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ON MOMENT PROBLEM FOR ENTIRE FUNCTIONS
GENERATED BY DOUBLY PERIODIC GROUP

F.N. GARIF’YANOV, E.V. STREZHNEVA

Abstract. We consider a lacunar problem for Stieltjes moments with an exponential
weight. The solution is sought in the class of entire functions of exponential type, the
indicator diagram of which is a some square. We construct nontrivial solutions of the
corresponding homogeneous problem. This problem is reduced to the study of a linear
total equation in the class of functions holomorphic outside four squares. At infinity, they
have zero of a multiplicity at least three. Their boundary values satisfy the Holder condition
on any compact set containing no square vertices. At most logarithmic singularities are
allowed at these vertices. The solution is sought in the form of an Cauchy type integral over
the boundary of these squares with an unknown density. A method for regularizing the
total equation is proposed. The condition of equivalence of this regularization is clarified.
We find particular case when the obtained Fredholm equation of the second kind is solvable.
In order to do this, we employ the principle of contracting mappings in a Banach space.
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1. INTRODUCTION
It is well-known [1, Ch. II, 3.1.2.5.] that

/x4”+3 exp(—z)sinx dz = 0, n=0,1,2...
0

The proposed elementary method of contour integration allows one to obtain more general

identities
oo

Ly[F,n] = /a;4"+3F(x) exp(—z)sinx dx = 0, n=0,1,2...
0
Hereinafter, if else is not said, F'(z) is an entire function of the exponential type obeying the
condition
Its indicator satisfies the inequality
h(6) < cos(#) + sin(6), 6 €[0,7/2].

For constructing nontrivial solutions to a homogeneous problem

/x4n+3p(x) exp(—z)dz =0, n=0,1,2... (2)
0
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elementary methods are not applicable. One needs to reduce it to a linear difference equation
with constant coefficients and here powerful classical methods for studying convolution oper-
ators are not applicable [2]. Problem (2) was completely considered in work [3]. The same
concerns a corresponding inhomogeneous problem.

In work [4], there was studied the problem L;[F,n] = S,, n = 0,1,2..., in the class of
even entire functions of exponential type F'(z) € A [5, Ch. V], whose indicator diagram was a
segment [—i,4] in the imaginary axis. In work [6], the problem

o0

/x4"+1F(a:) exp(—x) cos(z) dx = By, n=0,1,2...
0

was considered in the same class of entire functions of exponential type.
The aim of the present paper is to study the problems of momenta

L[F,n] = /:c4”+1F(m) exp(—2x) sin(x) dz = B, n=0,1,2... (3)
0

in the class of entire functions of exponential type F'(z) satisfying condition (1). We construct
nontrivial solutions of the corresponding homogeneous problem, that is, as 5, = 0 for all n. We
stress that as in previous works [3—4,6], we employ essentially the theory of elliptic functions.

The paper consists of three parts. In Section 2 we consider an auxiliary total equation
in the class of the functions analytic outside four squares and having a zero at infinity of a
multiplicity at least three. We propose a method of its regularization and find out a condition
of its equivalence. In Section 3 we study particular cases of this equation, when it is possible
to show an unconditional solvability of an obtained Fredholm equation of second kind. In
Section 4, momenta problems (3) is reduced to this total equation. At that, we employ a Borel
transform [7, Sect. 1, Subsect. 1].

2. REGULARIZATION OF TOTAL EQUATION

Let D; be a square with vertices t; = y(1 + 1), to = t; + 1,t3 = to +i,t4 = t; + ¢ and sides
l;, 7 = 1,4, counted in the order of passing a positively oriented boundary I'y = 9Dy, t € Iy,
Imt = ). Here v € (271,1). We introduce four functions

Om(2) =ty + tms1 — 2 m=1,4  t5=+t. (4)

They induce a Carleman shift «(t) = {om,(t),t € [,,,} mapping each side into itself with the
change of the orientation. The centers of sides are fixed points of the shift.

We choose extra three squares D; = ¥~ 'Dy, j = 2,4. The functions o,,(z) are defined by
relation (4) only as z € D;. On the other squares we define them by the formula

om(i712) = i o (2)(2 € Dy), j=24.

4
Let D= |J Dy, I' =0D, I'; = 0D;. In this way, the shift a(t) is defined on the entire set I'.
k=1
We are going to study a functional equation

(V=) =) flom(=)]=g(z),  z€D, (5)

under the following assumptions.
1) The solution f(z) is holomorphic outside D and at infinity it has a zero of multiplicity at
least three. Moreover,

fiz) = =if(2). (6)
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Its boundary value f~(t) satisfies the Holder condition on each compact set not containing the
vertices of the squares. At the vertices, at most, logarithmic singularities are admitted. We
denote such class of solutions by B.

2) The free term g(z) is a piece-wise holomorphic function obeying (6), that is, g(z) = g;(2),
z € Dj, j = 1,4. Each function g;(z) is holomorphic in D; and its boundary condition satisfies
g7 (1) € H,(0D),).

Let us clarify the formulation of the problem. To each square D,;, we associate the set

4

H; = U ow(D;). If HiN Dy, # 0 as k # j, then problem becomes meaningless. We recall that

m=1
a solution f(z) is defined only outside D. Hence, v > 27!, which ensures that the squares are
not too close one to another. On the other hand, we employ essentially that H; N H;y # 0,
j =1,4, H; = Hy. Thisis why v < 1. We stress that problem (5) since the sets C\ H;, j = 1,4,
are not connected.
We seek a solution to problem (5) as a Cauchy type integral:

flz) = 1 / (r—2)'(r)dr, 2¢D (7)

21
r

with an unknown density obeying the conditions

p(it) = —ip(t) (8)
and

/(;5(7') dr=0 = /gb(T) dr =0 forall j. 9)

Without loss of generality we assume that

¢(7) + ¢la(7)] = 0. (10)

Indeed, on each boundary T';, the density ¢(7) is defined up to a term ) (7), which is the
boundary value of a function a(z) holomorphic in D;. By an appropriate choice of this function
we can satisfy condition (10). This condition is regarded as the Carleman problem for the
unknown function a(z), which is solvable thanks to the locally-conformal gluing principle [8]
and solvability condition (9).

We get

G) & (49)(z) = L./cb(T)E(Z?T) dr =g(2),  z€D, (11)

21
r

where
4

E(z,7) =) (r—om(2))";  z€D. (12)

m=1

Remark 1. Let us mention a relation of kernel (12) with the theory of elliptic functions.
Let ((u) be a quasi-periodic Weierstrass function [9, Part 2, Ch. 1, Sect. 11] constructed by
primitive periods 1 £i, w = 7+ z. As z € Dy, kernel (12) is the sum of four terms in the
expansions of the zeta function into the series of primitive quotients closest to D;.

In (11), we pass to the limit as z — t € I'. In view of (10) we obtain an analogue of
Sokhotskii-Plemelj formula:

(AT9)(t) = 27'9(t) + (Ad)(t) = g™ (1), (13)
where a singular integral (A¢)(t) is obtained by a formal change of the variable z € D by t € T’
in (11) and is treated in the Cauchy principal value. In relation (13) we replace the variable ¢
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by «(t) and we deduct the obtained identity from the original one. In view of condition (10)
we get:

(T6) = o(0) + 5 [ K(t.1po(r)dr =g (1) - 9" (a0, (149)

and
K(t,7) = E(t,7) + Ela(t), a(T)]. (15)

Lemma 1. Integral equation (14) is a Fredholm equation of second kind.

Proof. Tt is sufficient to confirm the boundedness of kernel (15) by a straightforward counting
of all possible mutual location of the points 7 and ¢ at the sides I'. O

Corollary 1. Integral equation (14) has finitely many solvability conditions.

Suppose that these conditions are satisfied. We make a back passage from integral equation
(14) to original problem (5). In the same way how this was done in [10], one can show that
there exists a solution ¢(t) satisfying conditions (8) and (10). Then (14) implies that

(A7) (t) — (AT9)(a(t)) = g™ (t) — g™ (a(t)),
that is, (A¢)(z) = g(z) + ¢., z € D, since a doubly periodic function possessing no poles can
be only constant. A piece-wise constant ¢, function is constant in each square and ¢;, = —ic,.

Theorem 1. Problem (5) has finitely many solvability conditions. These solvability condi-
tions of integral equation (14) and one more condition:

(49)(20) = 91(20), (16)
where zg € Dy and this ensures the equivalence of the reqularization.

Let all these assumptions to be satisfied and problem (5) be solvable. The set H; N Hy = Hy
is a rectangle with vertices £(y—1)+~i, £(y—1)4(y+1)i, containing the segment (i, (y+1)i)
in the imaginary axis. We choose a point z € Hy. Then, employing the conditions of problem
(5) on Dy, we have:

fR)=gti+ts—2)—flz+1—40)— f(z+14+10) — f(z+2).
Exactly in the same way, employing the conditions of problem (5) on Dy, we obtain:
f(z) = gality +itg —2) — f(z—=1—1i) — f(z—1+1i) — f(z —2).
This implies
fe+1—9)+f(z+1+0)+ f(2+2)— f(z—1—1i)— f(z —1+1)
—f(z=2)=qi1(t1 + ts — 2) — ga2(ity + ity — 2).

Now let v < Im z < 2 — 4. Employing the conditions of problem (5) on squares D3 and Dy,
we get:

(17)

fe+1=30)+fz+1—0)+ f(z+2—-2i)— f(r—1—-3i) — f( — 1 —1) 8

As a result, we obtain:
fe+1+i)+ f(z+2)—f(z—14+10) — f(—2)— f(z+1—349) 19)
—f(z+2—=2)) 4+ f(z —1—=3i) + f(z — 2 — 2i) = go(2),

where
go(Z) = 91(751 + t4 — Z) — gg(ltl + Ztg — Z) — g4(22 — ’Ltl — Ztg — Z) + 93(22 — tl — t4 — Z) (20)

Relation (19) involves only the values of the function f at the points located outside the square
Dy with vertices (y+ 1)/, j =1, 4.
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3. STUDY OF INTEGRAL FREDHOLM EQUATION IN SOME PARTICULAR CASES

In what follows we assume that v > 0.9. Let us show that equation (14) is solvable. We
consider the following homogeneous equation

T¢ = 0. (21)

We assume that the operator T is defined on the Banach space C (I'). This is the set of the
functions continuous on the closure of each side of the squares with a naturally induced norm:

M = max|¢(?)]. (22)

At that, for these functions, the vertices can be only the points of discontinuities of the first
kind. Since A(t,7) = A(7,t), we have 7" =T. A fundamental system of solutions of equation
(21) can be chosen so that each involved function satisfies either condition (10) or an opposite
condition ¢(t) = ¢(a(t)), see [10]. Solutions with the latter condition are also orthogonal to
the right hand side in (14) since (10) implies (9).

Lemma 2. The fundamental system of solutions of equation (21) contains no functions with
property (10).
Proof. We assume the opposite and to be definite, we let v = 0.9. By property (10), instead
of kernel (15), we take another kernel K (¢,7) = 27'[K (¢, 7) — K(t,a(7))] and we are going to
estimate its absolute value from above. Thanks to the symmetry of I' it is sufficient to consider

only two cases.
I. Condition (22) holds for ¢t € [;. Then

Alt, 1) =(u—2.8 —1.8)) " + (u—3.8 —2.8))" + (u—28—3.8)""
+(u—18-28)" wu=7+T; aft)=28+18i—t
t=1x+0.9 z €1]0.9,1.9].

1.1. 7 € ly; this implies that

Kt,7)=(u—38-28)""+(u—28—38i)""+ (u—18—-28i)""

—(u—18-08)"—(u—28+02i)"" — (u—38—08i)",

that is, | K| < 0.13.
1.2. 7 € l4, and in this case

K(t,7)=(u—38—28)""+ (u—28—3.8i)""
—(u—08—-18)"—(u—18—-0.8i)"",

that is, |K;| < 0.08.

1.3. 7 € l. Thanks to the symmetry we have the same estimate |K7| < 0.08.

1.4. 7 €l3. Then K(t,7) = 0.

As 7 € T', the kernel E(t, 7) contains the terms, the integral of which is treated in the sense
of the Cauchy principal value. But kernel (15) is bounded and this is why, kernel K is written
explicitly above. As 7 ¢ ', there are no such terms.

Let 7 € I'y. We denote the lower, right, upper and left sides of the squares by b;, j = 1,4,
respectively. As 7 € [, we have | K| < ¢;, where ¢; = 0.17; ¢ = 0.43; ¢3 = 0.31; ¢4 = 0.21.

Let 7 € I'5. In this case ¢; = 0.04; ¢ = 0.06; c¢3 = 0.07; ¢4 = 0.08.

Let 7 € T'y. In this case ¢; = 0.08; ¢ = 0.12; ¢3 = 0.19; ¢4 = 0.12.

Since the sum of all these numbers is less than 27, by the contracting mappings principle
this implies that ¢ = 0 and this is a contradiction.
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II. Condition (22) is satisfied for ¢ € 3. We observe that the point ¢ € I3 is located further
from the squares D3 and D, than the point ¢ € [;. This is why the above estimates for t € I';Ul'y
become even better in comparison with case I and exactly in the same way we get ¢ = 0.

Finally, let v > 0.9. Then the ditances between the squares become greater than in the just
considered case and this improves the estimates. The proof is complete. O]

Remark 2. [t follows from the estimated established in the proof of Lemma 2 that it remains
true also for some v < 0.9. The issue how small v can be is not considered in the present work.

Theorem 2. As~y > 0.9, problem (5) possesses the unique solvability condition (16).

Remark 3. For each function g(z) we can find a constant ¢ such that for §(z) = g1(z) + ¢,
z € Dy, problem (5) is unconditionally solvable.

4. APPLICATIONS TO MOMENTA PROBLEM

Here we discuss the application of problem (5) to momenta problem. Let an entire function
F(z) of exponential type be an upper function associated in the Borel sense with a lower
function f(z) € B. Generally speaking, its adjoint indicator diagram is the square Dy. It
satisfies condition (1). We employ identity (6) and rewrite relation (19) as integral

o0

/F(x)M(z,x) dr = go(2), z € Dy (23)
0
with the kernel
M(z,z) =exp(—xz — 2x) —iexp(ziz + i — x) + i exp(xiz — xi — )
+ exp(zx — 2z) —iexp(—xzi — xi — 3x) — exp(2ix — vz — 2x)
+iexp(xi — xiz — 3z) — exp(zrz — 2z — 2ix).
We stress that all exponentials are calculated at the points in the upper half-plane Rez > 1+7.
It is easy to confirm that for n # 4k + 1, k = 0, 00 we have
an

—M
oz" (2,7)

and

4k+1) /. 4k+1
gd* (@) = —4gi™ Y (2),

where zp = 2y(1 4 ). Let
o Br
gi(2) =By — 20 le— 20)F, (24)
k=1

and the convergence radius of this power series satisfies R > v1/2. We choose the coefficient 3,
so that problem (5) is solvable. Equating the like Taylor coefficients at the point i in the left
and right hand sides in identity (23), we find

L[F,n] = Ban+1. (25)

Theorem 3. Momenta problems (25) in the class of entire functions F(z) of exponential type
associated in the Borel sense with the lower function f(z) € B is solvable under the condition

Ve T V1Bl

< 1.

Let us construct a non-trivial solution to a homogeneous problem. It is sufficient to assume
in formula (24) that £4,,1 = 0 and there exists a coefficient obeying /3, # 0, n > 0.
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Remark 4. The case, when the adjoint indicator diagram is not the square Do but some
smaller convex set D C Dy is possible but is not interesting. In this case problem (5) is
overdetermined. Condition (5) holds not only as z € D, but also in the vicinity of the infinity.
A necessary but not sufficient condition for this is the existence of an analytic continuation of
g1(2) from Dy into the vicinity of the infinity and having at the same time g,(c0) = 0; for more
details we refer to [11], [12].

11.

12.
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