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ON EQUIVALENCE OF ONE SPIN SYSTEM AND

TWO-COMPONENT CAMASSA-HOLM EQUATION

A.G. TAYSHIEVA, G.N. NUGMANOVA, T.R. MYRZAKUL

Abstract. The work is devoted to studying an equivalence of a two-component Camassa-
Holm equation and a spin system being a generalization of Heisenberg ferromagnet equa-
tion. It is known that the equivalence between two nonlinear integrable equations provides
a possibility of an extended search of their various exact solutions. For Camassa-Holm
equation, a method of inverse scattering problem can be applied via a system of linear
partial differential equations with scalar coefficients. Contrary to Camassa-Holm equation,
the coefficients of linear system corresponding to spin equations are related with symmetric
matrix Lax representations. This is why, while establishing an equivalence between two
above equations, additional difficulties arise. In view of this, we propose a matrix Lax
representation for Camassa-Holm equation in a symmetric space. Employing this result,
we establish a gauge equivalence between two-component Camassa-Holm equation and a
spin system. We describe a relation between their solutions.

Keywords: two-component Camassa-Holm equation, matrix Lax representation, spin sys-
tem, gauge equivalence.
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1. Introduction

The theory of multi-component integrable nonlinear evolution equations attracted recently
many researchers specialized in the soliton theory [1]-[2]. One of such models is a two-component
Camassa-Holm equation originating from a classical integrable Camassa-Holm equation of form
[3]

𝑢𝑡 + 𝜅𝑢𝑥 − 𝑢𝑥𝑥𝑡 + 3𝑢𝑢𝑥 = 2𝑢𝑥𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥, (1.1)

where 𝑢 = 𝑢(𝑥, 𝑡) is the velocity of a wave on a shallow water in the direction 𝑥, and 𝜅 is a
coupling constant.

It was shown in works [4]–[6] that Camassa-Holm equation (1.1) possesses many important
properties exhibited by integrable equations.

2. Two-component Camassa-Holm equation

The object of our study is a two-component Camassa-Holm equation provided in work [7].
It reads as follows:

𝑚𝑡 + 𝑢𝑚𝑥 + 2𝑚𝑢𝑥 − 𝜌𝜌𝑥 = 0, (2.1)

𝜌𝑡 + (𝜌𝑢)𝑥 = 0, (2.2)

where 𝑢 = 𝑢(𝑥, 𝑡), 𝜌 = 𝜌(𝑥, 𝑡) and 𝑚 = 𝑚(𝑥, 𝑡) ≡ 𝑢− 𝑢𝑥𝑥 + 𝑘2 are real functions on 𝑥 and 𝑡.
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Camassa-Holm equation (2.1)–(2.2) can be solved by the method of the inverse scattering
problem via the Lax representation [7]:

Φ𝑥𝑥 =

(︂
1

4
−𝑚𝜆 + 𝜌2𝜆2

)︂
Φ, (2.3)

Φ𝑡 = −
(︂

1

2𝜆
+ 𝑢

)︂
Φ𝑥 +

𝑢𝑥

2
Φ, (2.4)

where 𝜆 is a spectral parameter, Φ(𝜆;𝑥, 𝑡) = (𝜑1, 𝜑2)
𝑇 .

3. Matrix Lax representation of two-component Camassa-Holm equation

Our main result is formulated in the following theorem.

Theorem 3.1. The Lax representation of two-component Camassa-Holm equation (2.1)–
(2.2) in a symmetric space su(𝑛 + 1)/s(u(1) ⊕ u(𝑛)) as 𝑛 = 2 reads as

Φ𝑥 = 𝑈1Φ, (3.1)

Φ𝑡 = 𝑉1Φ, (3.2)

where

𝑈1 =

(︂
−1

2
𝜆

𝑚𝜆 + 𝜌2𝜆3 1
2

)︂
, (3.3)

𝑉1 =

(︂ 𝑢+𝑢𝑥

2
− 1

4𝜆2
1
2𝜆

− 𝑢𝜆
𝑚+𝑢𝑥+𝑢𝑥𝑥

2𝜆
− 𝑢𝑚𝜆 + 𝜆𝜌2

2
− 𝜆3𝑢𝜌2 1

4𝜆2 − 𝑢+𝑢𝑥

2

)︂
. (3.4)

Proof. The compatibility conditions for system (3.1)–(3.2) yield that the matrices 𝑈1(𝑥, 𝑡, 𝜆)
and 𝑉1(𝑥, 𝑡, 𝜆) satisfy the zero curvature condition:

𝑈1𝑡 − 𝑉1𝑥 + [𝑈1, 𝑉1] = 0. (3.5)

We rewrite equation (3.5) in terms of the components 𝑈1, 𝑉1:(︂
−1

2
𝜆

𝑚𝜆 + 𝜌2𝜆3 1
2

)︂
𝑡

−
(︂ 𝑢+𝑢𝑥

2
− 1

4𝜆2
1
2𝜆

− 𝑢𝜆
𝑚+𝑢𝑥+𝑢𝑥𝑥

2𝜆
− 𝑢𝑚𝜆 + 𝜆𝜌2

2
− 𝜆3𝑢𝜌2 1

4𝜆2 − 𝑢+𝑢𝑥

2

)︂
𝑥

−
(︂

0 1
2𝜆

− 𝑢𝜆

−𝑚+𝑢𝑥+𝑢𝑥𝑥

2𝜆
+ 𝑢𝑚𝜆− 𝜆𝜌2

2
+ 𝜆3𝑢𝜌2 0

)︂
−
(︂
𝑢 + 𝑢𝑥 −

1

2𝜆2

)︂(︂
0 𝜆

−𝜆𝑚− 𝜆3𝜌2 0

)︂
−
(︂

𝑢𝑥+𝑢𝑥𝑥

2
0

0 −𝑢𝑥+𝑢𝑥𝑥

2

)︂
= 0.

(3.6)

Equating corresponding elements of the second rows and first columns in the matrices in
equation (3.6), we obtain

𝜆𝑚𝑡 + 2𝜆3𝜌𝜌𝑡 −
𝑚𝑥 + 𝑢𝑥𝑥 + 𝑢𝑥𝑥𝑥

2𝜆
+ (𝑢𝑚)𝑥𝜆− 𝜆𝜌𝜌𝑥

+ 2𝑢𝜌𝜌𝑥𝜆
3 + 𝑢𝑥𝜌

2𝜆3 +
𝑚 + 𝑢𝑥 + 𝑢𝑥𝑥

2𝜆
− 𝑢𝑚𝜆

+
𝜆𝜌2

2
− 𝜆3𝑢𝜌2 +

(︂
𝑢 + 𝑢𝑥 −

1

2𝜆2

)︂(︀
𝜆𝑚 + 𝜆3𝜌2

)︀
= 0.

(3.7)

Other elements vanish identically.
The coefficients at 𝜆 in equation (3.7) are the same as the first equation in two-component

Camassa-Holm equation, which is equation (2.1):

𝑚𝑡 + 2𝑢𝑥𝑚 + 𝑢𝑚𝑥 − 𝜌𝜌𝑥 = 0.
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The coefficients at 𝜆3 are equivalent to the second equation in the two-component Camassa-
Holm equation, which equation (2.2),

𝜌𝑡 + (𝑢𝜌)𝑥 = 0,

while the coefficients at the power 𝜆−1 are equivalent to the equation

𝑚 = 𝑢− 𝑢𝑥𝑥 + 𝐶,

where 𝐶 is an integration constant.

4. Generalized Heisenberg ferromagnet equation

In this section we provide one of integrable generalized Heisenberg ferromagnet equation, a
spin system, which reads as

[𝐴,𝐴𝑥𝑡 + (𝑢𝐴𝑥)𝑥] − 1

𝛽2
𝐴𝑥 − 4𝛽𝜌𝜌𝑥𝑍 = 0. (4.1)

Here real functions 𝑢(𝑥, 𝑡) and 𝜌(𝑥, 𝑡) are expressed via 2×2 matrix function 𝐴(𝑥, 𝑡) as follows:

𝑢 = 0.25𝛽−2(1 − 𝜕2
𝑥)−1 det (𝐴2

𝑥), (4.2)

𝜌2 = −𝑡𝑟(𝐴2
𝑥) + 2𝑑𝑒𝑡(𝐴𝑥)

8𝛽4
, (4.3)

where 𝛽 = 𝑐𝑜𝑛𝑠𝑡 and

𝑍 =
0.5𝛽

𝑢𝑥 + 𝑢𝑥𝑥

[𝐴,𝐴𝑡 + (𝑢− 0.5𝛽−2)𝐴𝑥]. (4.4)

Here 𝐴 =

(︂
𝐴3 𝐴−

𝐴+ −𝐴3

)︂
is a matrix analogue of a three-component spin vector (or magnetization

vector) A = (𝐴1, 𝐴2, 𝐴3) with the unit length A2 = 1. In terms of the entries of the matrix 𝐴
this reads as 𝐴± = 𝐴1 ± 𝑖𝐴2, 𝐴

2 = 𝐼, where 𝐼 = diag (1, 1).
We call generalized Heisenberg ferromagnet equation (4.1) as Myrzakulov-CVI (M-CVI)

equation , in honor of its author, similar to works [8]-[9].
The Lax representation corresponding to M-CVI equation reads as

Ψ𝑥 = 𝑈2Ψ, (4.5)

Ψ𝑠 = 𝑉2Ψ, (4.6)

where

𝑈2 =

(︂
𝜆

4𝛽
− 1

4

)︂
[𝐴,𝐴𝑥] + (𝜆3 − 𝛽2𝜆)𝜌2𝑍, (4.7)

𝑉2 =

(︂
1

4𝛽2
− 1

4𝜆2

)︂
𝐴 +

𝑢

4

(︂
𝛽

𝜆
− 𝜆

𝛽

)︂
[𝐴,𝐴𝑥] +

(︂
𝛽

4𝜆
− 1

4

)︂
[𝐴,𝐴𝑡] + 𝑣𝜌2𝑍. (4.8)

Here 𝑣 = 𝜆(0.5 + 𝛽2𝑢) − 𝜆3𝑢− 0.5𝛽2𝜆−1.

5. Gauge equivalence of two-component Camassa-Holm equation and
Murzakylov-CVI equation

In this section we establish a gauge relation between two-component Camassa-Holm equation
and Myrzakulov-CVI equation.

Theorem 5.1. Two-component Camassa-Holm equation (2.1)–(2.2) with matrix Lax rep-
resentation (3.1)–(3.2) and spin system (4.1) with Lax representation (4.5)–(4.6) are gauge
equivalent.
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Proof. According classical theory of gauge equivalence, see, for instance, [10], we begin the
proof of Theorem 5.1 with the transform

Ψ = 𝑔−1Φ, 𝑔 = Φ|𝜆=𝛽,

where Ψ(𝜆;𝑥, 𝑡) solves the system corresponding to M-CVI equation (4.1), Φ(𝜆;𝑥, 𝑡) is a solution
to system corresponding to two-component Camassa-Holm equation (2.1)–(2.2), and 𝑔(𝑥, 𝑡) is
an arbitrary 2 × 2 matrix function being a solution to system (3.1)–(3.2) as 𝜆 = 𝛽.

The derivative of the vector function Ψ in 𝑥 is equal to

Ψ𝑥 =
(︀
𝑔−1Φ

)︀
𝑥

= 𝑔−1Φ𝑥 − 𝑔−1𝑔𝑥𝑔
−1Φ = 𝑔−1

(︀
𝑈1 − 𝑔𝑥𝑔

−1
)︀

Φ

=

[︂
(𝜆− 𝛽) 𝑔−1

(︂
0 1
𝑚 0

)︂
𝑔 +

(︀
𝜆3 − 𝛽3

)︀
𝜌2𝑔−1

(︂
0 0
1 0

)︂
𝑔

]︂
Ψ.

(5.1)

We introduce the notation [10]

𝐴 = 𝑔−1𝜎3𝑔, (5.2)

where 𝜎3 =

(︂
1 0
0 −1

)︂
is the Pauli matrix. By (5.2) we obtain that

𝐴𝑥 =
(︀
𝑔−1𝜎3𝑔

)︀
𝑥

= 𝑔−1
[︀
𝜎3, 𝑔𝑥𝑔

−1
]︀
𝑔 = 2𝑔−1

(︂
0 𝛽

−𝛽𝑚− 𝛽3𝜌2 0

)︂
𝑔. (5.3)

We also have

[𝐴,𝐴𝑥] = 4𝑔−1

(︂
0 𝛽

𝛽𝑚 + 𝛽3𝜌2 0

)︂
𝑔, (5.4)

and

𝑔−1

(︂
0 1
𝑚 0

)︂
𝑔 =

1

4𝛽
[𝐴,𝐴𝑥] − 𝛽2𝜌2𝑍. (5.5)

In view of (5.4) and (5.5), by (5.1) we find that

𝑈2 =

(︂
𝜆

4𝛽
− 1

4

)︂
[𝐴,𝐴𝑥] +

(︀
𝜆3 − 𝛽2𝜆

)︀
𝜌2𝑍, (5.6)

where 𝑍 = 𝑔−1

(︂
0 0
1 0

)︂
𝑔.

Thus, we have expressed the sought 2× 2-matrix 𝑈2 via spin matrix 𝐴, which is a coefficient
in equation (4.5).

In order to recover the coefficient in equation (4.5), we find the derivative of Ψ in 𝑡:

Ψ𝑡 =
(︀
𝑔−1Φ

)︀
𝑡

= 𝑔−1Φ𝑡 − 𝑔−1𝑔𝑡𝑔
−1Φ = 𝑔−1

(︀
𝑉1 − 𝑔𝑡𝑔

−1
)︀

Φ

=

(︂
1

4𝛽2
− 1

4𝜆2

)︂
𝐴 +

[︂
1

8𝛽𝜆
− 1

8𝛽2
+

(︂
1

4
− 𝜆

4𝛽

)︂
𝑢

]︂
[𝐴,𝐴𝑥]

+

[︂
−𝛽2𝜌2

2𝜆
+ 𝜆𝑢𝛽2𝜌2 +

(︂
1

2𝜆
− 1

2𝛽

)︂
(𝑢𝑥 + 𝑢𝑥𝑥) +

𝜆𝜌2

2
− 𝜆3𝑢𝜌2

]︂
𝑍.

(5.7)

We also have:

𝐴𝑡 = 𝑔−1
[︀
𝜎3, 𝑔𝑡𝑔

−1
]︀
𝑔 = 2𝑔−1

(︃
0 1

2𝛽
− 𝑢𝛽

−𝑚+𝑢𝑥+𝑢𝑥𝑥

2𝛽
+ 𝑢𝑚𝛽 − 𝜌2𝛽

2
+ 𝛽3𝑢𝜌2 0

)︃
𝑔, (5.8)

and

[𝐴,𝐴𝑡] =

(︂
1

2𝛽2
− 𝑢

)︂
[𝐴,𝐴𝑥] +

2

𝛽
(𝑢𝑥 + 𝑢𝑥𝑥)𝑍. (5.9)



54 A.G. TAYSHIEVA, G.N. NUGMANOVA, T.R. MYRZAKUL

In view of (5.8) and (5.9), by (5.7) we find that 𝑉2 is expressed via 𝐴 as follows:

𝑉2 =

(︂
1

4𝛽2
− 1

4𝜆2

)︂
𝐴 +

[︂(︂
𝛽

4𝜆
− 𝜆

4𝛽

)︂
𝑢− 1

8𝛽𝜆
+

1

8𝛽2

]︂
[𝐴,𝐴𝑥]

+

(︂
𝛽

4𝜆
− 1

4

)︂
[𝐴,𝐴𝑡] + 𝜌2𝜗𝑍,

(5.10)

where

𝜗 =
𝜆

2
− 𝜆3𝑢− 𝛽2

2𝜆
+ 𝜆𝛽2𝑢.

Thus, we have obtained a coefficient in equation (4.6). It is also easy to confirm that the zero
curvature condition

𝑈2𝑡 − 𝑉2𝑥 + [𝑈2, 𝑉2] = 0

with pairs 𝑈2, 𝑉2 defined in (5.6) and (5.10) is equivalent to M-CVI equation (4.1).

Corollary 5.1. If the functions 𝑢(𝑥, 𝑡) and 𝜌(𝑥, 𝑡) solve two-component Camassa-Holm equa-
tion (2.1)–(2.2) and the matrix function 𝐴 solves M-CVI equation (4.1), then they are related
by (4.2) and (4.3).

6. Conclusion

In our work we propose a matrix form of the Lax representation for two-component Camassa-
Holm equation in the symmetric space su(𝑛 + 1)/s(u(1) ⊕ u(𝑛)) in the case 𝑛 = 2. Such Lax
representation enlarges the ways for studying the considered equation. In particular, employing
the Lax representation for Camassa-Holm equation, we establish the gauge equivalence of this
equation with M-CVI equation and we find a relation between their solutions.
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