟
< +∞, 𝜇rad(𝑟) := 𝜇(𝐷(0, 𝑟)), type[𝜈] < +∞. (1.12)

Remark 2. By inequalities (1.4), the means over circumferences C𝑀 in (1.3C) in the right
hand side of inequality (1.9C) can be replaced by the means over the circumferences B𝑀 in
(1.3B), but they can not be replaced by the suprema over the circumferences or circles M𝑀 in
(1.3M).
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2. Proof of Theorem 1

In the proof of Theorem 1 we can consider arbitrary but fixed value 𝑟0 > 0 since according
Definition 2 of logarithmic measures of intervals (1.7r), (1.7l), (1.7m) and Definition 1 of inte-
grals (1.5i), (1.5r), by changing 𝑟0 > 0 in conclusion (1.10) of Theorem 1, one just increases
the constant 𝐶 ∈ R+. This is why, in the proof of Theorem 1, we shall increase the value 𝑟0 if
needed not saying this explicitly.

If in condition (1.8q) we consider the function 𝑞 + 1 instead of 𝑞, its properties in (1.8q)
remain the same as well as inequality (1.9C) and this makes no influence on conclusion (1.10).
This is why we can suppose that 𝑞 > 1 on R. We consider a regular domain for the Dirichlet
problem [1, Thm. 2.11]:

𝐷 := 𝐷𝑞 :=
{︀
𝑧 ∈ C : − 𝑞(Im 𝑧) < Re 𝑧 < 𝑞(Im 𝑧)

}︀
. (2.1)

For 𝑏 ∈ R+ we make use of the notation:

str𝑏 :=
{︀
𝑧 ∈ C : |Im 𝑧| < 𝑏

}︀
, str𝑏 :=

{︀
𝑧 ∈ C : |Im 𝑧| 6 𝑏

}︀
(2.2)

respectively for open and closed strips of width 2𝑏 with the reference line R. By the limiting
condition in (1.8q), for sufficiently large 𝑏 > 0, a part 𝐷 ∖ str𝑏 of the domain 𝐷 consists of two
simply-connected domains located inside some pair of open vertical angles of opening at most
𝜋:

∠(𝛼, 𝜋 − 𝛼) := {𝑧 ∈ C : 𝛼 < arg 𝑧 < 𝜋 − 𝛼}, ∠(−𝜋 + 𝛼,−𝛼)with 𝛼 ∈ (0, 𝜋/2). (2.3)

We can make a classical balayage of a function 𝑀 ∈ sbh* from the domain 𝐷 in two steps.
First we make balayage from this pair of simply-connected domains and a balayaged function
becomes a subharmonic function of a finite type since it does not exceed a classical balayage
of kind 0 of the function 𝑀 from the pair of vertical angles (2.3) [13, 6.2, Thms. 7, 8]. At the
second step we make a classical balayage from 𝐷 for a logarithmic potential of kind 0 of the
arisen measure with a compact support in the closure 𝐷 ∩ str𝑏 [14, Ch. IV, Sect. 1], [15, Thm.
2.5.3.1], which can increase the growth of the logarithmic potential at most by a quantity of
order 𝑂

(︀
ln |𝑧|

)︀
, 𝑧 → ∞. Thus, such construction gives a subharmonic function

𝑀𝐷 =

{︃
𝑀 on the complement C ∖𝐷,

harmonic continuation of 𝑀 inside 𝐷 on 𝐷
(2.4)

of a finite type, that is, with type[𝑀𝐷] < +∞. At that, by the maximum principle,

C𝑀

(︀
𝑖𝑦, 𝑞(𝑦)

)︀
6 𝑀𝐷(𝑖𝑦) for all 𝑦 ∈ R, 𝑀 6 𝑀𝐷 on C,

and it follows from inequalities (1.9C) that

𝑢(𝑖𝑦) + 𝑢(−𝑖𝑦) 6 𝑀𝐷(𝑖𝑦) + 𝑀𝐷(−𝑖𝑦) + 𝑞0(𝑦) + 𝑞0(−𝑦)for all 𝑦 ∈ R ∖ 𝐸. (2.5)

For a measure 𝜈 ∈ Meas+, the restriction of the measure 𝜈 on 𝑆 ⊂ C is denoted as 𝜈
⃒⃒
𝑆
.

The Riesz measure 1
2𝜋

∆𝑀𝐷 of the function 𝑀𝐷 is a sum of its restrictions

𝜇∞ :=
1

2𝜋
∆𝑀𝐷

⃒⃒
C∖clos𝐷= 𝜇

⃒⃒
C∖clos𝐷6 𝜇, 𝜇0 :=

1

2𝜋
∆𝑀𝐷

⃒⃒
𝜕𝐷

, (2.6)

where clos𝐷 and 𝜕𝐷 are respectively closure and boundary of 𝐷. Integrating inequality (2.5)
with the factor 1

2𝜋
in the notation

𝐸𝑅
𝑟 := 𝐸𝑅 ∖ 𝐸𝑟 = 𝐸 ∩ (𝑟, 𝑅] (2.7)
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for all 𝑟0 6 𝑟 < 𝑅 < +∞ gives the inequalities

𝐽𝑖R(𝑟, 𝑅;𝑢) 6𝐽𝑖R(𝑟, 𝑅;𝑀𝐷)

+
1

2𝜋

∫︁
𝐸𝑅

𝑟

𝑢(𝑖𝑦) + 𝑢(−𝑖𝑦) −𝑀𝐷(𝑖𝑦) −𝑀𝐷(−𝑖𝑦)

𝑦2
d𝑦 + 𝐽R(𝑟, 𝑅; 𝑞0).

(2.8)

Lemma 1. Let 𝑟0 > 0. For each function 𝑢 in (1.8u) there exists a number 𝑐𝑢 ∈ R+ such
that for each mes-measurable subset 𝐸 ⊂ R+, in terms of notations (1.9E) and (2.7), the
inequality holds:∫︁

𝐸𝑅
𝑟

|𝑢|(𝑥)

𝑥2
d𝑥 6 𝑐𝑢

𝑅∫︁
𝑟

𝑞𝐸(𝑡)

𝑡2
d𝑡 + 𝑐𝑢 for all 𝑟0 6 𝑟 < 𝑅 < +∞, (2.9)

where the function 𝑞𝐸 is increasing and 𝑞𝐸(𝑟) 6 𝑟 as 𝑟 ∈ R+
* .

Proof. The function

(𝑥, 𝑦) ↦−→ 𝑥 ln
𝑒𝑦

𝑥
, (𝑥, 𝑦) ∈ (0, 𝑦] ×R+,

redefined by zero at 𝑥 = 0, increases in the variable 𝑦 ∈ R+
* , as well as in 𝑥 ∈ (0, 𝑦], attaining

its maximal value as 𝑥 = 𝑦 and this gives the properties of the function 𝑞𝐸. In what follows,
the symbol 1𝐸 stands for the characteristic function of the subset 𝐸.

According [16, Thm. 8], there exist constants 𝑐′, 𝑐 ∈ R+ obeying

𝑥∫︁
𝑟0

1𝐸(𝑡)|𝑢|(𝑡) d𝑡 6 𝑐′𝑥mes(𝐸𝑥) ln
4𝑥

mes(𝐸𝑥)

(1.9E)

6 𝑐𝑞𝐸(𝑥)𝑥 (2.10)

for all 𝑥 > 𝑟0. For the left hand side in (2.9) we have∫︁
𝐸𝑅

𝑟

|𝑢|(𝑥)

𝑥2
d𝑥 =

𝑅∫︁
𝑟

1𝐸(𝑥)
|𝑢|(𝑥)

𝑥2
d𝑥 =

𝑅∫︁
𝑟

1

𝑥2
d

𝑥∫︁
𝑟

1𝐸(𝑡)|𝑢|(𝑡) d𝑡 d𝑥

=
1

𝑅2

𝑅∫︁
𝑟

1𝐸(𝑡)|𝑢|(𝑡) d𝑡 +

𝑅∫︁
𝑟

𝑥∫︁
𝑟

1𝐸(𝑡)|𝑢|(𝑡) d𝑡 d
(︁
− 1

𝑥2

)︁
(2.10)

6 𝑐
𝑞𝐸(𝑅)

𝑅
+ 2𝑐

𝑅∫︁
𝑟

𝑞𝐸(𝑥)

𝑥2
d𝑥 6 𝑐 + 2𝑐

𝑅∫︁
𝑟

𝑞𝐸(𝑥)

𝑥2
d𝑥,

since the inequality 𝑞𝐸(𝑅) 6 𝑅 holds. The proof is complete.

Applying four times Lemma 1 to the integral over the set 𝐸𝑅
𝑟 in the right hand side (2.8),

for some number 𝑐1 ∈ R+ and all 𝑟0 6 𝑟 < 𝑅 < +∞ we obtain

𝐽𝑖R(𝑟, 𝑅;𝑢) 6 𝐽𝑖R(𝑟, 𝑅;𝑀𝐷) + 𝑐1𝐽R(𝑟, 𝑅; 𝑞𝐸 + 𝑞0) + 𝑐1. (2.11)

Lemma 2 ([17, Prop. 4.1, (4.19)]). Let 𝑟0 > 0. For each function 𝑢 in (1.8u) there exists a
number 𝑐𝑢 ∈ R+ such that

max
{︁⃒⃒

𝐽𝑖R(𝑟, 𝑅;𝑢) − 𝑙rh𝜈 (𝑟, 𝑅)
⃒⃒
,
⃒⃒
𝐽𝑖R(𝑟, 𝑅;𝑢) − 𝑙lh𝜈 (𝑟, 𝑅)

⃒⃒}︁
6 𝑐𝑢 (2.12)

for all 𝑟0 6 𝑟 < 𝑅 < +∞.
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We apply twice Lemma 2 to the functions 𝑢 and 𝑀𝐷 in (2.11) and for some number 𝑐2 ∈ R+

and all 𝑟0 6 𝑟 < 𝑅 < +∞ we have the inequalities

𝑙rh𝜈 (𝑟, 𝑅)
(2.6)

6 𝑙rh𝜇∞+𝜇0
(𝑟, 𝑅) + 𝑐1𝐽R(𝑟, 𝑅; 𝑞𝐸 + 𝑞) + 𝑐2

(2.6)

6 𝑙rh𝜇 (𝑟, 𝑅) + 𝑙rh𝜇0
(𝑟, 𝑅) + 𝑐1𝐽R(𝑟, 𝑅; 𝑞𝐸 + 𝑞0) + 𝑐2.

(2.13)

Assume that the angles are chosen and we fix a number 𝑏 > 0 as in (2.1)–(2.3). The restriction
of the measure 𝜇0 on a closed strip str𝑏 is a measure with a compact support and for this measure
the logarithmic measures and submeasures of the intervals in (1.7) are uniformly bounded for
all 𝑟0 6 𝑟 < 𝑅 < +∞. Therefore, without loss of generality, we can assume that the support of
the measure 𝜇0 is contained in the pair of angles (2.3) and is disjoint with the open strip str𝑏.
We denote the 𝜇0-measure of the closed strip str𝑦 of width 2𝑦 ∈ R+ by

𝜇𝑖
0(𝑦) := 𝜇0(str𝑦), where 𝜇𝑖

0(𝑦) 6 𝐶𝑦 for all 𝑦 ∈ R+ (2.14)

for some constant 𝐶 independent of 𝑦 and also 𝜇𝑖
0(𝑦) = 0 as 𝑦 ∈ [0, 𝑏).

Lemma 3. Let 𝑟0 > 0 and 𝜇0 ∈ Meas+ be a measure with a support supp𝜇0 in the closure

𝐷
(2.1)
:= 𝐷𝑞, where the function 𝑞 is from (1.8q) and the function 𝜇𝑖

0 : R+ → R+ is from (2.14).
Then for some number 𝐶0 ∈ R+ the inequalities hold:

𝑙rh𝜇0
(𝑟, 𝑅) 6

𝑅∫︁
𝑟

𝑄(𝑦)

𝑦2
d𝜇𝑖

0(𝑦) + 𝐶0 for all 𝑟0 6 𝑟 < 𝑅 < +∞, (2.15)

where

𝑄(𝑦) := 𝑞(𝑦) + 𝑞(−𝑦), 𝑦 ∈ R+. (2.16)

Proof. For all 𝑏 6 𝑟 < 𝑅 < +∞ we have

𝑙rh𝜇0
(𝑟, 𝑅)

(1.7r)
=

∫︁
𝑟<|𝑧|6𝑅
Re 𝑧>0

Re 𝑧

|𝑧|2
d𝜇0(𝑧)

(2.1)

6
∫︁

𝑟<|𝑧|6𝑅
Re 𝑧>0

𝑞(Im 𝑧)

|Im 𝑧|2
d𝜇0(𝑧)

(2.14)

6

𝑅∫︁
𝑟 sin𝛼

𝑞(𝑦) + 𝑞(−𝑦)

𝑦2
d𝜇𝑖

0(𝑦)
(3.1)

6

⎛⎝ 𝑟∫︁
𝑟 sin𝛼

+

𝑅∫︁
𝑟

⎞⎠ 𝑄(𝑦)

𝑦2
d𝜇𝑖

0(𝑦)

(2.14)

6 𝐶
𝑄(𝑟)

𝑟 sin2 𝛼
+

𝑅∫︁
𝑟

𝑄(𝑦)

𝑦2
d𝜇𝑖

0(𝑦)
(1.8q)

6 𝐶0 +

𝑅∫︁
𝑟

𝑄(𝑦)

𝑦2
d𝜇𝑖

0(𝑦),

(2.17)

where 𝐶0 ∈ R+ is independent of 𝑏 6 𝑟 < 𝑅 < +∞.

By Lemma 3 and inequality (2.13) with a constant 𝐶1 ∈ R+ we obtain

𝑙rh𝜈 (𝑟, 𝑅)
(2.6)

6 𝑙rh𝜇 (𝑟, 𝑅) +

𝑅∫︁
𝑟

𝑄(𝑦)

𝑦2
d𝑚(𝑦) + 𝑐1𝐽R(𝑟, 𝑅; 𝑞𝐸 + 𝑞0) + 𝐶1, (2.18)

where we let 𝑚(𝑡) := 𝜇𝑖
0(𝑡). By construction of 𝑚, there exists a constant 𝐶 ∈ R+, for which

the inequalities hold:

𝑚(𝑡)
(2.14)

6 𝐶𝑡, for all 𝑡 ∈ R+, 𝑚(𝑡) = 0 as 𝑡 ∈ [0, 𝑏) ̸= ∅. (2.19)
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Lemma 4. Let an increasing function 𝑚 : R+ → R+ satisfies conditions (2.19), and a con-
tinuous function

𝑄 : R+ → R+ is such that 𝑄(𝑡) = 𝑂(𝑡) as 𝑡 → +∞. (2.20)

Then for each number 𝑁 ∈ R+ there exists a number 𝐶2 ∈ R+ obeying

𝑅∫︁
𝑟

𝑄(𝑡)

𝑡2
d𝑚(𝑡) 6 𝐶2

𝑅∫︁
𝑟

𝑡𝑁 sup
𝑠>𝑡

𝑄(𝑠)

𝑠2+𝑁
d𝑡 + 𝐶2 (2.21)

for all 𝑏 6 𝑟 < 𝑅 < +∞,

Proof. For the integral in the left hand side in (2.21) we have

𝐼 :=

𝑅∫︁
𝑟

𝑄(𝑡)

𝑡2
d𝑚(𝑡) =

𝑅∫︁
𝑟

𝑄(𝑡)

𝑡2𝑡𝑁
d

𝑡∫︁
𝑟

𝑠𝑁𝑚(𝑠) 6

𝑅∫︁
𝑟

sup
𝑠>𝑡

𝑄(𝑠)

𝑠2+𝑁
d

𝑡∫︁
𝑟

𝑠𝑁𝑚(𝑠).

Thanks to (2.20), for the integrand in the latter integral being decreasing function there exists
a number 𝐶3, for which

𝑇𝑁(𝑡) := sup
𝑠>𝑡

𝑄(𝑠)

𝑠2+𝑁
6 𝐶3 sup

𝑠>𝑡

𝑠

𝑠2+𝑁
= 𝐶3𝑡

−𝑁−1 for all 𝑡 ∈ [𝑏,+∞). (2.22)

Integrating this integral by parts, we get:

𝐼 6 𝑇𝑁(𝑅)

𝑅∫︁
𝑟

𝑠𝑁 d𝑚(𝑠) +

𝑅∫︁
𝑟

𝑡∫︁
𝑟

𝑠𝑁 d𝑚(𝑠) d(−𝑇𝑁(𝑡)) . (2.23)

In view of (2.19), we can estimate the integral:

𝑡∫︁
𝑟

𝑠𝑁 d𝑚(𝑠) 6 𝑚(𝑡)𝑡𝑁 6 𝐶𝑡𝑁+1,

and in view of (2.22), for the right hand side in (2.23) this gives:

𝐼 6 𝐶𝐶3 + 𝐶

𝑅∫︁
𝑟

𝑡𝑁+1 d(−𝑇𝑁(𝑡)) 6 𝐶𝐶3 + 𝐶𝐶3 + 𝐶(𝑁 + 1)

𝑅∫︁
𝑟

𝑇𝑁(𝑡)𝑡𝑁 d𝑡.

For 𝐶2 := max{2𝐶𝐶3, 𝐶(𝑁 + 1)} this implies exactly (2.21). The proof is complete.

By (2.18) and inequality (2.21) in Lemma 4, for some constant 𝐶4 ∈ R+ we get

𝑙rh𝜈 (𝑟, 𝑅)
(2.6)

6 𝑙rh𝜇 (𝑟, 𝑅) + 𝐶4

𝑅∫︁
𝑟

𝑡𝑁 sup
𝑠>𝑡

𝑄(𝑠)

𝑠2+𝑁
d𝑡 + 𝑐1𝐽R(𝑟, 𝑅; 𝑞𝐸 + 𝑞0) + 𝐶1 (2.24)

for all +∞ > 𝑅 > 𝑟 > max{𝑟0, 𝑏}, where the quantity max{𝑟0, 𝑏} can be replaced by 𝑟0
increasing if needed the constant 𝐶1, and 𝑄 is a function from (2.16).

Lemma 5. Let 𝑟0 > 0. For each function 𝑢 in (1.8u) there exists 𝐶𝑢 ∈ R+ such that for all
𝑟0 6 𝑟 < 𝑅 < +∞ we have the inequality

max
{︀
𝑙𝜈(𝑟, 𝑅), 𝐽𝑖R(𝑟, 𝑅;𝑢)

}︀
6 min

{︀
𝑙rh𝜈 (𝑟, 𝑅), 𝑙lh𝜈 (𝑟, 𝑅), 𝐽𝑖R(𝑟, 𝑅;𝑢)

}︀
+ 𝐶𝑢.

The statement of this lemma follows immediately lemma 2.
Applying Lemma 5 to the functions 𝑢 and 𝑀 with the Riesz measures 𝜈 and 𝜇, by (2.24) we

obtain (1.10) and this completes the proof of Theorem 1.
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3. Variations of conclusion (1.10) of Theorem 1

3.1. Some simplifications. Rather cumbersome integrals (1.11) involved in the right hand
side of the final estimate (1.10) in Theorem 1 can be included into our standard logarithmic
integral 𝐽R of form (1.5r) already involved in the right hand side in the estimate (1.10). This
can be done under inessential additional restrictions for the function

𝑄𝑁(𝑠) :=
𝑄(𝑠)

𝑠2+𝑁
, 𝑄(𝑠)

(2.16)
:= 𝑞(𝑠) + 𝑞(−𝑠), 𝑠 ∈ R+. (3.1)

Proposition 1. Assume that there exists an interval (𝐴,+∞) ̸= ∅, on which at least one
of the following two conditions hold:

(i) the function 𝑄𝑁 in (3.1) is decreasing in (𝐴,+∞);
(ii) the function 𝑄 in (2.16) is continuously differentiable on (𝐴,+∞) and possesses the prop-

erty

lim sup
𝑦→+∞

𝑦𝑄′(𝑦)

𝑄(𝑦)
< +∞. (3.2)

Then there exist the numbers 𝑟0 > 0, 𝑁 ∈ R+ and 𝐶 ∈ R+, for which

𝐼𝑁(𝑟, 𝑅; 𝑞)
(1.11)
:=

𝑅∫︁
𝑟

𝑡𝑁 sup
𝑠>𝑡

𝑄𝑁(𝑠) d𝑡 6 𝐶

𝑅∫︁
𝑟

𝑄(𝑡)

𝑡2
d𝑡

(1.5r)
= 𝐶𝐽R(𝑟, 𝑅; 𝑞). (3.3)

In particular, the latter integral in (1.10) can be replaced by 𝐽R(𝑟, 𝑅; 𝑞), and the final estimate
(1.10) in Theorem 1 can be written as

max
{︀
𝑙𝜈(𝑟, 𝑅), 𝐽𝑖R(𝑟, 𝑅;𝑢)

}︀
6 min

{︀
𝑙rh𝜇 (𝑟, 𝑅), 𝑙lh𝜇 (𝑟, 𝑅), 𝐽𝑖R(𝑟, 𝑅;𝑀)

}︀
+𝐶𝐽R(𝑟, 𝑅; 𝑞0 + 𝑞𝐸 + 𝑞) + 𝐶 for all 𝑟0 6 𝑟 < 𝑅 < +∞,

(3.4)

Proof. If the function (3.1) is decreasing on (𝐴,+∞), then it is obvious that

𝑡𝑁 sup
𝑠>𝑡

𝑄𝑁(𝑠)
(3.1)
= 𝑡𝑁

𝑄(𝑡)

𝑡2+𝑁
=

𝑄(𝑡)

𝑡2

for all 𝑡 > 𝐴 and for 𝑟0 > 𝐴 we get exactly (3.3).
For a continuously differentiable function 𝑄 satisfying condition (3.2) there exists 𝐶4 ∈ R+

such that 𝑠𝑄′(𝑠) 6 𝐶5𝑄(𝑠) for all 𝑠 > 𝑏. The derivative of the function in (3.1) reads as

𝑄′
𝑁(𝑠) =

𝑄′(𝑠)𝑠− (2 + 𝑁)𝑄(𝑠)

𝑠3+𝑁
6

𝐶5𝑄(𝑠) − (2 + 𝑁)𝑄(𝑠)

𝑠3+𝑁

and it is negative for 𝑁 > 𝐶5 − 2. This means that the function 𝑄𝑁 in (3.1) is decreasing.

Proposition 1 implies immediately a following obvious corollary.

Corollary 1. If under conditions (i) and (ii) of Proposition 1 for some number 𝑟0 > 0 the
relation holds:

sup
𝑟06𝑟<𝑅<+∞

𝐽R(𝑟, 𝑅; 𝑞0 + 𝑞𝐸 + 𝑞) < +∞,

then the final estimate (1.10) in Theorem 1 can be written as

max
{︀
𝑙𝜈(𝑟, 𝑅), 𝐽𝑖R(𝑟, 𝑅;𝑢)

}︀ (3.4)

6 min
{︀
𝑙rh𝜇 (𝑟, 𝑅), 𝑙lh𝜇 (𝑟, 𝑅), 𝐽𝑖R(𝑟, 𝑅;𝑀)

}︀
+ 𝐶

for all 𝑟0 6 𝑟 < 𝑅 < +∞.

By a known asymptotics of the functions 𝑞0, 𝑞𝐸, 𝑞 at ±∞, we can also simplify the final
estimate (1.10) of Theorem 1. One of the versions is provided in the following proposition.
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Proposition 2. Let a function 𝑃 : R+ → R+ be bounded and integrable in the Riemann
sense on each bounded interval 𝐼 ⊂ R+ satisfy the condition

lim sup
𝑡→+∞

𝑃 (𝑡)

𝑡
= 0. (3.5)

Then for each number 𝑟0 > 0 there exists a decreasing function 𝑑 : R+ → R+ such that

lim
𝑅→+∞

𝑑(𝑅) = 0,

𝑅∫︁
𝑟

𝑃 (𝑡)

𝑡2
d𝑡 6 𝑑(𝑅) ln

𝑅

𝑟
for all 𝑟0 6 𝑟 < 𝑅 < +∞. (3.6)

In particular, if the functions 𝑞0, 𝑞, 𝑞𝐸 in (1.80), (1.8q), (1.9E) satisfy the conditions

lim sup
|𝑦|→+∞

𝑞0(𝑦) + 𝑞(𝑦) + 𝑞𝐸(𝑦)

|𝑦|
= 0, sup

[−𝑅,𝑅]

𝑞0 < +∞ for all 𝑅 ∈ R+,

and the function 𝑞0 is locally integrable in the Riemann sense, then final estimate (1.10) in
Theorem 1 can be written as

max
{︀
𝑙𝜈(𝑟, 𝑅), 𝐽𝑖R(𝑟, 𝑅;𝑢)

}︀ (3.4)

6 min
{︀
𝑙rh𝜇 (𝑟, 𝑅), 𝑙lh𝜇 (𝑟, 𝑅), 𝐽𝑖R(𝑟, 𝑅;𝑀)

}︀
+ 𝑑(𝑅) ln

𝑅

𝑟
+ 𝐶 for all 𝑟0 6 𝑟 < 𝑅 < +∞,

where 𝑑 is a decreasing function such that 𝑑(𝑅) = 𝑜(1) as 𝑅 → +∞.

Proof. We first pass to the function

𝑝(𝑡) := sup
𝑠>𝑡

𝑃 (𝑠)

𝑠
>

𝑃 (𝑡)

𝑡
, 𝑡 ∈ R+;

𝑅∫︁
𝑟

𝑝(𝑡)

𝑡
d𝑡 >

𝑅∫︁
𝑟

𝑃 (𝑡)

𝑡2
d𝑡. (3.7)

decaying in view of (3.5). For each fixed number 𝑅 > 0 we let

𝑑(𝑅) := sup
𝑟06𝑟<𝑅

1

ln(𝑅/𝑟)

𝑅∫︁
𝑟

𝑝(𝑡)

𝑡
d𝑡 >

1

ln(𝑅/𝑟)

𝑅∫︁
𝑟

𝑝(𝑡)

𝑡
d𝑡

(3.7)

>
1

ln(𝑅/𝑟)

𝑅∫︁
𝑟

𝑃 (𝑡)

𝑡2
d𝑡 for all 𝑟0 6 𝑟 < 𝑅 < +∞,

(3.8)

which gives the latter inequality in (3.6).
The supremum in (3.8) is taken for the function with partial derivatives

𝜕

𝜕𝑟

1

ln(𝑅/𝑟)

𝑅∫︁
𝑟

𝑝(𝑡)

𝑡
d𝑡 =

1

𝑟 ln2(𝑅/𝑟)

𝑅∫︁
𝑟

𝑝(𝑡) − 𝑝(𝑟)

𝑡
d𝑡 6 0 as 𝑟0 6 𝑟 < 𝑅,

𝜕

𝜕𝑅

1

ln(𝑅/𝑟)

𝑅∫︁
𝑟

𝑝(𝑡)

𝑡
d𝑡 =

1

𝑅 ln2(𝑅/𝑟)

𝑅∫︁
𝑟

𝑝(𝑅) − 𝑝(𝑡)

𝑡
d𝑡 6 0 as 𝑟0 6 𝑟 < 𝑅,

and hence, this functions decreases in 𝑟 < 𝑅. Therefore,

𝑑(𝑅) ≡ 1

ln(𝑅/𝑟0)

𝑅∫︁
𝑟0

𝑝(𝑡)

𝑡
d𝑡 (3.9)

is a decreasing function on [𝑟0,+∞).



GROWTH OF SUBHARMONIC FUNCTIONS ALONG LINE. . . 45

We choose a number 𝑎 > 0 and let 𝑝(𝑡) 6 𝑎 as 𝑡 > 𝑅𝑎. Then by (3.9), for 𝑅 > 𝑅𝑎 > 𝑟0 we
have

𝑑(𝑅) =
1

ln(𝑅/𝑟0)

⎛⎝ 𝑅𝑎∫︁
𝑟0

+

𝑅∫︁
𝑅𝑎

⎞⎠ 𝑝(𝑡)

𝑡
d𝑡 6

(︀
sup[𝑟0,𝑅𝑎] 𝑝

)︀
ln(𝑅𝑎/𝑟0)

ln(𝑅/𝑟0)
+ 𝑎

ln(𝑅/𝑅𝑎)

ln(𝑅/𝑟0)
.

Hence, lim sup𝑅→+∞ 𝑑(𝑅) 6 𝑎, and by the arbitrary choice of the number 𝑎 > 0 this leads us
to the relation 𝑑(𝑅) = 𝑜(1) as 𝑅 → +∞.

3.2. Logarithmic measures and submeasures of intervals. The notions of logarithmic
measures of intervals (1.7r), (1.7l) and logarithmic submeasures of intervals (1.7m) in Defini-
tion 2 can be introduced in another form.

Definition 3. Let 𝜇 ∈ Meas+. We introduce a counting function of the measure 𝜇 with a
2𝜋-periodic Borel positive weight function 𝑘 : R→ R+:

𝜇(𝑟; 𝑘) :=

∫︁
𝐷(𝑟)

𝑘(arg 𝑧) d𝜇(𝑧), (3.10)

As 𝑘 ≡ 1, we obviously have 𝜇(𝑟; 1)
(1.12)
≡ 𝜇rad(𝑟) for 𝑟 ∈ R+.

In the particular cases 𝑘 = cos±, that is,

𝑘(𝜃) := cos+ 𝜃 := max{0, cos 𝜃}, 𝑘(𝜃) := cos− 𝜃 := max{0,− cos 𝜃}, 𝜃 ∈ R, (3.11)

by Definitions (1.7), in terms of notations (3.10)–(3.11), we integrate by parts for 0 < 𝑟 < 𝑅 <
+∞:

𝑙rh𝜇 (𝑟, 𝑅)
(1.7r)
=

𝑅∫︁
𝑟

d𝜇(𝑡; cos+)

𝑡
(3.12r)

=
𝜇(𝑅; cos+)

𝑅
− 𝜇(𝑟; cos+)

𝑟
+

𝑅∫︁
𝑟

𝜇(𝑡; cos+)

𝑡2
d𝑡,

𝑙lh𝜇 (𝑟, 𝑅)
(1.7l)
=

𝑅∫︁
𝑟

1

𝑡
d𝜇(𝑡; cos−) (3.12l)

=
𝜇(𝑅; cos−)

𝑅
− 𝜇(𝑟; cos−)

𝑟
+

𝑅∫︁
𝑟

𝜇(𝑡; cos−)

𝑡2
d𝑡.

We let:

𝑙̆rh𝜇 (𝑟, 𝑅)
(3.12r)
:=

𝑅∫︁
𝑟

𝜇(𝑡; cos+)

𝑡2
d𝑡, 0 < 𝑟 < 𝑅 < +∞, (3.13r)

𝑙̆lh𝜇 (𝑟, 𝑅)
(3.12l)
:=

𝑅∫︁
𝑟

𝜇(𝑡; cos−)

𝑡2
d𝑡, 0 < 𝑟 < 𝑅 < +∞, (3.13l)

𝑙̆𝜇(𝑟, 𝑅)
(1.7m)
:= max{𝑙̆lh𝜇 (𝑟, 𝑅), 𝑙̆rh𝜇 (𝑟, 𝑅)}, 0 < 𝑟 < 𝑅 < +∞. (3.13m)
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Proposition 3. Let 𝜇 ∈ Meas+ be a measure of an upper finite density or of a finite type

type[𝜇]
(1.12)
< +∞ and 𝑟0 > 0. Then⎧⎪⎨⎪⎩

⃒⃒
𝑙̆rh𝜇 (𝑟, 𝑅) − 𝑙rh𝜇 (𝑟, 𝑅)

⃒⃒
= 𝑂(1)⃒⃒

𝑙̆lh𝜇 (𝑟, 𝑅) − 𝑙lh𝜇 (𝑟, 𝑅)
⃒⃒

= 𝑂(1)⃒⃒
𝑙̆𝜇(𝑟, 𝑅) − 𝑙𝜇(𝑟, 𝑅)

⃒⃒
= 𝑂(1)

for all 𝑟0 6 𝑟 < 𝑅 < +∞. (3.14)

Moreover, for all fixed numbers 𝑎 ∈ (0, 1], 𝑏 ∈ [1,+∞) we have⎧⎪⎨⎪⎩
⃒⃒
𝑙rh𝜇 (𝑟, 𝑅) − 𝑙rh𝜇 (𝑎𝑟, 𝑏𝑅)

⃒⃒
= 𝑂(1)⃒⃒

𝑙lh𝜇 (𝑟, 𝑅) − 𝑙lh𝜇 (𝑎𝑟, 𝑏𝑅)
⃒⃒

= 𝑂(1)⃒⃒
𝑙𝜇(𝑟, 𝑅) − 𝑙𝜇(𝑎𝑟, 𝑏𝑅)

⃒⃒
= 𝑂(1)

for all 𝑟0 6 𝑟 < 𝑅 < +∞. (3.15)

Proof. Relations (3.14) follow (3.12) since for all 𝑟0 > 0 and measures 𝜇 of a finite upper density
the relations hold⃒⃒⃒⃒

𝜇(𝑅; cos±)

𝑅
− 𝜇(𝑟; cos±)

𝑟

⃒⃒⃒⃒
6

|𝜇|rad(𝑅)

𝑅
+

|𝜇|rad(𝑟)

𝑟
= 𝑂(1) as 𝑟0 6 𝑟 < 𝑅 < +∞.

Relations (3.15) are implied by (3.14) and the inequality⃒⃒
𝑙̆rh𝜇 (𝑎𝑟, 𝑏𝑅) − 𝑙̆rh𝜇 (𝑟, 𝑅)

⃒⃒
6 sup

𝑎𝑟<𝑡6𝑟

|𝜇|rad(𝑡)
𝑡

ln
1

𝑎
+ sup

𝑅<𝑡6𝑏𝑅

|𝜇|rad(𝑡)
𝑡

ln 𝑏,

where in the left hand side one can replace 𝑙̆rh by 𝑙̆lh.

Remark 3. According Proposition 3, relations (3.14) and Remark 1, various logarithmic
measures and submeasures of intervals (1.7r), (1.7l), (1.7m) in Definition 2 beginning with 𝑙
can be replaced by corresponding them in view of (3.14) functions of intervals (3.13r), (3.13l),

(3.13m) beginning with 𝑙̆ in conclusion (1.10) of Theorem 1; we employ the same terminology for
them. In what follows, we identify these two equivalent up to an additive constant logarithmic
measures and submeasures of the intervals for the measures of an upper finite density and we
shall denote them as in Definition 1.7 with no accent˘over 𝑙.

Definition 4 ([18], developing of [3, Def. 3.4, 3.5]). Let 0 < 𝑟0 ∈ R+, 𝑙 be a function of
intervals (𝑟, 𝑅] ⊂ 𝑟0 + R+ with values in R±∞, 𝑙(𝑟, 𝑅) := 𝑙

(︀
(𝑟, 𝑅]

)︀
. For 𝑙 we define four

logarithmic block-densities:

ln-dens(𝑙) := lim sup
𝑎→+∞

1

ln 𝑎
lim sup
𝑟→+∞

𝑙(𝑟, 𝑎𝑟); (3.16−)

ln-dens(𝑙) := lim inf
𝑎→+∞

1

ln 𝑎
lim sup
𝑟→+∞

𝑙(𝑟, 𝑎𝑟); (3.16−)

ln-densinf(𝑙) := inf
𝑎>1

1

ln 𝑎
lim sup
𝑟→+∞

𝑙(𝑟, 𝑎𝑟); (3.16i)

ln-densb(𝑙) := inf

{︂
𝑏 ∈ R+ : sup

𝑟06𝑟<𝑅<+∞

(︂
𝑙(𝑟, 𝑅) − 𝑏 ln

𝑅

𝑟

)︂
< +∞

}︂
. (3.16b)

A function of intervals 𝑙 > 0 is called logarithmic submeasure of intervals in the vicinity of +∞
if for some number 𝑟0 > 0 two conditions hold:

[l1] sup𝑟>𝑟0 𝑙(𝑟, 2𝑟) < +∞ (logarithmic growth);
[l2] 𝑙(𝑟1, 𝑟3) 6 𝑙(𝑟1, 𝑟2) + 𝑙(𝑟2, 𝑟3) for all 𝑟0 6 𝑟1 < 𝑟2 < 𝑟3 < +∞ (subadditivity).

If in the first inequality in [l2] for some 𝑟0 > 0 the sign 6 can be replaced by = for all
𝑟0 6 𝑟1 < 𝑟2 < 𝑟3 < +∞ (additivity), then the function of intervals 𝑙 is called logarithmic
measure of intervals in the vicinity of +∞.
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Definition 4 implies easily the following statements.

Proposition 4. If 𝑐 ∈ R+, and 𝑙1, 𝑙2 are logarithmic submeasures of intervals, then 𝑐𝑙1,
𝑙1 + 𝑙2 and max{𝑙1, 𝑙2} are logarithmic submeasures of intervals.

Proposition 5. For the functions 𝑞0 in (1.80) under the condition

lim sup
|𝑦|→+∞

𝑞0(𝑦)

|𝑦|
< +∞, (3.17)

and for the functions 𝑞 in (1.8q) and for 𝑞𝐸 in (1.9E), the integrals 𝐽R(𝑟, 𝑅; 𝑞0), 𝐽R(𝑟, 𝑅; 𝑞),
𝐽R(𝑟, 𝑅; 𝑞𝐸) are logarithmic measures of intervals (𝑟, 𝑅] ⊂ R+. If 𝜇 ∈ Meas+ is a measure of

a finite upper density, then 𝑙rh𝜇 and 𝑙lh𝜇 from (1.7r) and (1.7l), and also 𝑙̆rh𝜇 and 𝑙̆lh𝜇 from (3.13r)

and (3.13l) are logarithmic measures of intervals, and 𝑙𝜇 from (1.7m) and 𝑙̆𝜇 from (3.13m) are
logarithmic submeasures of intervals.

Proposition 6 ([18, Thm. 1]). For a logarithmic submeasure of intervals 𝑙 > 0 all four
logarithmic block-densities in (3.16) are finite and coincide, and the upper limit lim sup

𝑎→+∞
in

(3.16−) and the lower limit lim inf
𝑎→+∞

in (3.16−) can be replaced by the usual limit lim
𝑎→+∞

. In what

follows for the logarithmic submeasure of intervals 𝑙 > 0 all four logarithmic block-densities in
(3.16) are universally denoted by ln-dens(𝑙).

In terms of logarithmic block-density ln-dens the following statement holds.

Theorem 2. Assume that conditions (1.8) and (1.9) of Theorem 1 and condition (3.17)
hold. Moreover, let for the function 𝑄(𝑦) := 𝑞(𝑦) + 𝑞(−𝑦) from (2.16) or from (3.1), one of the
conditions (i) or (ii) with property (3.2) in Proposition 1 is satisfied and also

ln-dens(𝐽R
(︀
·, ·, 𝑞0 + 𝑞 + 𝑞𝐸)

)︀
= 0. (3.18)

Then
ln-dens(𝑙𝜈) 6 min

{︀
ln-dens(𝑙rh𝜇 ), ln-dens(𝑙lh𝜇 )

}︀
6 ln-dens(𝑙𝜇). (3.19)

Proof. Under additional conditions (i) or (ii) with property (3.2) in Proposition 1, conclu-
sion (1.10) of Theorem 1 becomes conclusion (3.4) of Proposition 1, which, in particular, for
each 𝑎 > 1 can be written as

𝑙𝜈(𝑟, 𝑎𝑟) 6 min
{︀
𝑙rh𝜇 (𝑟, 𝑎𝑟), 𝑙lh𝜇 (𝑟, 𝑎𝑟)

}︀
+ 𝐶𝐽R(𝑟, 𝑎𝑟; 𝑞0 + 𝑞𝐸 + 𝑞) + 𝐶 for all 𝑟 > 𝑟0.

Then, passing to limit as 𝑟 tends to +∞, we obtain

lim sup
𝑟→+∞

𝑙𝜈(𝑟, 𝑎𝑟) 6min
{︁

lim sup
𝑟→+∞

𝑙rh𝜇 (𝑟, 𝑎𝑟), lim sup
𝑟→+∞

𝑙lh𝜇 (𝑟, 𝑎𝑟)
}︁

+ 𝐶 lim sup
𝑟→+∞

𝐶𝐽R(𝑟, 𝑎𝑟; 𝑞0 + 𝑞𝐸 + 𝑞) + 𝐶,

Dividing both sides of the latter inequality by ln 𝑎 and passing to the limit as 𝑎 tends to +∞,
in notations of Definition (3.16−) we obtain the following chain of inequalities and identities:

ln-dens(𝑙𝜈) 6min
{︀

ln-dens(𝑙rh𝜇 ), ln-dens(𝑙lh𝜇 )
}︀

+ 𝐶 ln-dens𝐽R(·, ·; 𝑞0 + 𝑞𝐸 + 𝑞)

(3.18)
= min

{︀
ln-dens(𝑙rh𝜇 ), ln-dens(𝑙lh𝜇 )

}︀ (1.7m)

6 ln-dens(𝑙𝜇).

By assumption 6 on coinciding all four logarithmic block-densities in Definition (3.16), this
gives exactly (3.19).

For zero entire function of exponential type 0, by the definition, the set of its zeroes is

Zero0 = C, and the counting measures reads as 𝑛Zero0(𝑆)
(1.6)
= +∞ for each 𝑆 ⊂ C. In particular,

ln-dens(𝑙Zero0) = +∞.
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We mention the uniqueness theorem for entire functions of exponential type implied by
Theorem 1.

Theorem 3. Let Z = {z𝑘}𝑘=1,2,... ⊂ C be a sequence of complex points of an upper finite
density in the sense of (1.12), that is,

𝑛rad
Z (𝑟)

(1.6)
:= 𝑛Z

(︀
𝐷(𝑟)

)︀
= 𝑂(𝑟) as 𝑟 → +∞,

with the logarithmic submeasure of intervals

𝑙Z(𝑟, 𝑅) := max

⎧⎪⎪⎨⎪⎪⎩
∑︁

𝑟<|z𝑘|6𝑅
Re z𝑘>0

Re
1

z𝑘
,

∑︁
𝑟<|z𝑘|6𝑅
Re z𝑘<0

Re
(︁
− 1

z𝑘

)︁⎫⎪⎪⎬⎪⎪⎭
(1.7)
= 𝑙𝑛Z

(𝑟, 𝑅).

Let conditions (1.8M), (1.80), (1.8q), (1.9E), (3.17) be satisfied and an entire function of ex-
ponential type 𝑓 vanishes on Z in the sense that 𝑛Zero𝑓 > 𝑛Z and for each 𝑦 ∈ R+ ∖ 𝐸, the
inequality holds:

ln
⃒⃒
𝑓(𝑖𝑦)𝑓(−𝑖𝑦)

⃒⃒
6 C𝑀

(︀
𝑖𝑦, 𝑞(𝑦)

)︀
+ C𝑀

(︀
−𝑖𝑦, 𝑞(−𝑦)

)︀
+ 𝑞0(𝑦) + 𝑞0(−𝑦). (3.20)

If (3.18) holds and at that ln-dens(𝑙Z) > ln-dens
(︀
𝐽𝑖R(·, ·;𝑀)

)︀
, then 𝑓 = 0.

Proof. Assume that 𝑓 ̸= 0 and let 𝑢 := ln |𝑓 |. Then (1.8u) holds with 𝜈 := 𝑛Z. It follows from
(3.20), Proposition 1 with 𝑎 > 1 and (3.4) that

𝑙Z(𝑟, 𝑎𝑟) = 𝑙𝑛Z
(𝑟, 𝑎𝑟) 6 𝐽𝑖R(𝑟, 𝑎𝑟;𝑀) + 𝐶𝐽R(𝑟, 𝑎𝑟; 𝑞0 + 𝑞𝐸 + 𝑞) + 𝐶 as 𝑟 > 𝑟0.

Passing to the limit as 𝑟 tends to +∞, dividing then by ln 𝑎 and passing to the limit as 𝑎 tends
to +∞, by Proposition 5, Definition (3.16) and (3.18) we obtain

ln-dens(𝑙Z) = ln-dens(𝑙Z) 6 ln-dens
(︀
𝐽𝑖R(·, ·;𝑀)

)︀
= ln-dens

(︀
𝐽𝑖R(·, ·;𝑀)

)︀
.

By Proposition 6 this contradicts the condition ln-dens(𝑙Z) > ln-dens
(︀
𝐽𝑖R(·, ·;𝑀)

)︀
.
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16. A.F. Grishin, T.I. Malyutina. New formulae for indicators of subharmonic functions // Matem.

Fiz. Anal. Geom. 12:1, 5–72 (2005). (in Russian).
17. B.N. Khabibullin, A.V. Shmeleva, Abdullina Z.F. Balayage of measures and subharmonic func-

tions to a system of rays. II. Balayage of finite kind and regularity of growth on one ray // Alg.
Anal. 32:1, 208–243 (2020). (in Russian).

18. M.R. Karimov, B.N. Khabibullin. Coincidence of some distribution densities of set and com-
pleteness of systems of entire functions // in Proc. Int. Conf. “Complex analysis, differential
equations and related issues”. III, Ufa, 29–34 (2000). (in Russian).

Anna Evgenievna Salimova,
Bashkir State University,
Zaki Validi str. 32,
450076, Ufa, Russia
E-mail: anegorova94@bk.ru

Bulat Nurmievich Khabibullin,
Bashkir State University,
Zaki Validi str. 32,
450076, Ufa, Russia
E-mail: khabib-bulat@mail.ru


	to1. Introduction
	to1.1. Main problem and origination
	to1.2. Notations and definitions
	to1.3. Main result

	to2. Proof of Theorem 1
	to3. Variations of conclusion (1.10) of Theorem 1
	to3.1. Some simplifications
	to3.2. Logarithmic measures and submeasures of intervals

	 References

