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REGULARITY OF ALMOST PERIODIC

SOLUTIONS OF POISSON EQUATION

È. MUHAMADIEV, M. NAZAROV

Abstract. This paper discusses some regularity of almost periodic solutions of the Poisson
equation −∆𝑢 = 𝑓 in R𝑛, where 𝑓 is an almost periodic function. It wasproved by Sibuya
[Almost periodic solutions of PoissonвЂTMs equation. Proc. Amer. Math. Soc., 28:195–
198, 1971.] that if 𝑢 is a bounded continuous function and solves the Poisson equation in
the distribution sense, then 𝑢 is an almost periodic function. In this work, we weaken the
assumption of the usual boundedness to boundedness in the sense of distribution, which
we refer to as a bounded generalized function. The set of bounded generalized functions
are wider than the set of usual bounded functions. Then, assuming that 𝑢 is a bounded
generalized function and solves the Poisson equation in the distribution sense, we prove
that this solution is bounded in the usual sense, continuous and almost periodic. Moreover,
we show that the first partial derivatives of the solution 𝜕𝑢/𝜕𝑥𝑖, 𝑖 = 1, . . . , 𝑛, are also
continuous, bounded and almost periodic functions. The technique is based on extending
a representation formula using Green function for Poisson equation for solutions in the
distribution sense. Some useful properties of distributions are also shown that can be used
in studying other elliptic problems.
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1. Introduction

We study the following Poisson equation

− ∆𝑢 = 𝑓, (1)

where 𝑢 : R𝑛 → R is the solution and 𝑓 : R𝑛 → R is a given almost periodic source function
and ∆ = div ·∇ is the Laplace operator. A function 𝑓 is called an almost periodic of 𝑥 if 𝑓
is continuous in R𝑛, and for each sequence of points {𝑥𝑛} ∈ R𝑛, the corresponding sequence
{𝑓(𝑥+𝑥𝑛)} contains a uniformly convergent subsequence. Our interest is to study the behavior
of the solution, which is obtained when the source function is almost periodic.
The theory of almost periodic solutions of ordinary differential equations was started by

early work of Bohr & Neugebauer [1] and Jean Favard [3, 4]. Jean Favard proved the following
theorem: if all homogeneous limit equations have no non-zero bounded solutions, and the
original system has a bounded solution, then this solution is almost periodic. This result raised
the problem of the existence of a bounded solution of a system with almost periodic coefficients.
Later, it was shown by Muhamadiev [5], that the property of limit systems mentioned in the
theorem of Favard guarantees the existence of a bounded solution of the original system, and
consequently its almost periodicity.
The issue on the behavior of solutions to Poisson equation with almost periodic source

functions was first addressed by Sibuya [7]. Later, Sell in [6] extended the result of Sibuya
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and Favard to linear systems of partial differential equations with almost periodic coefficients
and source functions. We remark here that the extension of the theory of almost periodic
solution to more general classes of differential equations such pseudo-differential operators was
studied by Shubin [8].
The following theorem was proven by Sibuya [7].

Theorem 1.1 (Sibuya). Let 𝑓(𝑥) be an almost periodic function of 𝑥 in R𝑛, and let 𝑢(𝑥) be

a bounded continuous function of 𝑥 in R𝑛. Assume that 𝑢(𝑥) is a solution of (1) in the sense

of distribution. Then 𝑢(𝑥) is almost periodic with respect to 𝑥 in R𝑛.

Theorem 1.1 shows that if a bounded continuous function 𝑢 solves equation (1) in the distri-
bution sense, then it is almost periodic. The main goal of this paper is to address the following
key questions:

(𝑖) to study the possibility of relaxing the assumption of Theorem 1.1, i.e., to consider a
wider class of solutions rather than bounded continuous functions;

(𝑖𝑖) to study the properties of the partial derivatives of such solutions, i.e., boundedness,
continuity, and almost periodicity.

We stress that in this paper we assume that the solution 𝑢 of the Poisson equation is bounded
in the distribution sense, whereas in [7] and [6] the solution was assumed to be bounded in the
strong sense.

This paper is organized as follows. Some definitions including that of the bounded generalized
functions are presented in Section 1.1. We formulate our main results in Section 2. Main
theorems are proved in Section 3. Some technical lemmas are proved in detail in Section 2.1
and in the Appendix.

1.1. Preliminaries. Throughout this work we follow the notations and definitions consistent
with [2]. Let Ω be an open subset of R𝑛, we denote its closure by Ω̄. We often use an open
ball of radius 𝑟 > 0 centered at the point 𝑥 denoted by ℬ0(𝑥, 𝑟) = {𝑦 ∈ R𝑛 : |𝑥 − 𝑦| < 𝑟},
and the symbol ℬ(𝑥, 𝑟) = {𝑦 ∈ R𝑛 : |𝑥− 𝑦| 6 𝑟} stands for a closed ball. For a given function
𝑔(𝑥) ≡ 𝑔(𝑥1, . . . , 𝑥𝑛), 𝑥 ∈ Ω, we denote the normal derivative by

𝜕𝑔

𝜕𝜈
(𝑥) = 𝜈 ·𝐷𝑔(𝑥),

where 𝜈 is an outward pointing unit normal to the boundary 𝜕Ω, and

𝐷𝑔 :=

(︂
𝜕𝑔

𝜕𝑥1
, . . . ,

𝜕𝑔

𝜕𝑥𝑛

)︂
is the gradient of 𝑔. Furthermore, we use the so-called Green’s functions to write the represen-
tation formula for the Poisson equations, see e.g., [2].

Definition 1. Green’s function for an open set Ω = ℬ0(𝑥, 1) in R𝑛 is

𝐺(𝑥,𝑦) := Φ(𝑦 − 𝑥) − Φ(|𝑥|(𝑦 − 𝑥̃)), (𝑥,𝑦) ∈ Ω, 𝑥 ̸= 𝑦, (2)

where 𝑥̃ = 𝑥
|𝑥|2 and

Φ(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
− 1

2𝑛
log(𝑥), 𝑛 = 2,

1

𝑛(𝑛− 2)𝛼(𝑛)

1

|𝑥|𝑛−2
, 𝑛 > 3.

(3)

Theorem 1.2. (Representation formula) Let Ω = ℬ0(𝑥, 1). If 𝑢 ∈ 𝒞2(Ω̄) is the solution of
(1), then the following identity holds

𝑢(𝑥) = −
∫︁
𝜕Ω

𝑢(𝑦)
𝜕𝐺

𝜕𝜈
(𝑥,𝑦) d𝑆(𝑦) +

∫︁
Ω

𝑓(𝑦)𝐺(𝑥,𝑦) d𝑦 (𝑥 ∈ Ω), (4)
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where 𝜈 is an outward normal vector, 𝜕𝐺
𝜕𝜈

(𝑥,𝑦) is the normal derivative of function 𝐺(𝑥,𝑦) at
point 𝑦 ∈ 𝜕Ω.

We denote by 𝒟(R𝑛) the set of all infinitely differentiable compactly supported functions
𝜑 : R𝑛 → R𝑛 such that 𝜑. A function 𝑢(𝑥) is said to be a generalized or weak solution of (1)
if it solves the following integral equation for every 𝜑 ∈ 𝒟(R𝑛):

−
∫︁
R𝑛

𝑢∆𝜑 d𝑥 =

∫︁
R𝑛

𝑓𝜑 d𝑥.

Next we give the definition of bounded generalized functions.

Definition 2 (Bounded generalized function). We say that the distribution 𝑔(𝑥) is a
bounded generalized function in R𝑛, if for any function 𝜙 ∈ 𝒟(R𝑛), the function
(𝑔 * 𝜙)(𝑥) = (𝑔(𝑦), 𝜙(𝑥− 𝑦)) is bounded in R𝑛, i.e., sup |(𝑔 * 𝜙)(𝑥)| <∞.

It can be easily observed that the set of bounded generalized functions contains the set of
usual bounded functions.

2. Main results

In this section we formulate the main results of the paper. The first result extends the results
by Sibuya [7]. We prove that under the same assumptions of Theorem 1.1, the function 𝑢 is
continuously differentiable and its partial derivatives are almost periodic.

Theorem 2.1. Let 𝑓(𝑥) be an almost periodic function of 𝑥 in R𝑛, and let 𝑢(𝑥) be a bounded
continuous function of 𝑥 in R𝑛. Assume that 𝑢(𝑥) is a solution of (1) in the sense of distri-
bution. Then 𝑢 has continuous partial derivatives 𝜕𝑢/𝜕𝑥𝑖, which are almost periodic functions
of 𝑥 in R𝑛.

Theorem 2.1 generalizes the Sibuya’s result in the case that not only 𝑢 is almost periodic,
but also the partial derivatives 𝜕𝑢/𝜕𝑥𝑖 are almost periodic. The second result of this work is to
prove that 𝑢 does not have to be a bounded continuous function in the usual sense. We prove
that if the weak solution of the Poisson equation is a bounded generalized function, then it is
also a bounded continuous function in the usual sense.

Theorem 2.2. Let 𝑢 be a bounded generalized function in R𝑛 which solves equation (1) in
the distribution sense. Then 𝑢 is a continuous and bounded function in R𝑛.

In Section 3.1 we prove Theorem 2.1, and Section 3.2 is devoted to the proof of Theorem 2.2.
Before proving our main theorems, we need to prove several technical lemmata in the next
section.

2.1. Technical lemmata. First, we prove that if 𝑢 is a solution of the Poisson equation in
the distribution sense then it can be written via representation formula (4).

Lemma 2.1. Let 𝑢(𝑥) be a bounded continuous function of 𝑥 in R𝑛 that solves (1) in the
sense of distribution. Then representation formula (4) holds for 𝑢.

Proof. We use the definition and properties of a standard mollifier. Let 𝜔 be a standard mollifier
defined as

𝜔(𝑥) =

{︃
𝑐 exp

(︁
1

|𝑥|2−1

)︁
, |𝑥| < 1,

0, |𝑥| > 1,
(5)

such that ∫︁
|𝑥|<1

𝜔(𝑥) d𝑥 = 1.
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Further, we define

𝜔𝜀(𝑥) =
1

𝜀𝑛
𝜔
(︁𝑥
𝜀

)︁
,

and let 𝑢𝜀 := 𝜔𝜀 * 𝑢 and 𝑓𝜀 := 𝜔𝜀 * 𝑓 .
The proof consist of two steps. First, we show that the following identity holds:

− ∆𝑢𝜀(𝑥) = 𝑓𝜀(𝑥). (6)

Then, we pass to the limit as 𝜀 → 0, and use a uniform convergence property of the mollifier
to get the desired result.

Using the definition of mollifier, we have

−∆𝑢𝜀(𝑥) = −
∫︁
R𝑛

(︀
∆𝜔𝜀(𝑥− 𝑦)

)︀
𝑢(𝑦) d𝑦,

𝑓𝜀(𝑥) =

∫︁
R𝑛

𝜔𝜀(𝑥− 𝑦)𝑓(𝑦) d𝑦.

For a fixed 𝑥 we set 𝜙(𝑦) = 𝜔𝜀(𝑥− 𝑦) we obtain

−
∫︁
R𝑛

∆𝜙(𝑦)𝑢(𝑦) d𝑦 =

∫︁
R𝑛

𝜙(𝑦)𝑓(𝑦) d𝑦,

which is in fact true, since 𝑢 solves the equation (1) in the distribution sense. Therefore, we
conclude that (6) holds and since 𝑢𝜀 is a smooth function the representation formula (4) can
be written as

𝑢𝜀(𝑥) = −
∫︁
𝜕Ω

𝑢𝜀(𝑦)
𝜕𝐺

𝜕𝜈
(𝑥,𝑦) d𝑆(𝑦) +

∫︁
Ω

𝑓𝜀(𝑦)𝐺(𝑥,𝑦) d𝑦. (7)

Next, we write the following relation

𝑢𝜀(𝑥) − 𝑢(𝑥) =

∫︁
R𝑛

𝜔𝜀(𝑥− 𝑦)𝑢(𝑦) d𝑦 − 𝑢(𝑥)

=

∫︁
R𝑛

1

𝜀𝑛
𝜔
(︁𝑥− 𝑦

𝜀

)︁
𝑢(𝑦) d𝑦 − 𝑢(𝑥).

Let us denote −𝜉 = 𝑥−𝑦
𝜀

, then d𝑦 = 𝜀𝑛 d𝜉 and

𝑢𝜀(𝑥) − 𝑢(𝑥) =

∫︁
R𝑛

𝜔(𝜉)𝑢(𝑥 + 𝜀𝜉) d𝜉 − 𝑢(𝑥)

∫︁
R𝑛

𝜔(𝜉) d𝜉

=

∫︁
R𝑛

𝜔(𝜉)
(︀
𝑢(𝑥 + 𝜀𝜉) − 𝑢(𝑥)

)︀
d𝜉.

Consequently, we get that

|𝑢𝜀(𝑥) − 𝑢(𝑥)| 6 sup
𝑥∈R𝑛,|𝜉|61

⃒⃒
𝑢(𝑥 + 𝜀𝜉) − 𝑢(𝑥)

⃒⃒
.

Hence, we conclude that if the right hand side goes to zero as 𝜀 → 0, then 𝑢𝜀 → 𝑢 uniformly
and similarly, 𝑓𝜀 → 𝑓 . Now passing to the limit in (7) as 𝜀 → 0, we obtain the desired result.
The proof is complete.

We next prove that a weak solution of the Poisson equation in an open unit ball has continuous
partial derivatives in this ball.

Lemma 2.2. Let a continuous in the unit ball ℬ(0, 1) = {𝑥 : |𝑥| 6 1} function 𝑢(𝑥) be a
solution to equation (1) in the distribution sense in ℬ0(0, 1) = {𝑥 : |𝑥| < 1}. Then 𝑢(𝑥) is
continuously differentiable for all 𝑥 ∈ ℬ0(0, 1).
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Proof. Using the definition of solution (4) for 𝑥 ∈ ℬ0(0, 1) and the definition of the Green’s
function (2), we get

𝜕𝐺

𝜕𝜈
(𝑥,𝑦) =

𝑛∑︁
𝑖=1

𝑦𝑖𝐺𝑦𝑖(𝑥,𝑦)

= − 1

𝑛𝛼(𝑛)

1

|𝑥− 𝑦|𝑛
𝑛∑︁

𝑖=1

𝑦𝑖
(︀
(𝑦𝑖 − 𝑥𝑖) − 𝑦𝑖|𝑥|2 + 𝑥𝑖

)︀
= − 1

𝑛𝛼(𝑛)

1 − |𝑥|2

|𝑥− 𝑦|𝑛
.

This implies that the function 𝜕𝐺
𝜕𝜈

is continuously differentiable for 𝑥 ∈ ℬ0(0, 1) and
𝑦 ∈ 𝜕ℬ(0, 1). Hence, the first term in the right hand side of (4) is a differentiable function
for 𝑥 ∈ ℬ0(0, 1).

Similarly, it follows from the definition of (2) that

𝜕𝐺

𝜕𝑥𝑖
=
𝜕Φ

𝜕𝑥𝑖
(𝑦 − 𝑥) − 𝜕Φ

𝜕𝑥𝑖
(|𝑥|(𝑦 − 𝑥̃))

=
1

𝑛𝛼(𝑛)

(︁ 𝑦𝑖 − 𝑥𝑖
|𝑦 − 𝑥|𝑛

− 𝑦𝑖 − 𝑥𝑖|𝑦|2

||𝑦|𝑥− 𝑦
|𝑦| |𝑛

)︁
.

(8)

The first term of the right hand side of 𝜕𝐺
𝜕𝑥𝑖

has an integrable singularity when 𝑦 = 𝑥. When
𝑦 ̸= 0, the second term is continuous and bounded by⃒⃒⃒⃒

⃒ 𝑦𝑖 − 𝑥𝑖|𝑦|2

||𝑦|𝑥− 𝑦
|𝑦| |𝑛

⃒⃒⃒⃒
⃒ 6 2

(1 − |𝑥|)𝑛
,

which is integrable.
We conclude that the function 𝑢(𝑥) defined by the representation formula (4) in the unit

ball Ω = ℬ0(0, 1)

𝑢(𝑥) = −
∫︁
𝜕ℬ0(0,1)

𝑢(𝑦)
𝜕𝐺

𝜕𝜈
(𝑥,𝑦) d𝑆(𝑦) +

∫︁
ℬ0(0,1)

𝑓(𝑦)𝐺(𝑥,𝑦) d𝑦 (𝑥 ∈ ℬ0(0, 1)), (9)

is continuously differentiable for 𝑥 ∈ ℬ0(0, 1).

Remark 1. Note that Lemma 2.2 is also true as 𝑓 ∈ 𝐿∞(ℬ(0, 1)).

In the above lemma, we have proved that 𝑢 is differentiable if the Green’s function and the
normal derivative of the Green’s function are differentiable with respect to 𝑥. The following
lemma completes Lemma 2.2.

Lemma 2.3. Let a continuous in the unit ball ℬ(0, 1) = {𝑥 : |𝑥| 6 1} function 𝑢(𝑥) be
a solution to equation (1) in the distribution sense in ℬ0(0, 1) = {𝑥 : |𝑥| < 1}. Then, the
following limits hold:

lim
ℎ→0

∫︁
𝜕ℬ(0,1)

⃒⃒⃒⃒
𝜕

𝜕𝑥𝑖

𝜕𝐺

𝜕𝜈
(0,𝑦) −

𝜕𝐺
𝜕𝜈

(ℎ𝑒𝑖,𝑦) − 𝜕𝐺
𝜕𝜈

(0,𝑦)

ℎ

⃒⃒⃒⃒
d𝑆(𝑦) = 0, (10)

lim
ℎ→0

∫︁
ℬ(0,1)

⃒⃒⃒⃒
𝜕𝐺

𝜕𝑥𝑖
(0,𝑦) − 𝐺(ℎ𝑒𝑖,𝑦) −𝐺(0,𝑦)

ℎ

⃒⃒⃒⃒
d𝑦 = 0. (11)

Proof. Noting that 𝑦 ∈ 𝜕ℬ(0, 1), we have

𝜕

𝜕𝑥𝑖

𝜕𝐺

𝜕𝜈
(0,𝑦) =

𝜕

𝜕𝑥𝑖

(︂
1

𝑛𝛼(𝑛)

1 − |𝑥|2

|𝑥− 𝑦|𝑛

)︂ ⃒⃒⃒
𝑥=0

=
1

𝑛𝛼(𝑛)

(︂
2𝑥𝑖

|𝑥− 𝑦|𝑛
− 𝑛(1 − |𝑥|2)(𝑥𝑖 − 𝑦𝑖)

|𝑥− 𝑦|𝑛+2

)︂ ⃒⃒⃒
𝑥=0

=
𝑦𝑖
𝛼(𝑛)

.

(12)
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For the second term of (10) we get

1

ℎ

(︂
𝜕𝐺

𝜕𝜈
(ℎ𝑒𝑖,𝑦) − 𝜕𝐺

𝜕𝜈
(0,𝑦)

)︂
=

1

𝑛𝛼(𝑛)

1

ℎ

(︂
1 − ℎ2

|ℎ𝑒𝑖 − 𝑦|𝑛
− 1

)︂
=

1

𝑛𝛼(𝑛)

1

ℎ

(︂
− ℎ2

|ℎ𝑒𝑖 − 𝑦|𝑛
+

1 − |ℎ𝑒𝑖 − 𝑦|𝑛

|ℎ𝑒𝑖 − 𝑦|𝑛

)︂
.

(13)

Now using the Taylor expansion

|ℎ𝑒𝑖 − 𝑦|𝑛 =(|ℎ𝑒𝑖 − 𝑦|2)
𝑛
2 = (ℎ2 − 2ℎ𝑦𝑖 + |𝑦|2)

𝑛
2 = (1 − ℎ(2𝑦𝑖 + ℎ))

𝑛
2

=1 − 𝑛

2
ℎ(2𝑦𝑖 + ℎ) + 𝒪(ℎ2) = 1 − 𝑛ℎ𝑦𝑖 + 𝒪(ℎ2),

we obtain

1

ℎ

(︂
𝜕𝐺

𝜕𝜈
(ℎ𝑒𝑖,𝑦) − 𝜕𝐺

𝜕𝜈
(0,𝑦)

)︂
=

1

𝑛𝛼(𝑛)

1

ℎ

(︂
1 − (1 − 𝑛ℎ𝑦𝑖 + 𝒪(ℎ2))

|ℎ𝑒𝑖 − 𝑦|𝑛
− ℎ2

|ℎ𝑒𝑖 − 𝑦|𝑛

)︂
.

=
1

𝑛𝛼(𝑛)
(𝑛𝑦𝑖 + 𝒪(ℎ)) =

𝑦𝑖
𝛼(𝑛)

+ 𝒪(ℎ).

(14)

Consequently, the function in the first integral of (10) converges uniformly to zero with respect
to 𝑦 ∈ 𝜕ℬ(0, 1).

Let us show that the second limit (11) holds true. We start by partitioning the unit ball
ℬ(0, 1) as the union of two sets ℬ(0, 𝛿) and ℬ(0, 1) − ℬ(0, 𝛿), where 0 < 𝛿 < 1. Then for the
first ball we have∫︁

ℬ(0,𝛿)

⃒⃒⃒⃒
𝜕𝐺

𝜕𝑥𝑖
(0,𝑦) − 𝐺(ℎ𝑒𝑖,𝑦) −𝐺(0,𝑦)

ℎ

⃒⃒⃒⃒
d𝑦

6
∫︁
ℬ(0,𝛿)

⃒⃒⃒⃒
𝜕𝐺

𝜕𝑥𝑖
(0,𝑦)

⃒⃒⃒⃒
d𝑦 +

1

ℎ

∫︁
ℬ(0,𝛿)

|𝐺(ℎ𝑒𝑖,𝑦) −𝐺(0,𝑦)| d𝑦

=: 𝐼1 + 𝐼2.

Using formula (8) at the point (0,𝑦), we compute the integral 𝐼1:

𝐼1 =
1

𝑛𝛼(𝑛)

∫︁
ℬ(0,𝛿)

⃒⃒⃒⃒
𝑦𝑖
|𝑦|𝑛

− 𝑦𝑖

⃒⃒⃒⃒
d𝑦 =

1

𝑛𝛼(𝑛)

∫︁
ℬ(0,𝛿)

|𝑦𝑖|
⃒⃒⃒⃒
1 − |𝑦|𝑛

|𝑦|𝑛

⃒⃒⃒⃒
d𝑦 6

1

𝑛𝛼(𝑛)

∫︁
ℬ(0,𝛿)

1

|𝑦|𝑛−1
d𝑦.

We apply the definition of 𝐺(𝑥,𝑦) in (2) at the points (0,𝑦) and (ℎ𝑒𝑖,𝑦) and obtain

𝐼2 =
1

𝑛(𝑛− 2)𝛼(𝑛)

1

ℎ

∫︁
ℬ(0,𝛿)

⃒⃒⃒⃒(︂
1

|ℎ𝑒𝑖 − 𝑦|𝑛−2
− 1

|𝑦|𝑛−2

)︂
+

(︂
1 − 1⃒⃒

|𝑦|(ℎ𝑒𝑖 − 𝑦
|𝑦|2 )

⃒⃒𝑛−2

)︂
d𝑦.

Now we make use of Lemma A.1 to estimate the expressions inside the brackets. By setting
𝑎 = 1/|ℎ𝑒𝑖 − 𝑦| and 𝑏 = 1

|𝑦| in inequality (25) and by using the fact that |𝑎| − |𝑏| 6 |𝑎− 𝑏|, we

can easily get that⃒⃒⃒⃒
1

|ℎ𝑒𝑖 − 𝑦|𝑛−2
− 1

|𝑦|𝑛−2

⃒⃒⃒⃒
6
𝑛− 2

2

⃒⃒
|𝑦| − |ℎ𝑒𝑖 − 𝑦|

⃒⃒(︂ 1

|ℎ𝑒𝑖 − 𝑦|𝑛−1
+

1

|𝑦|𝑛−1

)︂
6
𝑛− 2

2
ℎ

(︂
1

|ℎ𝑒𝑖 − 𝑦|𝑛−1
+

1

|𝑦|𝑛−1

)︂
.

In the same way, we let

𝑎 = 1, 𝑏 =
1⃒⃒⃒

|𝑦|ℎ𝑒𝑖 − 𝑦
|𝑦|

⃒⃒⃒ ,
and by using the fact that ⃒⃒

|𝑦|ℎ𝑒𝑖 −
𝑦

|𝑦|
⃒⃒
>
⃒⃒ 𝑦
|𝑦|

−
⃒⃒
|𝑦|ℎ𝑒𝑖

⃒⃒
> 1 − ℎ
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we get ⃒⃒⃒⃒
1 − 1⃒⃒

|𝑦|(ℎ𝑒𝑖 − 𝑦
|𝑦|2 )

⃒⃒𝑛−2

⃒⃒⃒⃒
6
𝑛− 2

2

⃒⃒⃒⃒
1 −

⃒⃒⃒
|𝑦|ℎ𝑒𝑖 −

𝑦

|𝑦|

⃒⃒⃒⃒⃒⃒⃒(︂
1 +

1⃒⃒
|𝑦|ℎ𝑒𝑖 − 𝑦

|𝑦|

⃒⃒𝑛−1

)︂
6
𝑛− 2

2
ℎ
(︁

1 +
1

(1 − ℎ)𝑛−1

)︁
.

Hence, we obtain the following estimate for the second integral 𝐼2:

𝐼2 6
1

2𝑛𝛼(𝑛)

∫︁
ℬ(0,𝛿)

(︃
1

|ℎ𝑒𝑖 − 𝑦|𝑛−1
+

1

|𝑦|𝑛−1

)︃
d𝑦 +

𝛿𝑛

2𝑛

(︁
1 +

1

(1 − ℎ)𝑛−1

)︁
. (15)

From the above estimates for 𝐼1 and 𝐼2, we observe that the integrals contain two weakly
singular integrals at points 𝑦 = 0 and 𝑦 = ℎ𝑒𝑖. Letting ℎ < 𝛿/2, we ensure that both points lie
inside the ball ℬ(0, 𝛿). Using the standard techniques for computing weakly singular integrals,
we get ∫︁

ℬ(0,𝛿)

1

|𝑦|𝑛−1
d𝑦 = 𝑛𝛼(𝑛)𝛿,

and ∫︁
ℬ(0,𝛿)

1

|ℎ𝑒𝑖 − 𝑦|𝑛−1
d𝑦 <

∫︁
ℬ(ℎ𝑒𝑖,𝛿+ℎ)

1

|ℎ𝑒𝑖 − 𝑦|𝑛−1
d𝑦 = 𝑛𝛼(𝑛)(𝛿 + ℎ).

Thus, we obtain the following estimate for integral (11)

𝐼1 + 𝐼2 < 𝛿 +
𝛿 + ℎ

2
+
𝛿

2
+
𝛿𝑛

2𝑛

(︁
1 +

1

(1 − ℎ)𝑛−1

)︁
. (16)

In the second set ℬ(0, 1)−ℬ(0, 𝛿), the function in the integral (11) is continuous, has no sin-
gular points and converges uniformly to zero. Therefore, the integral of this function converges
to zero. This completes the proof.

Remark 2. Let 𝑥 ∈ ℬ0(0, 1) be a fixed point. Then, following the lines of the proof of
Lemma 2.3, one can prove that

lim
ℎ→0

∫︁
𝜕ℬ0,1)

⃒⃒⃒⃒
𝜕

𝜕𝑥𝑖

𝜕𝐺

𝜕𝜈
(𝑥,𝑦) −

𝜕𝐺
𝜕𝜈

(𝑥 + ℎ𝑒𝑖,𝑦) − 𝜕𝐺
𝜕𝜈

(𝑥,𝑦)

ℎ

⃒⃒⃒⃒
d𝑆(𝑦) = 0,

lim
ℎ→0

∫︁
ℬ(0,1)

⃒⃒⃒⃒
𝜕𝐺

𝜕𝑥𝑖
(𝑥,𝑦) − 𝐺(𝑥 + ℎ𝑒𝑖,𝑦) −𝐺(𝑥,𝑦)

ℎ

⃒⃒⃒⃒
d𝑦 = 0.

3. Proof of the main theorems

3.1. Proof of Theorem 2.1. Using the result of Theorem 1.1, we know that 𝑢 is an almost
periodic function. Lemma 2.2 shows that the function 𝑢(𝑥0 + 𝑥), where 𝑥0 is a fixed point in
R𝑛, is continuously differentiable, and moreover, for its derivatives 𝜕𝑢/𝜕𝑥𝑖, 𝑖 = 1, . . . , 𝑛, the
following representation

𝜕𝑢

𝜕𝑥𝑖
(𝑥0 + 𝑥) = −

∫︁
𝜕ℬ(0,1)

𝑢(𝑥0 + 𝑦)
𝜕

𝜕𝑥𝑖

𝜕𝐺

𝜕𝜈
(𝑥,𝑦) d𝑆(𝑦)

+

∫︁
ℬ(0,1)

𝑓(𝑥0 + 𝑦)
𝜕𝐺

𝜕𝑥𝑖
(𝑥,𝑦) d𝑦.

(17)

holds for each 𝑥 in the unit ball ℬ0(0, 1).
Our aim is to show that the following relation holds:

lim
ℎ→0

sup
𝑥0∈R𝑛

⃒⃒⃒⃒
𝑢(𝑥0 + ℎ𝑒𝑖) − 𝑢(𝑥0)

ℎ
− 𝜕𝑢

𝜕𝑥𝑖
(𝑥0)

⃒⃒⃒⃒
= 0. (18)



104 È. MUHAMADIEV, M. NAZAROV

We begin with writing representation formula (4) at the point (𝑥0 +𝑥) for each 𝑥 ∈ ℬ0(0, 1):

𝑢(𝑥0 + 𝑥) = −
∫︁
𝜕ℬ(0,1)

𝑢(𝑥0 + 𝑦)
𝜕𝐺

𝜕𝜈
(𝑥,𝑦) d𝑆(𝑦) +

∫︁
ℬ(0,1)

𝑓(𝑥0 + 𝑦)𝐺(𝑥,𝑦) d𝑦. (19)

It follows from relations (17) and (19) that⃒⃒⃒⃒
𝑢(𝑥0 + ℎ𝑒𝑖) − 𝑢(𝑥0)

ℎ
− 𝜕𝑢

𝜕𝑥𝑖
(𝑥0)

⃒⃒⃒⃒
6 sup

𝑥∈ℬ(0,1)
|𝑢(𝑥)|

∫︁
𝜕ℬ(0,1)

⃒⃒⃒⃒
1

ℎ

(︁𝜕𝐺
𝜕𝜈

(ℎ𝑒𝑖,𝑦) − 𝜕𝐺

𝜕𝜈
(0,𝑦)

)︁
− 𝜕

𝜕𝑥𝑖

𝜕𝐺

𝜕𝜈
(0,𝑦)

⃒⃒⃒⃒
d𝑆(𝑦)

+ sup
𝑥∈ℬ(0,1)

|𝑓(𝑥)|
∫︁
ℬ(0,1)

⃒⃒⃒⃒
1

ℎ

(︁
𝐺(ℎ𝑒𝑖,𝑦) −𝐺(0,𝑦)

)︁
− 𝜕𝐺

𝜕𝑥𝑖
(0,𝑦)

⃒⃒⃒⃒
d𝑦.

This inequality and Lemma 2.3 imply relation (18).
According to Theorem 1.1, the function 𝑢(𝑥) is almost periodic and therefore,

(︀
𝑢(𝑥0 +ℎ𝑒𝑖)−

𝑢(𝑥0)
)︀
/ℎ, for ℎ > 0, 𝑖 = 1, . . . , 𝑛, is an almost periodic function. Hence, its limit 𝜕𝑢/𝜕𝑥𝑖(𝑥0),

which is the uniformly continuous limit of this function, is also an almost periodic function.
The proof is complete.

3.2. Proof of Theorem 2.2. The proof of the theorem is split into three steps. First,
assuming that 𝑢 is a continuous bounded function, we obtain representation formula (9) for
the ball of radius 𝑟 at the origin ℬ(0, 𝑟). Then, following the lines of the proof of Lemma 2.1,
we construct the representation formula for the generalized function 𝑢 and we prove that 𝑢 is
continuous and bounded in the usual sense at the origin, i.e., 𝑥 = 0. Finally, then we prove
that 𝑢 is continuous and bounded for each point in R𝑛.

Step 1. Let us assume for the time being that 𝑢 is a bounded continuous function. Let us
define the Green’s function for a ball of radius 𝑟, i.e., ℬ(0, 𝑟) ∈ R𝑛:

𝐺𝑟(𝑥,𝑦) := Φ(𝑦 − 𝑥) − Φ

(︂
|𝑥|
𝑟

(𝑦 − 𝑥̃)

)︂
,
(︀
(𝑥,𝑦) ∈ ℬ(0, 𝑟),𝑥 ̸= 𝑦

)︀
,

where 𝑥̃ = 𝑟2𝑥
|𝑥|2 . and Φ(𝑥) is defined as in (3).

Then the representation formula in a ball of radius 𝑟 can be written as

𝑢(𝑥) = −
∫︁
𝜕ℬ(0,𝑟)

𝑢(𝑦)
𝜕𝐺𝑟

𝜕𝜈
(𝑥,𝑦) d𝑆(𝑦) +

∫︁
ℬ(0,𝑟)

𝑓(𝑦)𝐺𝑟(𝑥,𝑦) d𝑦

=
𝑟2 − |𝑥|2

𝑛𝛼(𝑛)𝑟

∫︁
𝜕ℬ(0,𝑟)

𝑢(𝑦)

|𝑥− 𝑦|𝑛
d𝑆(𝑦) +

∫︁
ℬ(0,𝑟)

𝑓(𝑦)𝐺𝑟(𝑥,𝑦) d𝑦.

(20)

We multiply (20) by 𝜙(𝑟)𝑟𝑛−1 ̸= 0, let 𝑥 = 0 and integrate in the variable 𝑟 ∈ [0, 𝑅] for some
𝑅 > 𝑟. By noting that |𝑦| = 𝑟 we obtain:

𝑢(0)

∫︁ 𝑅

0

𝜙(𝑟)𝑟𝑛−1 d𝑟⏟  ⏞  
𝐼1

=

∫︁ 𝑅

0

𝜙(𝑟)𝑟𝑛

𝑛𝛼(𝑛)𝑟𝑛

∫︁
𝜕ℬ(0,𝑟)

𝑢(𝑦) d𝑆(𝑦) d𝑟⏟  ⏞  
𝐼2

+

∫︁ 𝑅

0

𝜙(𝑟)𝑟𝑛−1

∫︁
ℬ(0,𝑟)

𝑓(𝑦)𝐺𝑟(0,𝑦) d𝑦 d𝑟⏟  ⏞  
𝐼3(𝑓)

.

(21)

We pass to the spherical coordinates (𝑟, 𝜑1, . . . , 𝜑𝑛−1), where 𝑟 is the radial distance, 𝜑𝑖,
𝑖 = 1, . . . , 𝑛− 1 are angular coordinates, and in view of the identities

d𝑆(𝑦) = sin𝑛−2(𝜑1) sin𝑛−3(𝜑2) · · · sin(𝜑𝑛−2) d𝜑1 d𝜑2 · · · d𝜑𝑛−2, d𝑦 = 𝑟𝑛−1 d𝑆(𝑦) d𝑟
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we obtain that

𝐼2 =
1

𝑛𝛼(𝑛)

∫︁
|𝑦|6𝑅

𝜙(|𝑦|)𝑢(𝑦)

|𝑦|𝑛−1
d𝑦.

By dividing both parts of (21) by 𝐼1 we obtain:

𝑢(0) =
1

𝑛𝛼(𝑛)

1

𝐼1

∫︁
|𝑦|6𝑅

𝜙(|𝑦|)𝑢(𝑦)

|𝑦|𝑛−1
d𝑦 +

𝐼3(𝑓)

𝐼1
.

Step 2. Assume that 𝑢 is a generalized function. By repeating the above steps with 𝑢𝜀 = 𝑢*𝜔𝜀

and a corresponding source function 𝑓𝜀 = 𝑓 *𝜔𝜀, and using in addition Lemma 2.1 the following
relation can be obtained:

𝑢𝜀(0) =
1

𝑛𝛼(𝑛)

1

𝐼1

∫︁
|𝑦|6𝑅

𝜙(|𝑦|)
|𝑦|𝑛−1

𝑢𝜀(𝑦) d𝑦 +
1

𝐼1
𝐼3(𝑓𝜀). (22)

In our construction, the function 𝜙 is chosen such that 𝜙(|𝑦|) = 0 as |𝑦| < 𝛿 or |𝑦| > 𝑅− 𝛿,
where 𝛿 > 0 is some small number. Then, it is clear that 𝜓(𝑦) := 𝜙(|𝑦|)/|𝑦|𝑛−1 is a test
function, i.e., it is an element of 𝒟(R𝑛). We denote:

𝑣(𝑥) := (𝑢 * 𝜓)(𝑥) =
(︀
𝑢(𝑦 − 𝑥), 𝜓(𝑦)

)︀
.

Now using Lemma A.2 the integral in the right hand side of (22) can be simplified as follows:∫︁
|𝑦|6𝑅

𝜓(𝑦)𝑢𝜀(𝑦) d𝑦 =

∫︁
|𝑦|6𝑅

𝜓(𝑦)(𝑢 * 𝜔𝜀)(𝑦) d𝑦

=

∫︁
R𝑛

𝜔𝜀(𝑦)(𝑢 * 𝜓)(𝑦) d𝑦

=

∫︁
R𝑛

𝜔𝜀(𝑦)𝑣(𝑦) d𝑦 = 𝑣𝜀(0),

(23)

where 𝑣𝜀 = 𝑣 * 𝜔𝜀. Using identity (23), we rewrite equation (22) in the following form:

𝑢𝜀(0) =
1

𝑛𝛼(𝑛)

1

𝐼1
𝑣𝜀(0) +

1

𝐼1
𝐼3(𝑓𝜀). (24)

This yields that the expression in the right hand side has a limit as 𝜀 → 0, since 𝑣𝜀(0) and 𝑓𝜀
have a limit as 𝜀→ 0. Consequently, we conclude that there exists a limit 𝑢𝜀(0) as 𝜀→ 0.

Step 3. In the second part of the proof, under the assumptions of the theorem, we showed
that 𝑢 is continuous and bounded at point 𝑥 = 0. Here we show that this is in fact true for
each point of the space.

For a fixed point 𝑥0 ∈ R𝑛 let us denote 𝑤(𝑥) := 𝑢(𝑥 + 𝑥0), where 𝑤(𝑥) is a the solution of
equation

−∆𝑤(𝑥) = 𝑓𝑥0(𝑥), 𝑥 ∈ R𝑛,

in the distribution sense, where we denote 𝑓𝑥0(𝑥) := 𝑓(𝑥 + 𝑥0). Then, we have that
𝑤𝜀(𝑥) = 𝑢𝜀(𝑥 + 𝑥0) and

𝑣(𝑥− 𝑥0) = (𝑢 * 𝜓)(𝑥− 𝑥0) =
(︀
𝑤(𝑦 − 𝑥), 𝜓(𝑦)

)︀
= (𝑤 * 𝜓)(𝑥),

and the equation (24) for 𝑤 becomes:

𝑤𝜀(0) =
1

𝑛𝛼(𝑛)

1

𝐼1
𝑣𝜀(−𝑥0) +

1

𝐼1
𝐼3(𝑓𝑥0,𝜀),

which is

𝑢𝜀(𝑥0) =
1

𝑛𝛼(𝑛)

1

𝐼1
𝑣𝜀(−𝑥0) +

1

𝐼1
𝐼3(𝑓𝑥0,𝜀),

Now, passing to again the limit as 𝜀 → 0, we see that 𝑣𝜀(−𝑥0) → 𝑣(−𝑥0), 𝑓𝑥0,𝜀 → 𝑓𝑥0 , and
therefore, the limit of 𝑢𝜀(𝑥0) exists as 𝜀→ 0 for each 𝑥0 ∈ R𝑛. The proof is complete.



106 È. MUHAMADIEV, M. NAZAROV

Appendix

Lemma A.1. Let 𝑎 and 𝑏 be arbitrary positive numbers. For each 𝑚 = 1, 2, 3, . . . the fol-
lowing inequality holds

|𝑎𝑚 − 𝑏𝑚| 6 𝑚

2

⃒⃒⃒⃒
1

𝑏
− 1

𝑎

⃒⃒⃒⃒
(𝑎𝑚+1 + 𝑏𝑚+1). (25)

Proof. Using the polynomial identities, we have

𝑎𝑚 − 𝑏𝑚 = (𝑎− 𝑏)
𝑚−1∑︁
𝑘=1

𝑎𝑚−𝑘𝑏𝑘−1 =
𝑎− 𝑏

𝑎𝑏
𝑎𝑏

𝑚−1∑︁
𝑘=1

𝑎𝑚−𝑘𝑏𝑘−1 =
(︁1

𝑏
− 1

𝑎

)︁𝑚−1∑︁
𝑘=0

𝑎𝑚−𝑘𝑏𝑘+1. (26)

Next, we need to use the following Hölder’s inequality

𝑑𝑐 6
𝑑𝑝

𝑝
+
𝑐𝑞

𝑞
,

where

𝑑 > 0, 𝑐 > 0, 𝑝 > 1, 𝑝 > 1 ,
1

𝑝
+

1

𝑞
= 1.

By letting

𝑑 = 𝑎𝑚−𝑘, 𝑐 = 𝑏𝑘+1, 𝑝 =
𝑚+ 1

𝑚− 𝑘
, 𝑞 =

𝑚+ 1

𝑘 + 1

in the Hölder’s inequality, we get

𝑎𝑚−𝑘𝑏𝑘+1 6
𝑚− 𝑘

𝑚+ 1
𝑎𝑚+1 +

𝑘 + 1

𝑚+ 1
𝑏𝑚+1.

Now, we apply this inequality to (26) and obtain

|𝑎𝑚 − 𝑏𝑚| 6
⃒⃒⃒1
𝑏
− 1

𝑎

⃒⃒⃒(︁
𝑎𝑚+1

𝑚−1∑︁
𝑘=0

𝑚− 𝑘

𝑚+ 1
+ 𝑏𝑚+1

𝑚−1∑︁
𝑘=0

𝑘 + 1

𝑚+ 1

)︁
=
𝑚

2

⃒⃒⃒1
𝑏
− 1

𝑎

⃒⃒⃒
(𝑎𝑚+1 + 𝑏𝑚+1),

which completes the proof of the lemma.

Lemma A.2. Let 𝑢 be a distribution in R𝑛, and let 𝜙(𝑥) and 𝜓(𝑥) be two test functions
from 𝒟(R𝑛) such that 𝜙(−𝑥) = 𝜙(𝑥), and 𝜓(−𝑥) = 𝜓(𝑥). Then the following identity holds
true: ∫︁

R𝑛

𝜙(𝑥) (𝑢 * 𝜓)(𝑥) d𝑥 =

∫︁
R𝑛

𝜓(𝑥) (𝑢 * 𝜙)(𝑥) d𝑥 (27)

Proof. Let us denote the support of functions 𝜓 and 𝜙 by 𝑉 ⊂ R𝑛. Let 𝑉𝑘, 𝑘 = 1, . . . , 𝑁 , where
𝑁 is some finite number, be a set of disjoint simplexes such that 𝑉 = ∪𝑘=1,...,𝑁𝑉 𝑘, where 𝑉
and 𝑉 𝑘 denote the closure of 𝑉 and 𝑉𝑘, respectively. Then for a fixed point 𝑥𝑘 ∈ 𝑉𝑘, we write
the following identity:∫︁

R𝑛

𝜙(𝑥) (𝑢 * 𝜓)(𝑥) d𝑥 =
𝑁∑︁
𝑘=1

∫︁
𝑉𝑘

(︀
𝜙(𝑥) (𝑢 * 𝜓)(𝑥) − 𝜙(𝑥𝑘) (𝑢 * 𝜓)(𝑥𝑘)

)︀
d𝑥

+
𝑁∑︁
𝑘=1

∫︁
𝑉𝑘

𝜙(𝑥𝑘) (𝑢 * 𝜓)(𝑥𝑘) d𝑥.
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Since the integrand in the first integral of the right hand side is continuous, the first integral
goes to zero as 𝑘 → ∞. On the other hand, since the integrand of the second integral is
constant, we use the definition of a distribution to obtain:

𝑁∑︁
𝑘=1

∫︁
𝑉𝑘

𝜙(𝑥𝑘) (𝑢 * 𝜓)(𝑥𝑘) d𝑥 =
(︁
𝑢(𝑦),

𝑁∑︁
𝑘=1

𝜙(𝑥𝑘)𝜓(𝑥𝑘 − 𝑦) |𝑉𝑘|
)︁
,

where |𝑉𝑘| denotes the volume 𝑉𝑘.
We pass to the limit as 𝑘 → ∞ and get that∫︁

R𝑛

𝜙(𝑥) (𝑢 * 𝜓)(𝑥) d𝑥 =
(︁
𝑢(𝑦),

∫︁
R𝑛

𝜙(𝑥)𝜓(𝑥− 𝑦) d𝑥
)︁
.

In the same way, for the right hand side of (27) we get∫︁
R𝑛

𝜓(𝑥) (𝑢 * 𝜙)(𝑥) d𝑥 =
(︁
𝑢(𝑦),

∫︁
R𝑛

𝜓(𝑥)𝜙(𝑥− 𝑦) d𝑥
)︁
.

Finally, by using the assumption of the lemma, i.e., 𝜙(−𝑥) = 𝜙(𝑥) and 𝜓(−𝑥) = 𝜓(𝑥), we see
that ∫︁

R𝑛

𝜙(𝑥)𝜓(𝑥− 𝑦) d𝑥 =

∫︁
R𝑛

𝜙(𝑥)𝜓(𝑦 − 𝑥) d𝑥

=

∫︁
R𝑛

𝜓(𝑥)𝜙(𝑦 − 𝑥) d𝑥 =

∫︁
R𝑛

𝜓(𝑥)𝜙(𝑥− 𝑦) d𝑥,

(28)

where we used the property of mollifier. This completes the proof.
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