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SOME CHEBYSHEV TYPE INEQUALITIES FOR

GENERALIZED RIEMANN-LIOUVILLE OPERATOR

B. HALIM, A.SENOUCI, M. SOFRANI

Abstract. In this paper we are interested in the famous inequality introduced by
Chebyshev. This inequality has several generalizations and applications in different fields of
mathematics and others. In particular it is important for us the applications of fractional
calculus for the different integral Chebyshev type inequalities.
We establish and prove some theorems and corollaries relating to fractional integral, by

applying more general fractional integral operator than Riemann-Liouville one:

𝐾𝛼,𝛽
𝑢,𝑣 =

𝑣(𝑥)

Γ(𝛼)

𝑥∫︁
0

(𝑥− 𝑡)𝛼−1
[︁
ln
(︁𝑥
𝑡

)︁]︁𝛽−1
𝑓(𝑡)𝑢(𝑡)𝑑𝑡, 𝑥 > 0

where 𝛼 > 0, 𝛽 > 1, 𝑢 and 𝑣 locally integrable non-negative weight functions, Γ is the
Euler Gamma-function. First, fractional integral Chebyshev type inequalities are obtained

for operator 𝐾𝛼,𝛽
𝑢,𝑣 with two synchronous or two asynchronous functions and by induction

for several functions. Second, we consider an extended Chebyshev functional

𝑇 (𝑓, 𝑔, 𝑝, 𝑞) :=

𝑏∫︁
𝑎

𝑞(𝑥)𝑑𝑥

𝑏∫︁
𝑎

𝑝(𝑥)𝑓(𝑥)𝑔(𝑥)𝑑𝑥 +

𝑏∫︁
𝑎

𝑝(𝑥)𝑑𝑥

𝑏∫︁
𝑎

𝑞(𝑥)𝑓(𝑥)𝑔(𝑥)𝑑𝑥

−

⎛⎝ 𝑏∫︁
𝑎

𝑞(𝑥)𝑓(𝑥)𝑑𝑥

⎞⎠⎛⎝ 𝑏∫︁
𝑎

𝑝(𝑥)𝑔(𝑥)𝑑𝑥

⎞⎠
−

⎛⎝ 𝑏∫︁
𝑎

𝑝(𝑥)𝑓(𝑥)𝑑𝑥

⎞⎠⎛⎝ 𝑏∫︁
𝑎

𝑞(𝑥)𝑔(𝑥)𝑑𝑥

⎞⎠ ,

where 𝑝, 𝑞 are positive integrable weight functions on [𝑎, 𝑏]. In this case fractional integral

weighted inequalities are established for two fractional integral operators𝐾𝛼1,𝛽1
𝑢1,𝑣1 and𝐾𝛼2,𝛽2

𝑢2,𝑣2 ,
with two synchronous or asynchronous functions, where 𝛼1 ̸= 𝛼2, 𝛽1 ̸= 𝛽2 and 𝑢1 ̸= 𝑢2,
𝑣1 ̸= 𝑣2. In addition, a fractional integral Hölder type inequality for several functions is

established using the operator 𝐾𝛼,𝛽
𝑢,𝑣 . At the end, another fractional integral Chebyshev

type inequality is given for increasing function 𝑓 and differentiable function 𝑔.
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1. Introduction

Let 0 6 𝑎 < 𝑏 < ∞ 𝑓 and 𝑔 be two integrable functions on [𝑎, 𝑏] and

𝑇 (𝑓, 𝑔) :=

𝑏∫︁
𝑎

𝑓(𝑥)𝑔(𝑥)𝑑𝑥− 1

(𝑏− 𝑎)

⎛⎝ 𝑏∫︁
𝑎

𝑓(𝑥)𝑑𝑥

⎞⎠⎛⎝ 𝑏∫︁
𝑎

𝑔(𝑥)𝑑𝑥

⎞⎠ . (1.1)

The Chebyshev functional (1.1) has many applications in numerical quadrature, transform
theory, probability, study of existence of solutions of differential equations and in statistical
problems. The following inequality called Chebyshev integral inequality is well known, see [3].

Lemma 1.1. If 𝑓 and 𝑔 are two synchronous functions on [𝑎, 𝑏], i.e

(𝑓(𝜏) − 𝑓(𝜌))(𝑔(𝜏) − 𝑔(𝜌)) > 0),

for each 𝜏, 𝜌 ∈ [𝑎, 𝑏], then

𝑇 (𝑓, 𝑔) > 0. (1.2)

If 𝑓, 𝑔 are asynchronous on [𝑎, 𝑏], i.e.,

(𝑓(𝜏) − 𝑓(𝜌))(𝑔(𝜏) − 𝑔(𝜌)) 6 0),

for each 𝜏, 𝜌 ∈ [𝑎, 𝑏], then inequality (1.2) is reversed. The constant
1

𝑏− 𝑎
is the best possible in

inequality (1.2).

We consider the extended Chebyshev functional defined as follows

𝑇 (𝑓, 𝑔, 𝑝, 𝑞) :=

𝑏∫︁
𝑎

𝑞(𝑥)𝑑𝑥

𝑏∫︁
𝑎

𝑝(𝑥)𝑓(𝑥)𝑔(𝑥)𝑑𝑥

+

𝑏∫︁
𝑎

𝑝(𝑥)𝑑𝑥

𝑏∫︁
𝑎

𝑞(𝑥)𝑓(𝑥)𝑔(𝑥)𝑑𝑥

−

⎛⎝ 𝑏∫︁
𝑎

𝑞(𝑥)𝑓(𝑥)𝑑𝑥

⎞⎠⎛⎝ 𝑏∫︁
𝑎

𝑝(𝑥)𝑔(𝑥)𝑑𝑥

⎞⎠
−

⎛⎝ 𝑏∫︁
𝑎

𝑝(𝑥)𝑓(𝑥)𝑑𝑥

⎞⎠⎛⎝ 𝑏∫︁
𝑎

𝑞(𝑥)𝑔(𝑥)𝑑𝑥

⎞⎠ ,

where 𝑝, 𝑞 are positive integrable weight functions on [𝑎, 𝑏].
If 𝑞(𝑥) = 𝑝(𝑥), 𝑥 ∈ [𝑎, 𝑏], in 𝑇 (𝑓, 𝑔, 𝑝, 𝑞), we have the following lemma, see [7].

Lemma 1.2. If 𝑓 and 𝑔 are two synchronous functions on [𝑎, 𝑏], then

𝑇 (𝑓, 𝑔, 𝑝) :=

𝑏∫︁
𝑎

𝑝(𝑥)𝑑𝑥

𝑏∫︁
𝑎

𝑝(𝑥)𝑓(𝑥)𝑔(𝑥)𝑑𝑥−
𝑏∫︁

𝑎

𝑝(𝑥)𝑓(𝑥)𝑑𝑥

𝑏∫︁
𝑎

𝑝(𝑥)𝑔(𝑥)𝑑𝑥 > 0. (1.3)

If 𝑓, 𝑔 are asynchronous [𝑎, 𝑏], then inequality (1.3) is reversed.

Remark 1.1. If 𝑝(𝑥) = 1, in (1.3) we obtain the classical Chebychev inequality.

In the following we give some basic definitions.
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Definition 1.1. For 1 6 𝑝 < ∞ we denote by 𝐿𝑝 := 𝐿𝑝(0,∞) the set of all Lebesgue
measurable functions 𝑓 such that

‖𝑓‖𝑝 =

⎛⎝ ∞∫︁
0

|𝑓(𝑥)|𝑝𝑑𝑥

⎞⎠ 1
𝑝

< ∞.

Definition 1.2. Let 𝑧 > 0, 𝑟, 𝑠 > 0. The gamma and the beta functions are defined as follows

Γ(𝑧) =

∞∫︁
0

𝑡𝑧−1𝑒−𝑡𝑑𝑡 𝑧 > 0,

𝐵(𝑟, 𝑠) =

1∫︁
0

𝑡𝑟−1(1 − 𝑡)𝑠−1𝑑𝑡.

Definition 1.3. The Riemann-Liouville fractional integral operators of order 𝛼 > 0 of func-
tion 𝑓(𝑥) ∈ 𝐿1[𝑎, 𝑏], −∞ < 𝑎 < 𝑏 < +∞, are defined by

𝐽𝛼
𝑎+𝑓(𝑥) =

1

Γ(𝛼)

𝑥∫︁
𝑎

(𝑥− 𝑡)𝛼−1𝑓(𝑡)𝑑𝑡 𝑥 > 𝑎.

𝐽𝛼
𝑏−𝑓(𝑥) =

1

Γ(𝛼)

𝑏∫︁
𝑥

(𝑡− 𝑥)𝛼−1𝑓(𝑡)𝑑𝑡, 𝑥 < 𝑏.

For 𝑎 = 0 we denote 𝐽𝛼
𝑎+ by 𝐽𝛼.

Definition 1.4. A real valued function 𝑓 : [0,∞) → R is said to be in the space 𝐶𝜇, 𝜇 ∈ R,
if there exists a real number 𝑝 > 𝜇 such that 𝑓(𝑥) = 𝑥𝑝𝑓1(𝑥), where 𝑓1 ∈ 𝐶[0,∞).

The following theorems were proved in [5].

Theorem 1.1. Let 𝑓 and 𝑔 be two synchronous functions on (0,∞). Then for all
𝑡 > 0, 𝛼 > 0,

𝐽𝛼(𝑓𝑔)(𝑡) >
Γ(𝛼 + 1)

𝑡𝛼
𝐽𝛼𝑓(𝑡)𝐽𝛼𝑔(𝑡) (1.4)

for all 𝑡 > 0, 𝛼 > 0. The inequality (1.4) is reversed if the functions are asynchronous on
(0,∞).

Theorem 1.2. Let 𝑓 and 𝑔 be two synchronous functions on (0,∞). Then

𝑡𝛼

Γ(𝛼 + 1)
𝐽𝛽(𝑓𝑔)(𝑡) +

𝑡𝛽

Γ(𝛽 + 1)
𝐽𝛼(𝑓𝑔)(𝑡) > 𝐽𝛼𝑓(𝑡)𝐽𝛽𝑔(𝑡) + 𝐽𝛽𝑓(𝑡)𝐽𝛼𝑔(𝑡). (1.5)

for all 𝑡 > 0, 𝛼 > 0, 𝛽 > 0. The inequality (1.5) is reversed if the functions are asynchronous
on (0,∞).

Theorem 1.3. Let 𝑝 > 1, 𝑝′ > 1 such that 1
𝑝

+ 1
𝑝′

= 1, if 𝑓 and 𝑔 are two functions in 𝐿𝑝

and 𝐿𝑝′, respectively. Then

𝐽𝛼(𝑓𝑔)(𝑥) 6 (𝐽𝛼𝑓𝑝(𝑥))
1
𝑝

(︁
𝐽𝛼𝑔𝑝

′
(𝑥)
)︁ 1

𝑝′

for all 𝑥 > 0, 𝛼 > 0.

The following theorems were proved in [2].
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Theorem 1.4. Let {𝑓𝑖}16𝑖6𝑛 be 𝑛 positive increasing functions on (0,∞) then

𝐽𝛼

(︃
𝑖=𝑛∏︁
𝑖=1

𝑓𝑖

)︃
(𝑥) > (𝐽𝛼(1)(𝑥))(1−𝑛)

𝑖=𝑛∏︁
𝑖=1

𝐽𝛼𝑓𝑖(𝑥)

for all 𝑥 > 0, 𝛼 > 0.

Theorem 1.5. Let 𝑓 and 𝑔 be two functions defined on (0,∞), such that 𝑓 is increasing and
𝑔 is differentiable and there exists a real number 𝑚 := inf𝑥>0 𝑔

′(𝑥). Then

𝐽𝛼(𝑓𝑔)(𝑥) > (𝐽𝛼(1))−1 𝐽𝛼𝑓(𝑥)𝐽𝛼𝑔(𝑥) − 𝑚

𝛼 + 1
𝐽𝛼𝑓(𝑥) + 𝑚𝐽𝛼(𝑥𝑓)(𝑥)

is valid for all 𝑥 > 0, 𝛼 > 0.

2. Main Results

The aim of this work is to extend the results of [2] and [5] to a more general fractional integral
operator, than the Riemann-Liouville one.

Definition 2.1. Let 𝛼 > 0, 𝛽 > 1, 1 6 𝑝 < ∞ and the integral operator K𝛼,𝛽
𝑢,𝑣 be defined as

K𝛼,𝛽
𝑢,𝑣 𝑓(𝑥) =

𝑣(𝑥)

Γ(𝛼)

𝑥∫︁
0

(𝑥− 𝑡)𝛼−1
[︁
ln
(︁𝑥
𝑡

)︁]︁𝛽−1

𝑓(𝑡)𝑢(𝑡)𝑑𝑡, 𝑥 > 0 (2.1)

defined from 𝐿𝑝 to 𝐿𝑝 space, with locally integrable non-negative weight functions 𝑢 and 𝑣.

We mention that for 𝛼 > 0, 𝛽 > 1 necessary and sufficient conditions for the boundedness,
see [6, Thm. 3.1], and compactness, see [6, Thm. 4.1], of the integral operator K𝛼,𝛽

𝑢,𝑣; from 𝐿𝑝

to 𝐿𝑞 spaces with 0 < 𝑝, 𝑞 < ∞ were found for locally integrable non-negative weight functions
𝑢, 𝑣.

Remark 2.1. If 𝑣(𝑥) = 𝑢(𝑥) = 1, 𝛽 = 1, the operator K𝛼,1
1,1 coincides with the classical

Riemann-Liouville fractional integral operator.

To simplify the calculations, we denote

K := K𝛼,𝛽
𝑢,𝑣 , 𝑘(𝑥, 𝑡) := (𝑥− 𝑡)𝛼−1 ln𝛽−1

(︁𝑥
𝑡

)︁
̸= 0.

Then the integral operator in inequality (2.1) becomes

K𝑓(𝑥) =
𝑣(𝑥)

Γ(𝛼)

𝑥∫︁
0

𝑘(𝑥, 𝑡)𝑓(𝑡)𝑢(𝑡)𝑑𝑡, 𝑥 > 0.

Theorem 2.1. Let 𝑓, 𝑔 be two synchronous functions on (0,∞), 𝑢 and 𝑣 locally integrable
non-negative weight functions. Then

K(𝑓𝑔)(𝑥) > (K(1))−1K𝑓(𝑥)K𝑔(𝑥), (2.2)

where

K(1)(𝑥) =
𝑣(𝑥)

Γ(𝛼)

𝑥∫︁
0

𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡.

Inequality (2.2) is reversed if the functions are asynchronous on (0,∞).
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Proof. Since the functions 𝑓 and 𝑔 are synchronous on (0,∞), then for all 𝜏 > 0, 𝜌 > 0 we
have:

(𝑓(𝜏) − 𝑓(𝜌)) (𝑔(𝜏) − 𝑔(𝜌)) > 0.

Hence,

𝑓(𝜏)𝑔(𝜏) + 𝑓(𝜌)𝑔(𝜌) > 𝑓(𝜏)𝑔(𝜌) + 𝑓(𝜏)𝑔(𝜌). (2.3)

Multiplying both sides of inequality (2.3) by
𝑣(𝑥)

Γ(𝛼)
𝑘(𝑥, 𝜏)𝑢(𝜏), 𝜏 ∈ (0, 𝑥), we get:

𝑣(𝑥)

Γ(𝛼)
𝑘(𝑥, 𝜏)𝑓(𝜏)𝑔(𝜏)𝑢(𝜏) +

𝑣(𝑥)

Γ(𝛼)
𝑘(𝑥, 𝜏)𝑓(𝜌)𝑔(𝜌)𝑢(𝜏) >

𝑣(𝑥)

Γ(𝛼)
𝑘(𝑥, 𝜏)𝑓(𝜏)𝑔(𝜌)𝑢(𝜏)

+
𝑣(𝑥)

Γ(𝛼)
𝑘(𝑥, 𝜏)𝑓(𝜌)𝑔(𝜏)𝑢(𝜏).

(2.4)

Integrating inequality (2.4) with respect to 𝜏 over (0, 𝑥), we obtain

𝑣(𝑥)

Γ(𝛼)

𝑥∫︁
0

𝑘(𝑥, 𝜏)𝑓(𝜏)𝑔(𝜏)𝑢(𝜏)𝑑𝜏 + 𝑓(𝜌)𝑔(𝜌)
𝑣(𝑥)

Γ(𝛼)

𝑥∫︁
0

𝑘(𝑥, 𝜏)𝑢(𝜏) 𝑑𝜏

> 𝑔(𝜌)
𝑣(𝑥)

Γ(𝛼)

𝑥∫︁
0

𝑘(𝑥, 𝜏)𝑓(𝜏)𝑢(𝜏)𝑑𝜏 + 𝑓(𝜌)
𝑣(𝑥)

Γ(𝛼)

𝑥∫︁
0

𝑘(𝑥, 𝜏)𝑓(𝜏)𝑢(𝜏)𝑑𝜏.

This implies:

K(𝑓𝑔)(𝑥) + 𝑓(𝜌)𝑔(𝜌)K(1)(𝑥) > 𝑔(𝜌)K(𝑓)(𝑥) + 𝑓(𝜌)K(𝑔)(𝑥). (2.5)

Multiplying both sides of (2.5) by
𝑣(𝑥)

Γ(𝛼)
𝑘(𝑥, 𝜌)𝑢(𝜌), we get:

𝑣(𝑥)

Γ(𝛼)
𝑘(𝑥, 𝜌)𝑢(𝜌)K(𝑓𝑔)(𝑥) +

𝑣(𝑥)

Γ(𝛼)
𝑘(𝑥, 𝜌)𝑢(𝜌)𝑓(𝜌)𝑔(𝜌)K(1)(𝑥)

>
𝑣(𝑥)

Γ(𝛼)
𝑘(𝑥, 𝜌)𝑢(𝜌)𝑔(𝜌)K(𝑓)(𝑥) +

𝑣(𝑥)

Γ(𝛼)
𝑘(𝑥, 𝜌)𝑢(𝜌)𝑓(𝜌)K(𝑔)(𝑥).

We integrate the obtained inequality with respect to 𝜌 over (0, 𝑥):

K(𝑓𝑔)(𝑥)
𝑣(𝑥)

Γ(𝛼)

𝑥∫︁
0

𝑘(𝑥, 𝜌)𝑢(𝜌)𝑑𝜌 + K(1)(𝑥)
𝑣(𝑥)

Γ(𝛼)

𝑥∫︁
0

𝑘(𝑥, 𝜌)𝑢(𝜌)𝑓(𝜌)𝑔(𝜌)𝑑𝜌

> K𝑓(𝑥)
𝑣(𝑥)

Γ(𝛼)

𝑥∫︁
0

𝑘(𝑥, 𝜌)𝑢(𝜌)𝑔(𝜌)𝑑𝜌 + K𝑔(𝑥)
𝑣(𝑥)

Γ(𝛼)

𝑥∫︁
0

𝑘(𝑥, 𝜌)𝑓(𝜌)𝑢(𝜌)𝑑𝜌.

Hence,

K(𝑓𝑔)(𝑥)K(1)(𝑥) + K(1)(𝑥)K(𝑓𝑔)(𝑥) > K𝑓(𝑥)K𝑔(𝑥) + K𝑔(𝑥)K𝑓(𝑥).

This yields:

K(𝑓𝑔)(𝑥) > (K(1))−1K𝑓(𝑥)K𝑔(𝑥).

If 𝑓 and 𝑔 are asynchronous, the proof is similar to that of synchronous case. The proof is
complete.

Remark 2.2. Theorem 2.1 applied with 𝑣(𝑥) = 𝑢(𝑥) = 1, 𝛽 = 1 gives Theorem 1.1.
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Theorem 2.2. Let {𝑓𝑖}16𝑖6𝑛 be 𝑛 positive increasing functions on [0,∞) and 𝑢 and 𝑣 be
locally integrable non-negative weight functions. Then

K

(︃
𝑖=𝑛∏︁
𝑖=1

𝑓𝑖

)︃
(𝑥) > (K(1)(𝑥))(1−𝑛)

𝑖=𝑛∏︁
𝑖=1

K𝑓𝑖(𝑥)

for all 𝑥 > 0.

Proof. We prove this Theorem by induction. We suppose that

K

(︃
𝑖=𝑛−1∏︁
𝑖=1

𝑓𝑖

)︃
(𝑥) > (K(1)(𝑥))(2−𝑛)

𝑖=𝑛−1∏︁
𝑖=1

K𝑓𝑖(𝑥). (2.6)

Since {𝑓𝑖}16𝑖6𝑛 are positive increasing functions, then
∏︀𝑖=𝑛−1

𝑖=1 𝑓𝑖 is an increasing function.

Hence, we can apply Theorem 2.1 with
∏︀𝑖=𝑛−1

𝑖=1 𝑓 = 𝑔, 𝑓𝑛 = 𝑓, and we obtain

K

(︃
𝑖=𝑛∏︁
𝑖=1

𝑓𝑖

)︃
(𝑥) = K(𝑓𝑔)(𝑥) > (K(1))−1K

(︃
𝑖=𝑛−1∏︁
𝑖=1

𝑓𝑖

)︃
(𝑥)K𝑓𝑛(𝑥).

Therefore, by (2.6), we get

K

(︃
𝑖=𝑛∏︁
𝑖=1

𝑓𝑖

)︃
(𝑥) > (K(1))−1 (K(1))2−𝑛

(︃
𝑖=𝑛∏︁
𝑖=1

K𝑓𝑖

)︃
(𝑥)K𝑓𝑛(𝑥),

and the proof is complete.

Remark 2.3. Theorem 2.2 with 𝑣(𝑥) = 𝑢(𝑥) = 1, 𝛽 = 1 gives Theorem 1.4.

Considering 𝑓𝑖 = 𝑓 , 𝑖 = 1, 2, . . . , 𝑛, in Theorem 2.2, we get the following Corollary.

Corollary 2.1. Let 𝑓 be an increasing positive function on (0,∞), 𝑢 and 𝑣 locally integrable
non-negative weight functions, then

K(𝑓𝑛)(𝑥) > (K(1)(𝑥))(1−𝑛) (K𝑓(𝑥))𝑛 .

Now we consider the next two operators

K1𝑓(𝑥) =
𝑣1(𝑥)

Γ(𝛼1)

𝑥∫︁
0

(𝑥− 𝑡)𝛼1−1 ln𝛽1−1
(︁𝑥
𝑡

)︁
𝑓(𝑡)𝑢1(𝑡)𝑑𝑡,

K2𝑓(𝑥) =
𝑣2(𝑥)

Γ(𝛼2)

𝑥∫︁
0

(𝑥− 𝑡)𝛼2−1 ln𝛽2−1
(︁𝑥
𝑡

)︁
𝑓(𝑡)𝑢2(𝑡)𝑑𝑡.

Theorem 2.3. Let 𝑓, 𝑔 be two synchronous functions on (0,∞) 𝑝, 𝑞 : [𝑎, 𝑏] → (0,∞) be
integrable, 𝑢𝑖 and 𝑣𝑖 𝑖 = 1, 2, locally integrable non-negative weight functions. Then

K2𝑞(𝑥)K1(𝑝𝑓𝑔)(𝑥) +K1𝑝(𝑥)K2(𝑞𝑓𝑔)(𝑥) > K2(𝑞𝑔)(𝑥)K1(𝑝𝑓)(𝑥) +K2(𝑞𝑓)(𝑥)K1(𝑝𝑔)(𝑥). (2.7)

for all 𝑥 > 0. Inequality (2.7) is reversed if the functions are asynchronous on (0,∞).

Proof. We multiply both sides of inequality (2.3) by
𝑣1(𝑥)

Γ(𝛼)
𝑘1(𝑥, 𝜏)𝑢1(𝜏)𝑝(𝜏), 𝜏 ∈ (0, 𝑥), and

integrating the resulting inequality with respect to 𝜏 over (0, 𝑥), we find that

K1(𝑝𝑓𝑔)(𝑥) + K1(𝑝)(𝑥)𝑓(𝜌)𝑔(𝜌) > K1(𝑝𝑓)(𝑥)𝑔(𝜌) + K1(𝑝𝑔)(𝑥)𝑓(𝜌). (2.8)

Again multiplying inequality (2.8) by
𝑣2(𝑥)

Γ(𝛼)
𝑘2(𝑥, 𝜌)𝑢2(𝜌)𝑞(𝜌) and integrating the resulting in-

equality with respect to 𝜌 over (0, 𝑥). This leads as to inequality (2.7).
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Letting 𝑞(𝑥) = 𝑝(𝑥) in Theorem 2.3, we get the following Corollary.

Corollary 2.2. Let 𝑓, 𝑔 be two synchronous functions on [0,∞), 𝑝 : [𝑎, 𝑏] → (0,∞), 𝑢𝑖 be
positive integrable weight functions and 𝑣𝑖, 𝑖 = 1, 2, be positive functions. Then

K2𝑝(𝑥)K1(𝑝𝑓𝑔)(𝑥) + K1𝑝(𝑥)K2(𝑝𝑓𝑔)(𝑥) >K2(𝑝𝑔)(𝑥)K1(𝑝𝑓)(𝑥)

+ K2(𝑝𝑓)(𝑥)K1(𝑝𝑔)(𝑥)
(2.9)

for all 𝑥 > 0. Inequality (2.9) is reversed if the functions are asynchronous on (0,∞).

Theorem 2.3 with K1 = K2 = K and 𝑞(𝑥) = 𝑝(𝑥) leads us to the following Corollary.

Corollary 2.3. Let 𝑓, 𝑔 be two synchronous functions on (0,∞), 𝑢 and 𝑣 be locally integrable
non-negative weight functions. Then

K𝑝(𝑥)K(𝑝𝑓𝑔)(𝑥) > K(𝑝𝑓)(𝑥)K(𝑝𝑔)(𝑥) (2.10)

for all 𝑥 > 0. Inequality (2.10) is reversed if the functions are asynchronous on (0,∞).

Theorem 2.3 with 𝑞(𝑥) = 𝑝(𝑥) = 1 gives the following corollary.

Corollary 2.4. Let 𝑓, 𝑔 be two synchronous functions on (0,∞), 𝑢𝑖 and 𝑣𝑖, 𝑖 = 1, 2 locally
integrable non-negative weight functions. Then

K2(1)(𝑥)K1(𝑓𝑔)(𝑥) + K1(1)(𝑥)K2(𝑓𝑔)(𝑥) > K2𝑔(𝑥)K1𝑓(𝑥) + K2𝑓(𝑥)K1𝑔(𝑥) (2.11)

for all 𝑥 > 0. Inequality (2.11) is reversed if the functions are asynchronous on [0,∞[.

If 𝑓 = 𝑔 in (2.11), we get the following corollary.

Corollary 2.5. Let 𝑓, 𝑓 2 be positive and integrable functions on (0,∞), and 𝑢𝑖, 𝑢 and 𝑣𝑖,
𝑖 = 1, 2, be locally integrable non-negative weight functions. Then

K2(1)K1(𝑓
2)(𝑥) + K1(1)K2(𝑓

2)(𝑥) > K2𝑓(𝑥)K1𝑓(𝑥)

for all 𝑥 > 0.

Corollary 2.6. Let 𝑓 be a positive and absolutely continuous function on (0,∞) such that
𝑓 ′ > 0. Let 𝑢𝑖 and 𝑣𝑖, 𝑖 = 1, 2, be locally integrable non-negative weight functions. Then

K2(1)(𝑥)K1(𝑓
3)(𝑥) + K1(1)(𝑥)K2(𝑓

3)(𝑥) >K1(1)(𝑥))−1K2𝑓(𝑥)(K1𝑓(𝑥))2

+ (K2(1)(𝑥))−1K1𝑓(𝑥)(K2𝑓(𝑥))2

for all 𝑥 > 0.

Proof. We observe that the conditions 𝑓 > 0, 𝑓 ′ > 0 imply that the functions 𝑓 and 𝑓 2 are
synchronous on (0,∞). Hence, for all 𝜏, 𝜌 > 0 we have

(𝑓(𝜏) − 𝑓(𝜌))(𝑓 2(𝜏) − 𝑓 2(𝜌)) > 0.

Therefore,
𝑓 3(𝜏) + 𝑓 3(𝜌) > 𝑓(𝜏)𝑓 2(𝜌) + 𝑓(𝜌)𝑓 2(𝜏).

Applying Theorem 2.1, we complete the proof.

Remark 2.4. By applying Corollary 2.4 with 𝑣𝑖(𝑥) = 𝑢𝑖(𝑥) = 1, 𝛽𝑖 = 1, 𝑖 = 1, 2, we arrive
at Theorem 1.2.

In the following we shall make use a well known Hölder inequality for many functions.

Lemma 2.1. Suppose that 1
𝑝1

+. . . .+ 1
𝑝𝑛

= 1 for 𝑝𝑖 > 1 𝑖 = 1, 2, . . . , 𝑛. If 𝑓𝑖 ∈ 𝐿𝑝𝑖 respectively,

then
∏︀𝑛

𝑖=1 𝑓𝑖 ∈ 𝐿1 and
∞∫︁
0

𝑛∏︁
𝑖=1

|𝑓𝑖|𝑑𝑥 6
𝑛∏︁

𝑖=1

⎛⎝ ∞∫︁
0

|𝑓𝑖|𝑝𝑖𝑑𝑥

⎞⎠ 1
𝑝𝑖

. (2.12)



SOME CHEBYSHEV TYPE INEQUALITIES . . . 95

Theorem 2.4. Let 𝑝𝑖 > 1, 𝑖 = 1, 2, . . . , 𝑛 such that

1

𝑝1
+ . . . . +

1

𝑝𝑛
= 1.

If 𝑓𝑖 ∈ 𝐿𝑝𝑖 , 𝑢 and 𝑣 locally integrable non-negative weight functions, then

K

(︃
𝑖=𝑛∏︁
𝑖=1

𝑓𝑖

)︃
(𝑥) 6

𝑖=𝑛∏︁
𝑖=1

(K𝑓𝑝𝑖
𝑖 (𝑥))

1
𝑝𝑖 . (2.13)

for all 𝑥 > 0.

Proof. For 𝑖 = 1, 2, . . . , 𝑛 we consider the functions 𝐹𝑖, defined on (0, 𝑥) as follows

𝐹𝑖(𝑡) = 𝑘(𝑥, 𝑡)
1
𝑝𝑖 𝑓𝑖(𝑡).

By applying Holder’s inequality, we obtain

K(
𝑖=𝑛∏︁
𝑖=1

𝑓𝑖)(𝑥) =
𝑣(𝑥)

Γ(𝛼)

𝑥∫︁
0

𝑖=𝑛∏︁
𝑖=1

𝑓𝑖(𝑡)𝑘(𝑥, 𝑡)𝑢(𝑡) 𝑑𝑡

=
𝑣(𝑥)

Γ(𝛼)

𝑥∫︁
0

𝑖=𝑛∏︁
𝑖=1

𝐹𝑖(𝑡)𝑢(𝑡) 𝑑𝑡

6
𝑖=𝑛∏︁
𝑖=1

⎛⎝ 𝑣(𝑥)

Γ(𝛼)

𝑥∫︁
0

𝐹 𝑝𝑖
𝑖 (𝑡)𝑢(𝑡)𝑑𝑡

⎞⎠
1
𝑝𝑖

=
𝑖=𝑛∏︁
𝑖=1

⎛⎝ 𝑣(𝑥)

Γ(𝛼)

𝑥∫︁
0

𝑘(𝑥, 𝑡)𝑓𝑝𝑖
𝑖 (𝑡)𝑢(𝑡)𝑑𝑡

⎞⎠
1
𝑝𝑖

=
𝑖=𝑛∏︁
𝑖=1

(K𝑓𝑝𝑖
𝑖 (𝑥))

1
𝑝𝑖 .

This proves inequality (2.13) and completes the proof.

Remark 2.5. Theorem 2.4 applied with 𝑣(𝑥) = 𝑢(𝑥) = 1, 𝛽 = 1, 𝑛 = 2 proves Theorem 1.3.

Theorem 2.5. Let 𝑓, 𝑔 be two functions defined on (0,∞), 𝑢 and 𝑣 be locally integrable non-
negative weight functions. If 𝑓 is increasing, 𝑔 is differentiable and there exists a real number
𝑚 := inf𝑥>0 𝑔

′(𝑥), then

K(𝑓𝑔)(𝑥) > (K(1))−1K𝑓(𝑥)K𝑔(𝑥) −𝑚 (K(1))−1K𝑓(𝑥)K(𝑖𝑑)(𝑥) + 𝑚K(𝑥𝑓)(𝑥)

holds for all 𝑥 > 0, where 𝑖𝑑(𝑥) = 𝑥.

Proof. We consider a function ℎ(𝑥) = 𝑔(𝑥) − 𝑚𝑥, where ℎ is differentiable and increasing on
[0,∞). Then 𝑓 and ℎ are synchronous on (0,∞). By applying Theorem 2.1, we conclude that

K (𝑓(𝑥)(𝑔 −𝑚𝑥)) > (K(1))−1K𝑓(𝑥)K(𝑔 −𝑚𝑥).

Since 𝐾 is linear, we have

K (𝑓(𝑥)(𝑔 −𝑚𝑥)) = K (𝑓𝑔) (𝑥) −𝑚K(𝑥𝑓)(𝑥).

This yields:

K(𝑓𝑔)(𝑥) > (K(1))−1K𝑓(𝑥)K𝑔(𝑥) −𝑚 (K(1))−1K(𝑖𝑑)(𝑥)K𝑓(𝑥) + 𝑚K(𝑥𝑓)(𝑥).

The proof is complete.
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Remark 2.6. By applying Theorem 2.5 for 𝑣(𝑥) = 𝑢(𝑥) = 1, 𝛽 = 1, we obtain Theorem 1.5.

Theorem 2.1 applied to the decreasing functions 𝑓(𝑥) and 𝐺(𝑥) = 𝑔(𝑥) −𝑀𝑥 for all 𝑥 > 0,
where 𝑀 := sup𝑥>0 𝑔

′(𝑥), gives rise to the following Corollary.

Corollary 2.7. Let 𝑓 𝑔 be two functions defined on (0,∞), 𝑢 and 𝑣 be locally integrable non-
negative weight functions. If 𝑓 is decreasing, 𝑔 is differentiable and there exists a real number
𝑀 := sup𝑥>0 𝑔

′(𝑥), then

K(𝑓𝑔)(𝑥) > (K(1))−1K𝑓(𝑥)K𝑔(𝑥) −𝑀 (K(1))−1K𝑓(𝑥)K(𝑖𝑑)(𝑥) + 𝑀K(𝑥𝑓)(𝑥)

is valid for all 𝑥 > 0.

We observe that our results generalize Theorems 1.1, 1.2, 1.3, 1.4 and 1.5.
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14000, Tiaret, Algeria
E-mail: aissamalik@yahoo.fr


	to1. Introduction
	to2. Main Results
	 Список литературы

